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Introduction

In this paper we discuss the following number theoretical transforma-
tions defined on [0, 1)x [0, 1)

7w o—(E-[] £-[2)

o o—(3-{2] {-£}-2).

These transformations T, and 7, which can be found in [1] are examples
of the so-called skew product transformations associated with the continu-
ed fraction transformation S; a— (1/a)—[1/a]. These transformations
induce the following expansions, respectively (see §1 and §3 for details);

and

) B=3 lo%k—1)| - bik)
and
2) B=30(k—1)- b'(k)

" where 0(n)=q,a—0p,.

Therefore, the transformations T, and 7, give the algorithms which
will yield the approximations of the real number B by means of the
set of all translates {na} of an irrational number a.

In this paper we discuss the ergodic properties of the transforma-
tions T, and 7T,. And we shall elaborate on number theoretical applica-
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116 SHUNJI ITO

tions of the algorithm 7, in a subsequent paper [3]. Our main theorem
is to state that the density functions of invariant measures g, and g,
for T, and T, respectively, are given as follows:

1 a+2 if

du, ) 2log2 (+aF poa
dn 1 a+3 .
f g<
Slog2 Atay - P
and
1 a+2 .
£ 1
dy, ) 2log2 1+a)y toath<
dn 1 a+3 .

2log 2 (1+ay aths>1.
But we feel that our procedure for obtaining the proof of this theorem,
which should be called a realization of the natural extension, is more
important than the specific form of the density functions obtained. Our
proof proceeds as follows: first of all, we try to realize the natural ex-
tensions T, and T, of T, and T, respectively, on some subsets of R‘.
Secondly, we find the density function of invariant measures 2, for T,
(=1, 2). And, finally, we obtain the main theorem. In the course of
this procedure we obtain a new and important transformation TF¥ (See
§2) which will be called the dual algorithm of T, and we see that this
algorithm 7T induces the so-called canonical form in the theory of
discrepancy [5].

On the other hand, in the paper [2], we will discuss the ergodic
properties of the following transformations defined on [0, 1)x]0, 1)

Ty (a, B)——{—:——%j—%, -_[__g:_§>
and

. [-1]-1 8_[8]
Tu (a’ B)—_)( L . a’ P a_) .
And we will give the density function of invariant measures g, for T,
(1=8, 4) explicitly as follows:

2—«a .
if a<
dy, _ ) 1—a) s
dn 1
l1—a)

if a>p
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and

2—a if a+p/<1

dp, ) 1—a)
dn |1 if a+8>1
i if a .

In concluding this introduction, we would like to thank Professors
Yuji ITO and Hitoshi NAKADA for their valuable discussions and advices.

§1. Definitions and fundamental properties of the map T.

In this section we define the first map 7, and discuss fundamental

properties of this map.
Let X be the set {(o, 8)|0<a, <1} and functions a(a) and b(a, B)
on X be defined by

(1) aw=[L], e o=2].

where [x] for any real number x denotes its integer part. We define a
map T, of X onto itself by

_(L_[1]B8_[8
(2) Tia, B)_(a l:a]' o l:aD )
(see figure (1)). Note that T?(a, B8) ¢ X may occur for some n. To avoid

/

>a

Figure 1. for (a, ,B)—)( 1 —’j—)

a 2
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this difficulty we must sometimes consider the algorithm on the restricted
set X, ={(a, B) € X|T?a, B) € X for all n € N}. But it is easy to see that
the Lebesgue measure of this set X, is equal to 1. Therefore, for
simplicity we write X for X, throughout the paper. We then define
the sequence of coordinates associated with (a, 8) € X as follows:

(3) ala; n)=ala(n—1))
bla, B; n)=bla(n—1), B(n—1)) (n=1)
where a(n) and B(n) are the coordinates of T7(a, B), that is,

(4) (a(n), Bn)=TMa, B) (n=0).

From the definitions (2) and (8), it is easy to verify that for each
(a, B) € X(=Xr,)
( 1

a= 1
a ;1 .
(@ 1) ala; 2)+

(5)
1
ala; n)+a(n)
B=k§='{ a(0)a(l): - -a(k—1)b(a, B; k)+a(0)a(l)- - -a(n—1)B(n)

for n=1.

