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Introduction

After the famous theorem of Hilbert ”There exists no isometric
immersion of a hyperbolic plane H?*(—1) into a 3-dimensional Euclidean
space.” and his conjecture "There exists no isometric immersion of an
n-dimensional hyperbolic space H"(—1) into a (2n —1)-dimensional Euclidean
space.” ([5]), we have studied the problem ’Can an n-dimensional hyperbolic
space H"(—1) be isometrically immersed in a Euclidean space RY?” W.
Henke ([4]) constructed an isometric immersion H"(—1)— R*""% But few
facts have been known beyond them.

In this paper, we get an example of a local immersion of H*(—-1)
into an n-dimensional complex Euclidean space C*, as a totally real sub-
manifold. Moreover we can determine the immersion of a real space form
M"(c) into a complex space form M"(4¢) for ¢<& as a totally real sub-
manifold with a certain condition about a mean curvature vector (§1).
This is a natural extention of the Ejiri’s Theorem in [2] and contains
an example of Vranceanu [6].

We remark that this immersion cannot be extended globally.

The author wishes to express her gratitude to Professors K. Ogiue
and N. Ejiri for their valuable suggestions.

§1. Chen submanifolds.

Let M be a submanifold immersed in #M. We denote by (, ) the
Riemannian metrics on M and M. Let ¢ and % be the second fundamental
form and the mean curvature vector of the immersion, respectively.

DEFINITION 1.1. A submanifold M immersed in If is called a Chen
submanifold if it satisfies the condition

Received January 10, 1985



104 MOTOKO KOTANI
(1.1) AZB {o(e, ez), hya(es, ep)

is parallel to h, where {e,} is an orthonormal frame of M.

REMARK. Historically B. Y. Chen introduced and investigated an A-
submanifold through the study of the Gauss map and showed that a
pseudoumbilic submanifold is a trivial example ([1]) and it was then called
a Chen submanifold and some more examples were given in [3].

LEMMA 1.2. Let M be an n-dimensional totally real submanifold with
constant sectional curvature c tn an n-dimensional complex space form
M™(42) with constant holomorphic sectional curvature 4¢. Then the
following two conditions are equivalent.

(i) M is a Chen submanifold.

(i) o(Jh, Jh) 1s parallel to h,
where J is the complex structure of M™(4%).

Before proving Lemma 1.2, we define a 3-symmetric tensor T by
1.2) T(X,Y, Z2)=<0(X,Y), JZ) ,

and we take an orthonormal basis {¢,} at each point x of M in such a
way that

T(e, &, &) =max{T(X, X, X); Xe T, M, | X|| =1}
and
T(ea, €45 eA)=glahx{T(X, X, X)},
€U4

where U,={Xe T.M; || X||=1, <X, ez)=0 for B=1, --., A—1}.
From the definition of {¢,} we get

1.3) T(e, €, €)=0 for A>1,

1.4) T(e, &, €)=2T(e,, €4 1) for A>1.

From (1.3) we can diagonalize (T(e, &, €5))s,z Dy an orthonormal basis
{v,=¢€, vy -+, v,} so that there exists B, , such that

Ty, v V3)=PB1,404,5 -
But from Gauss equation we get
Bia—B1aB11—(E—c)=0 for A>1.
These, together with (1.4), imply that 3, , is independent of A. We define
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Bi=PB1,a=T(v,, vy vy) for A>1,
a1:B1,1: T('Uu Vi ’01) .

Noting that an (n—1, n—1) matrix (T(v, v, vs), 2<A, B<n, is a scalar
multiple of the identity, we can take v,=¢,. In the same way we
diagonalize (T(v,, v,, v5)), 2<A, B=n, and denote its eigenvalues by

;= T(vy, vy, V) »
B:=T(vy vy, v5)d4,s for A, B>2.

Repeating this process, we see that there exist o, and B, such that

T(es 4y €)=ty ,
T(e4 €5) €)=B408c, if A<B.

See [2] for detalil.
ProOF OorF LEMMA 1.2. Noting that
o(es €5)=RaJes if A<LB,
o(e4s €4) =:Z: Brlestaude, ,
nh=20(es e) =3 {as+(n—A)B e,
we get
(o(esr €2), mh) =Bs(az+(m—B)Bs) if A<B,

and
((en £, nhY =@+ (n—A)B)+ 3 Bolats+(n—B)Bs) .