The first expresion in the expansion (5) is the usual continued fraction.
So we denote

(6) zéé':;::;z(a.l” — (nz1)
1
ala; n)
and
(7) 6(a; n)=q(a; n)a—pla; n) (nzl).
Then we have
(8) a(a; n)=ala; n)gla; n—1)+qla; n—2) (n=1)

p(a; n)=ala; n)p(a; n—1)+pla; n—2)
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where (g(a; 0), ¢(a; —1))=(1, 0) and (p(a; 0), p(a; —1))=(0, 1), and
(9) a(0)a(l)a(2): - -a(n)=(—1)"6(a; n)=10(a; n)| .
In the sequel for simplicity we sometimes write
a(n), b(n), p(n), g(n) and 6(n) for a(a;mn), bla, B; n), p(a;n) ,

¢(a; n) and 6(a; n), respectively. Now from the notation (6) and the
relations (8) and (9) it follows that the expansion (5) of (@, B) € X can be
written in the form

=21 +p(n—1a(n)
g(n)+q(n—1)a(n)

NPy B(n) .
2 L Yot o promp

(10)

We call (p(n)/g(n)) and 32, |6(k—1)|b(k) the n-th approximants of «
and B with respect to the algorithm T,. The second expression of (10)
represents the approximation of the real number B corresponding to the
following geometric picture:

[6(0)] 16(0)] 16(0)

———

AG1_16Q] >~ ‘

BN ]

0 @ - /S B 1
16(0)1b(2) 16(0)[b(1) +|6(1)[b(@)

We will discuss in detail geometric properties of this algorithm T,
and its relation with the Weyl orbits {na} in another paper [3].

The sequence of integer vectors ((%EB), (%%)' .o -), which will be
called a T,-admissible sequence, corresponds to each (a, B) € X, and it has
the following “Markov’” properties:

(1) a@=b@E) (iz1)

(1) (2) if a(®)=0b() then b(E+1)=0 (=1).

Now we put

. ala; 1) a(a; 2) ala; n)
(12 A= K(b(a, B; 1)><b(a, IH 2)) (b(a, B; n)))l(a’ 2 GX}(T@D
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and for each (((I’;EB) g‘gg) (ggﬁg)) € A(n) we define

a(l)\ /a2 _ ala; 1)
13) X((ba))(b@)) ( ))‘{(“' meX}(b(a, B;i)>
. a(?)
‘(bm) == }

which will be called a fundamental cell of rank n. We sometimes denote

((%8;)(%23) (%83)) and X((%EB (%83)) simply by a(n) and X.,.

Then we have

(14) X= U Xinm

a(n) € A(n)

and
XemNXem=0 if a(n)#a'(n),

that is, the set of all fundamental cells of rank n forms a partition of
X. Moreover let sets U, and U, be defined by

U={(a, B); 0<a, B<L1} (=X)

15
(15) U={(a, B); 0<a<l, 0<B<a} .

Then from the definition of the map 7, we can easily deduce the follow-
ing lemma.

LEMMA 1. For each a('n)=( %8;) (g’gzg)) € A(n)

U, if a(n)=£b(n)

(16) TP Xem= {Ul if  a(n)=b(n) .

Now for each a(n)=<(g’8§)<ggg) (%EZ%))GA(?@) we define a map
Yamy Of (a, B) by

A el O)=(ZREEE=DE, S (@)en(ar) o)

+aa@)a(a)- - -an_l(a)ﬁ) ,

where
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1

oy_y(a)= I=sk=n).

1

Ty

1
I S
aln)+a

Then, by the representation (5) and Lemma 1, the map +,,, is seen to
be the inverse map of the map T? on X,,, that is,

(18) Vam(Tix)=2 for each xe X, .

Moreover, the Jacobian J(v,) of the map .., is given by J(v..,)a, B)=
1/(g(n)+g(n—1)a)* on each U, ©=0 or 1. Therefore the function w,,,
satisfies “Renyi’s condition” [2], [3], or [4], that is, there exists a constant
C not depending on a(n) € A(n) such that

(19) Sup J(huin(t, B)SCint Jpan(a, B)) -

Now, we can obtain the following Theorem 1.

THEOREM 1. The map T, on X admits an invariant measure y7A
equivalent to the Lebesgue measure n, and T, is ergodic; moreover it is
exact with respect to p,.

Proor. It is sufficient to see that the map 7, satisfies all the
conditions of Lemma 1 in [2] (or [3]). In fact, the assertion that the
map 7, has the Markov property and satisfies the Renyi’s condition is
derived from Lemma 1 and (19). The condition that diam(X,,,)—0
(n— <o), which guarantees that the partition of X into fundamental cells
of rank n tends, as n— o, to the partition into individual points, is
obtained from the expansion (10), that is, diam(X,.,,)~01/g,). The
condition of ergodicity is easy to verify. Thus, we obtain this theorem.
The form of (dg,/d)) will be determined explicitly in §2.

§2. Dual algorithm and the natural extension of the map 7.

In this section, we construct the natural extension T, of the map
T, by using the dual algorithm of T, and compute the density function
for the invariant measure g, explicitly.

Let Y be the set {(v, 0)|0<7<1, —v<d<1} and integer valued func-
tions ¢(7) and d(v, ) be defined by
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FIGURE 2

(20) c(v)=|}] . d, 8)=max{|:%-:|——[ 1;3 ] o} .

We define an algorithm Ty on Y which will be called the dual algorithm
of T, by

@1) T#(7, 3>=(-,1y——c(v>, —%+d(~/, 9)

(see Figure 2). We define similarly as in the preceeding section, sequences
corresponding to ‘“coordinates” associated with (v, é) e Y as follows:

c(7; n)=c(7(n—1))

where
(23) (v(n), 6(m))=T¥"(7, 0) (n=0).

In the sequel we sometimes denote, for the sake of simplicity, ¢(n) and
d(n) for c¢(v;nm) and d(7, d;n). From the definition (21) and (22), it is
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easy to verify that for each (v,0)eY

(- . 1
c(1)+ R
(24) 4 )
1
. c(n)+v(n)
5=k2=1(—1)"“’>'(0)7(1)- <Yk —1)d(k)+ (—1)*7(0)Y(1)+ - - Y(n—1)8(n)
(n=1).
So we denote
p*(n) 1
(25) ) T (nzl),
C(l)"“-m -
1
c(n)
and
(26) *(n)=q*(n)y—p*(n) (n=1).

Then the expansion (24) of (v, 8)€ Y can be written in the form

=P M)+ p*(n—1)7(n)
q*(m)+q*(n—1)7(n)

5y % (=1)"o(n)
0= k—1)d(k .
k2='10 ( (k) + a*(n)+q*(n—1)v(n)

(27)

The second identity in (27), which gives a representation of the real
number §, coincides with the so-called canonical form in the theory of
discrepancy [5]. We will discuss more interesting facts about this re-
presentation in another paper [38]. Now, the sequence of integer vectors

((ggg , (ggg , ) which will be called a T*-admissible sequence is as-
sociated with each (7, §) € Y, and it has the following “Markov” properties:

(1) e(zd@)  (z1)

(28) (2) if d(@)#0 then d(E+1)z=c(t+1).

These properties are equivalent to the assertion that, for any finite

sequence of integer vectors (((383) . (2&23)} satisfying the property (28),

e e ((53)(5) obainn v raing ((E)(EB)- ()
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backwards is a word in A(n).
For each pair ¢, d with ce N, de NU{0} and c¢=d, we let

(1 d—s
(29) Py V=(s55 2=2)
and
¢(c)(Vo) if d=0
(30) Y, ={ a
¢ PV if czdzl
where

Vo=Y and V,={(7,0)|0<7<], —v<d<1—-"7}.
Then from the definition of T} we have the following lemma.

LEMMA 2. The family of sets {Y(;); ceN,de NU{0} and c=d} has

the following properties:
(1) the family is a partition of Y, that 1is,

) c ¢
YoN¥p=2 v (a)*(w)'
Ve if d=0

(2) TI*(Y(z))Z{VI if d=0.