Then we have

AZ‘,B (o (e4s €5), Mh)O(ey, €5) =§Bl [ EB Balas+(n—A+2)8 Haz+ (n—B)Bs}
+{a:+(n—B)B3Haz+ (n—B)Bs} +B§‘; (ao+(n—C)BcFBzlJes -

We define f; by putting the right hand side of the above equation as
% Selaz+(n—B)BslJes .

On the other hand, we get
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o(nJh, nJh)=§ [ 4% 2B fa,+(n—A)B.Haz+(n—B)Bs}
+az(as+(n—B)Bs) + g.o {ac+(n—C)BcYBslJes -

We define g; by putting the right hand side of the above equation as
2. 9slas+(n—B)Bs}Jes -

If we put K,=K=¢—¢>0, K,=K,_,+5%_,, then we get K,+RB,a,—a:=0
from Gauss equation. Using this we note

(95—Sa)laz+(n—B)SBz}
= [A% Bda+(n—A—2)8,)+(n — B)(asBs— B3 {az+ (n—B)Bz}

=[A§3 {—K,+Bit(n—A—-2)B4}— Ks(n—B){as+ (n—B)Ss}
=[A%{—KA+(’n—A—l)(KAH‘—KA)}—KB('"/—B)]{C!B+("%—B)BB}
=[A% {n—A-1)K,,,—(n—A)K, }—K,(n—B){as+(n—B)Bz}

=[(n—B)Kz—(n—1)K,— Kz(n—B){az+(n —B)B3z}
=—nm—1K{az+(n—B)Bsz} .

Therefore we can easily see that the condition

”%‘. Sslag+(m—B)BglJes is parallel to h”

is equivalent to the condition

”%. gslaz+ (n—B)BglJe; is parallel to h .”

§2. Gauss equations.

Hereafter (M, {, >, J) is an n-dimensional complex space form with
constant holomorphic sectional curvature 4¢ and M is an n-dimensional
totally real Chen submanifold with constant sectional curvature e¢. We
may assume that M is not a minimal submanifold (cf. [2]).

LEMMA 2.1. We can take a local field of orthonormal frames {e,,---,e,}
Jor M so that the following relations hold for some numbers ., ¢4, pr
and some integer a€{2, ---, n}:

(2'1) (e, €)= 7\'1'-731 ’
2.2) o(e, e)=ptJe, ,
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(2.3) o(e, e,)=pide, ,

(2.4) ole, e,)= M”Je1+:2;; tide,+NJe, ,
(2.5) ole, e;)=pJe; for i<j,
(2.6) o(e, e,)=prJe + ;Z:‘;rlp,Je,—!—ste, ,
2.7 o(e, e;)=pJe, for s<t,
2.8) o(e, e,)=0.

Here we use the following indices conventions:
1§A,B""§ny 1<i’jr"'§a, a<s,t,-~-§’n.

PROOF. There exists a non-minimal point. If we put e,=Jh/||Jh|,
then we get T(e, ¢,, e,)=0 for any A>1 from Lemma 1.2. Noting this,
we take a local field of orthonormal frames {e,, - - -, e,} which diagonalizes
T(e, €4 €5)). Then from Gauss equation we have

2.9) K+\T(e, €4, €0)—{T(e,, €4 €)}’=0 for any A>1,

Therefore the (n—1, n—1)-matrix (T'(e, e, €5))4 5>, has at most two distinet
eigenvalues. Then we get

T(e, e, e)=p+ and T(e, e, e,)=p ,

for any 1<7=<a and any a<s=<mn.
Again from Gauss equation, we have

{T(eu € ei)_ T(el) €, ec)},T(ety €5 ea) =0.

Then we get T(e,, e;, ¢,)=0 for any ¢ and 5. Similarly we have T¥e,, ¢,, e,) =0
for any 14,s,t. Then as in Lemma 1.2, we take e, in such a way that
T(e, e, e,)=max{T(X, X, X); Xe TM, (X, e,)=0, (X, ¢,)=0, {X, e,>=0 for
any 1<k<i=<a<s.}, and take e, in the similar way. For this basis we
get (2.1)~(2.8). Q.E.D.

LEMMA 2.2. If {\, pat, tr, s} are given as above, then

M=+, piwr=—-K,
t=—V Kafla—1+2)(a—1+1)
=1V alea—1)/(a—i+1)(@—1+2), ,
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M+ (a—2)p, =0,
t=—VK,,,(n—a+1)/(n—s+2)(n—s+1)

=V (n—a)mn—a+1)/(n—s+2)(n—s+1)tt,, ,
N+ (—8)p,=0 .