We put V((‘]’l):T;"(Y(S)) and U(Z):TI(X(‘;)), and let the set Z be
defined by

B c(v; 1) ala; 1)
Z= {(7’ % @ B)e I Xl << d(v, 5; 1) )(b(a, 8 1) )) © A(Z)} ‘

Then by (14), Lemma 1 and Lemma 2, the set Z is seen to have the
following two partitions:

31 Z= U V d x X,
B1) = b ) %@

$eaw

a
= U Y.,xU(b>.

Qe G

Now, we define the map T, of z as follows:
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(32) Tl('yv 5’ a: B):-(@ a(a3l) (7’ 5)9 Tl(a, B))
(b(a,ﬁ;l) )

— 1 bla, B;1)—0
—(7—I—a(a; 1) v+a(a;1) % '81) ’

Then for each (g) e A(1), the map 7, is a 1-1 map of V(Z’)xX(a) onto

— b
Y(%)x U(g). Thus, we see that the map T, of Z onto itself gives the
natural extension of the map T..

THEOREM 2. The natural extension T, defined above has an invariant
measure K satisfying (df2/dx)=(1/log 2)(1/(1+7a)*) where dX is the Lebesgue
measure on Z.

PRrROOF. The Jacobian J(T,) of map T, on V<g)XX(';) is given by

1

(33) J(T1)=m; .

Now, we define the kernel function K(7, 8, a, B) on Z by

1

K, 8, o, £)= log 20 +7a)®

Then the kernel function K(v, 8, a, ) satisfies the following relations:

(34) K(T(7, 8, a, B)J(Ti(r, 8, a, B))
1 1 1
T log2 1+ (A/a)—a)A/(Y+a) (Y+a)a’
=K, 0, a, B) .

This relation (84) implies that K(v, §, @, 8) gives an invariant density
function for T..

Computing the marginal distribution, we obtain the following
corollary.

COROLLARY.
(1) The algorithm T, has a unique absolutely continuous invariant
measure t, satisfying

1 a+38 on U,
dp, J2log2 (1+a)
dn 1 a+2 on X\U1 ,

2log2 (1+a)
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(2) The algorithm Ty has a unique absolutely contimuous tmvariant
measure pf satisfying

1 7+2

v,
dpr _J2log2 W+vy v
a1 1 on T\V..

2log2 (14+7)

§3. Definitions and fundamental properties of the map T..

In this section, we define another important map 7, similar to the
map T, given in §1.

Let X be the set {(a, 8)|0<a, 8<1} and functions a(a) and b(a, B)
on X be defined by

(35) a(a)=[%], b(a, 3):-[—%].
Then we define a map T, of X onto itself by
ri o-(L-[2) -2} 2)

(see Figure 3). We define the sequence of coordinates associated with

%)

FI1GURE 3
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(a, B) as follows:

a(a; n)=ala(n—1))

@7) ba, B; n)=bla(n—1), B(n—1)) (n=1)

where (a(n), B(n))= T a, B) (n=0).
Using the same notations as in §1, we have the following expansions

a=PM)+pn—Da(n)
g(n)+q(n—1)a(n)

% (=1)"+B(n)
= E—1)bk
B kz=:10( o(ke)+ gn)+qgn—1a(n)

(38)

The second identity of (88), which gives the approximation of the real
number B by means of the algorithm 7, corresponds to the following
geometric picture:

16(0)] 16(0)] 16(0)] 6(0)b(1)
8

Loe

T ~——~
a0 +0Mb@ o) 18]

The sequence of integer vectors (( g((%))>’ (%g;), .- (%EZ;), .. -), which will
be called a T,-admissible sequence, is associated with each (a, 8) € X, and
it has the following “Multiple Markov” properties:

(1) a(z), b(#) € N and a(?)+1=b(2),

(2) if there exist k=1 such that b(k)=a(k)+1 then

(39) bk+1)=ak+1) or ak+1)+1,

and if there exists j such that a(k+¢)=b(k+i) for 1<i<j and
alk+5+1)#blk+7+1) then b(k+j+1)=a(k+7+1)+1 in the case of
even j’s and b(k+j+1)<a(k+j7-+1) in the case of odd j’s.

Now we put

ala; 1) ala; n)
@ Bw= K(b(a, 6; 1))"'<b<a, 8; n)))l(“’ 8) GX} (nz)

and for each ((%83) . (%&gg)) € B(n) we define
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ala; 1) _ a(?) .
(b(a, 8; z')) = < b(3) ) 1&‘3‘”}

which will be called a fundamental cell of rank n. We sometimes denote

((53): (b)) 208 Xy oy BY 30 and X Then (Xoco; by

b(1) b(n)

B(n)} forms a partition of X. Let U,=X, U,={(a, B) € X|a+B>1} and
U,={(a, B) e X|a+B<1}. And we decompose B(n) as follows:

(41) X( aW)...(3(M)) T {(a: B eX

b(1) b(n)

(b(n) € B(n); a(n)>b(n) or there exists k& such
) — that a(k)>b(k) and a(5)=0b(s) for all
E+1=j=m.

(42) B{™ = that a(k)+1=0bk), a(3)=b(F) for all

{ k+1=<j=<mn and n—Fk is even.

(b(n) € B(n); a(n)+1=b(n) or there exists %k such}

and

(n) a()=b(j) for all k+1=<j=<n, and
n—k is odd.

b(n) € B(n); there exists k such that a(k)—l—l:b(k)}
Using the above notations we can easily prove the following lemma.
LEMMA 3. For each b(n) € B(n) (n=1),
T Xom=U, if b(n)e B® (i=0,1, 2)
Now, for each b(n)=<(%8;), .. (z’gz;)) € B(n) we define a map
of (a, B) by

_(pn)+p(n—Da & gy ..
43 il @)= (ZEERBZLE, S (1) arie)blh)

+(—ra@): -t (@)8)

where «,_,(a) has the same meaning as in (17). Then, by using the
relation (838) and Lemma 3, we see that the map ., is the inverse of
Ts on X,,, that is

(44) Pom(Tex)=2 for each z€X,,, .
Moreover, the Jacobian J(4yr,,) of the map 4, is given by
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1
(gn)+q9(n—1)a)

on each U, 7=0,1, 2. Therefore, the map +,,, satisfies “Renyi’s condi-
tion”. We can easily see that the map T, satisfies all the conditions of
Lemma 1 in [2] just as the map 7T, does and therefore, we have the
following theorem.

(45) . J(Wom)a, B)=

THEOREM 3. The map T, on X admits an invariant measure g,
equivalent to the Lebesgue measure \, and the map T, is ergodic; more-
over, it is exact with respect to .

§4. The natural extension of the map T,.

In this section, we will construct the natural extension of the map
T, and compute the density function of the invariant measure p, explicitly.
However, the sequences corresponding to 7, are more complicated than
those corresponding to 7,. Hence, we must prepare some notations in
order to describe admissibility.

Let B(, j), t=1,2 and j=1, 2, 8 be the subsets of U, B(n) defined
as follows:

B, 1)={<Z) e B(1) a+1=b} ,

o 1 21
S (G- e

for all 1<57=<21—1 and a(21)>b(21)} ,

a(5)=b(J)

a(l)) (a(21+1) a()=b(7)

b(1) b(21+1)
for all 1<j=<21 and a(21+1)+1=b(21+1)},

>> e B(21+1)

-3

1=1

46) B, 1):{(:>e3(1) a>b} ,

C({{e®)  (a@l+1)
B 2)= K(ba))’ ’ <b<21+1>)> S SELHL

for all 1<j5<21 and a(21+1)>b(21+1)} ,

a(5)=b(7)
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_ a(l) a(21)
B&, 8)= {((ba))’ ’ (b(ﬂ))) < Bt

for all 1<5<21—-1 and a(21)+1 =b(21)} ,

a(3)=b(4)

and put
47) B,=U B1,%) and B,=U B, j).
i=1 i=1

Then, we have

U1= U Xy and U2= U Xb .

beB; be By

Foc (58, . (58) <00 nd v=((§18). -~ (§3)) e 50
we denote ((‘g&g) (abgllg) ( b:gg) (%,83» by 5-b" and call b-b'
admissible if b-b' € Blk+j).