Proor. If we put K,=K, K,=K, ,+p:_,, then we get K,+ Un— =0
from Gauss equation. Since {(Je, h)=0, we see that \,+(a—i)p,=0.
Hence we have

t.=—V'K[(a—i+1) and K,,=K+p=(@—i+2)K,/(a—n+1)
so that

K,=Ka/(a—1+2) and pg,=—1vVKal/la—i+2)(a—i+1)
=Val@—1)/(a—1+2)(@—1+ 1), .
We get g, in the same way. Q.E.D.

§3. Codazzi equations.
The Codazzi equation can be written as

(VCA T) (63, €0, eD) - (VcB T) (eA, €c eD) ’

where V is the connection of M.
By an easy but long computation we see that the connection V and

the connection V of M satisfy the following relations with respect to a
local field of orthonormal frames {e,} given in §2:

(3.1) V.e.=nJe, ,

3.2) V.e=pile,,

(3.3) V. e.=pile, ,

(3.4) V.= —bie,+pJe, for some b7,
(3.5) 5,‘ei=b2‘el+m‘Jel+g,t e, +nJe,
)
(3.7) V.e.=0,

(3.8) V. e.=—bre,+ i Je, for some by,
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~

(3.9) v,e=0,

(3.10) V,.e.=bre,+prJe, + 2 tde+nJe,

611 o= e it e,

(3.12) Vot =bf@uf —\f) , V=0, V,put=0,
(3.13) Volis =b;@ur =), Vopr=0, V=0,
(3.14) Voea=bir, Vop=0, Y, p=0,

(8.15) Vota=bipt,, Vop,=0, V,u,=0,

(3.16) bipr =brpt

§4. Construction of an immersion.

We will construct an immersion of an n-dimensional real space form
M=M"(c) into an n-dimensional complex space form If="(4) as a
totally real Chen submanifold.

Before constructing such an immersion, we will determine the above
b, by by using the condition that M has constant sectional curvature c.

LEMMA 4.1. (b1)*=(b7)’=—c if n>2.

eb,=bi+c if n=2.
Moreover we get ¢c=0 or a=mn.

PROOF. From the constancy of the sectional curvature of M, we get

c= <V°1Ve,;ei - Veivelei - V[el,ei]ei’ 31> =eb — o),
c= <V81:Vsjef - Ve_-,'vciej - V[e,;,ej]ej’ ev:> = (bil-)z )
=<V, V. ,—V,V.e,—Vi,.1€, €>=—brbf .
We also get
c=ebi— ()",
c=—(br)".
From these we get bf=b7=1"—¢. If ¢+#0, we have p = pr since by =
bryf. This is a contradiction. Thus we get ¢=0 or a=n. Q.E.D.

Now we are in a position to construct an immersion. We may con-
sider the following two cases.
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Case 1: a#n. We get ¢=0 and bf=0 from Lemma 4.1, so that K=
¢—c=¢>0, V, e;=0 and e,;=0. Then, noting {e,} is eigenvectors and
{¢z} is an eigenvalues of second fundamental form, M must be a flat
parallel submanifold in an n-dimensional complex projective space, so that
M must be a flat torus immersed in a standard way. Conversely, a flat
torus which is a Chen submanifold is a minimal one.

Therefore, if a#n, M is a minimal flat torus.
Case 2: a=mn. Now we will construct M which is a totally real Chen
submanifold with constant sectional curvature ¢ and also show that such
a submanifold must be obtained in such a way. Moreover we will show
that such an M cannot be complete.

2-1: m=2. From (3.1) we see that an integral curve v of ¢, in C?
satisfies

4.1) {7=e‘ ‘

é,=\,Je, (consequently (Je,)' =—e,) .

We note that v is a curve in a 1l-dimensional holomorphic plane with are
length parameter t. Along this curve we get a solution of the differential
equations in Lemma 4.1 and (3.12) given by

4.2) b,=1"¢c tan{v ¢ (t—t,)},
(4.3) L+K=UfcosV ¢ (t—ty)} .

On the other hand, since eb,/2b,=e,eb,=e.eb,—]e,, ¢,]0,=0, b, and g, is
constant along an integral curve of ¢, in C* which is given by

1:1292 ’
(4.4) é;=be +uJe,=Re where R*=bj+y,
§= —1V' b3+ e, .

Then we construct M as follows. Hereafter g, and b, are given by
(4.2) and (4.3) respectively. On a plane curve in a 1-dimensional holo-
morphic plane defined by (4.1), we define the 4-dimensional vector space
spanned by {e,="7, Je,, e,, Je,}, where ¢, is given by the equation (de,/dt)=
tJe,. Then we get a surface M by attaching to each point on 7 a circle
whose center is given by 7(t)+b.e,+ ¢, Je, and whose tangent vector is e,.
We verify that this construction gives in fact a surface with the condition
in Theorem which will be stated at the end of this section. Conversely,
it is clear that M with the condition in Theorem must be given as
above.
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REMARK. Since b, —c as t—t,, M cannot be extended globally.