LEMMA 4. Under the above notation and definition (46), we have the
Jollowing:

(1) if (‘g ) e B(1, 1) then (‘g)-b is admissible for all be B,
(2) if (“ ) e B2, 1) then (g ) -b is admissible for all be B,UB,

@) i ((5) -+~ (531)) e B 2
then. ((53) -+ (3613)) € B, 1) o 153
(1) if ((83)), - (%8%3:8)) € B, 3)

won ((58). -+~ (211 1) e

) 7 (G0 - (B D) enn

o ((53). -~ (48ER) em0.2

. 1 21
6) #f ((3) -~ (3an))) e B2
2 (21 B1,1) f 1=1
then ((309) - (360)) e (B 3 F 13
Using (1) and (2) in this lemma, we see that the following sets are well
defined:
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A=U {X,,]Jac B, 1), be B}
A,=U {X;|be B(1, 2)U B, 8)}
(48) A;=U {X.,]lae B2, 1), be B}
A,=U {X..]ae B2, 1), be B}
A,=U {X,|be B2, 2)UB(2, 3)},

and satisfy
(49) U=A4,UA, and U,=A4,UA,UA,.
On the other hand, we put D and E as follows:

D={(v, 0)|0<", <1}
E={(,0)|0<v<1, 0<d<7+1}

and we define the partitions of D and E

(50) D=D,UD, and E=E,UE,UE,
where
D=0 {m, 5)]k+1 <v< ,(lc 1)7<a<1}
co k—1
D,=uU U {(“/ 3)] <7< , (T— 1)7<3<J“/}
k=2 j=1 k+
(61) G {(7 5)] <v<iL kv<6<1+7}
k=1 E+1 lc

E =
B=0 {0, «‘3)|k+1 <7<, b=y <o <k}
E,=D, (see Figure 4) .

Now, we define the map T, as follows:

- (1 M-+ 1 _ N
62 108w O=(5r oy EEERTS L, b)) £) .

LEMMA 5. Let M be
(53) M=ExUUDxU,,
then the map T, is a one to one, onto map on M.

PROOF. The set M is divided into five sets EX A, i=1,2 and Dx A,
1=38,4,5. From the definition (51) and (52) and lemma 4, we see that
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/ |
/ E(2,3)

EQ,2) E(2,2)

EQ,1)]E(2,1)
E, /

/0(3,3)
/D(“) p&.2)

1,
ba.1) D(2,1){D(3,1)
©0,1)
ELD' L_'jg
(0,0) 1,0
FIGURE 4.
) N
S: (r,a)—>(r, : )

the map T, is a one to one map on each set, and the range setstare given by

T(ExA)=E, x U,
T(ExA)=D,x U,
T(Dx A)=E,x U,
T(Dx A)=D,x U,
T(Dx A)=E,x U, .

This completes the proof.

THEOREM 4. The map T, on M has an itnvariant probability measure
K. satisfying

ag 1
54 2 —
(54) dr  log 21 +7a)®

where N 1is the Lebesgue measure. Therefore, the dynamical system
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(M, T, I, is a realization of a natural extension of (X, T, ).

PrROOF. The Jacobian J(T,) of the map T, is given by
= 1
JT)=—---
) (v +a())a?
The kernel function defined by

1
log 21 +a7)®’

K, 9, a, B)=

satisfies the relation:
K(Ty(7, 8, a, B)J(T(7, 8, o, B)=K(, 6, a, B) .

The relation above implies that the kernel K(7, 8, a, 8) gives an invariant
density function for 7,. That is, the system (M, T, Y,) is a dynamical
system. From the definition of T, as a skew product transformation
with respect to the map 7,, we conclude that the dynamical system
(M, T,, &£,) is a natural extension of (X, Ty ).

Computing the marginal distribution, we obtain the following
corollary.

COROLLARY. The map T, on X has the following invariant density
Junction:

a+3 ) U
dp, 2 log 2(1 +a)? of (o, B e U,
dn a+2 _
’ elU,.
2log 2(1+a)? if (a, B)
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