We prepare one more fact. Let #" be a complex space form and
S*~! be a geodesic hypersphere in if. Then we get the fibration S*!—
P, whose fibre is defined by S* action on S**~'. (This fibration is called
the Hopf fibration when #=C") An easy computation shows that P!
becomes an (n—1)-dimensional complex projective space whose structure
is induced from the contact structure of S>*~!. Moreover let L¢ be a
d-dimensional totally real submanifold of P"*. Then there is a unique
horizontal lift L? of L¢ in 8*' (c¢f. N. Ejiri [7]).

2-2: m#2. In this case, b=1"—c¢ and 2+ K=Ue" .

Let M be a totally real Chen submanifold with constant sectional
curvature ¢ and {e,} be a local field of orthonormal frames as above.

From §3 we see that {e, ::-, ¢,} deines a completely integrable distri-
bution. Let L be a leaf of {e, ---,e,). Then its connection D, 2nd
fundanental form ¢’ and the mean curvature vector A’ in I are given by
(4.5) D,.e;=0,

(4.6) o'(e, e;))=0(e, e;)+0, be, ,

4.7 h'=be,+ . Je, .

We consider a mapping F: M — M given by F(z)=exp, /||’ |?). Then
F.e,=0 so that F(L) is a point and ||#’|| is constant on L. Thus I is
contained in a geodesic hypersphere as a minimal submanifold. #(f)=L
is a totally real flat parallel submanifold.

Conversely, let L™ be a lift of a parallel flat submanifold L*' in
Pr7'. We define e, such that the position vector of I in a geodesic hy-
persphere with radius 1 in M(4¢) is equal to b,e,+ tJe,. Through each
point of I we define an integral curve 7,(&) by (4.1).

LEMMA 4.2. U;e;U,.z7(®) is a totally real Chen submanifold with
constant sectional curvature ¢ in M for an interval I of R.

PROOF. We will deal with the case M=C". Other cases are quite
similar. Since 7,(¢) is contained in a 1-dimensional holomorphic plane,
7,(t) is written as

V(&) =cos 6(t)v,+sin 8(t)Jv,=e,(t) ,
where 6(t)=g,(t) and v,=e,(p). Then v,(¢) is written as
7p(t) =@,(t)v,+ ¢2(t)Jv1 +C,
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where ¢1(t)=§’cos 6(s)ds, @z(t)=§t sin 6(s)ds and C is independent of t.
0 0
Thus we have

Y5(8) k8 D) =V 0,0V, OB, E)V, 0,(0) + B}V, £,(0) +,C
=@,(t)(—b.e,+ F‘1J e,) — D ()(ere,+ bJe,)+e,C
=—(b,0,+ wP)e;+ (Dt — b,P,)Je,+eC .

Noting that ¢,C is independent of ¢, we get
e.C=",(0)xep) — (2.(0)d, + D:(0) 2 )e.(p) + (2,(0) 21, — P,(0)b,) Je (D) =e,(D) -
Then we get
Yo(t) s =1 —bD,— 1. D,)e, + (11, D, —b,D,) e, .

Since T;,»M is spanned by e,(t), 7,(£)s€s ***, Vp(t)se,, We easily see that
M is totally real. Checking that e,(t)=",.e,/||7,.¢;|| satisfy the differential
equations in §3, we prove M is a Chen submanifold with constant curva-
ture c. We put f(&)=||7,.¢|’=Q1—0,0,— p£,9,)*+ (11,9, — b,D,)*.

Now we state our Theorem.

THEOREM. If M is an m-dimensional totally real Chen submanifold
with conmstant sectional curvature c isometrically rmmersed in an n-
dimensional complex space form M(4¢), where €>c. Then

(i) If M is minimal, then M is a totally geodesic submanifold or
a flat torus (Ejiri [2]).

(i) Unless M is minimal, then M=(Ix L™, dt*+f(t)g), where I is
an interval of R and (L, g) is the following submanifold in M(4¢):

1’~ln—l c Szt CM(4E) ,

! !
Lﬂ—l. (- Pn—l

where S*™ ' is a geodesic hypersphere in M(4¢) and L is a horizontal
lift of a minimal flat torus L in P"'. The immersion is given as

above.
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