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Introduction

A Hilbert transform H of a function f on real field R is defined as:

Hf()= hm H, @)= limL =Y  @eR).

5v—~o+ T Je<lti<N A

The Hilbert transform H plays an important role in Fourier analysis.
The properties of Hilbert transforms in the following Proposition are
fundamental. ‘

Let L?(R) be the class of all measurable functions f on R for which

171 =("_ 1f@pat )" <o .

PROPOSITION. Let p be a real number such that 1<p<oco. Then

(i) [existence] for any f € L*(R),
Hf(@)=lim H,f (@)

->00

exists in the topology of L*(R),
(ii) [boundedness] there exists a constant C>0 (independent of ¢, N
and f) such that

IHf»=ClIf .2 ({Hoxfll2=C||f|l.?) for all feL*R),
(iii) [inversion formula]
HHA)=—f for all feL’(R),
1v) [signum rule]

(Hf) = —isgn(@)f for all felL¥R),
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where f is a Fourier transform of f.

Many mathematicians have tried to define the Hilbert transforms
naturally on more general space (see, for example, [2], [3], [4], [7], [8], [9],
[11], [12], [14] and [16]).

S. Koizumi ([11], [12]) introduced a generalized Hilbert transform H
for f e W3*R) through

IETIN 2 ot} flx—1t)
Hf(w)—.l_l.OH: T §e<ltl tx—t+1)
where W?2(R) (often called Wiener’s class) is the class of all measurable
functions f for which f(x)/(1+|z|) € L*(R). And he obtained the similar
results in the above Proposition for W?*(R) instead of L?(R). Moreover,
he studied Hilbert transforms on the class of functions f for which
|f@)|?/1+|x]*) € L'(R) for some p=1, a>0.

Also, H. G. Tillmann ([16]), E. J. Beltrami and M. R. Wohlers ([2]) have
studied Hilbert transforms in connection with distribution theory. They
showed that the Hilbert transform could be well defined on the space
1» which is the dual of Z,,, firstly introduced by L. Schwartz (see [15]).
The class &,, will be studied in the following section as Z2(R). And
they obtained the similar results in the above Proposition for =, (or its
dual space Z;,) instead of L*(R).

In this paper, we generally consider the Hilbert transform on tempered
distributions &’ (which includes &;» and W?*(R)) and show that it has the
suitable properties as in the above Proposition (i)~ (iv).

§1. A space D;?(R) and its dual space D.?(R)*.

Let R be a real field. We denote by 2’(R), or simply by &2’ (through-
out this paper we consider only about one variable functions), the space
of distributions. =2’ is the strong dual of =, the space of infinitely
differentiable functions with compact support in R. And we denote
a continuous bilinear functional on Z’'xX =2 by <u, ¢> for all ue 2’ and
PE .

& will denote the space of functions on R having derivatives of all
order satisfying sup.ez|2’D%¢(x)|<o> for all indicies @ and B of non-
negative integers, where D*=d*/dx*. It is well-known that .&” is a Fréchet
space with the system of semi-norms {sup,.z|*’D¢(®)|: a, B are mon-
negative integers}. ' is the dual space of & called a space of tempered
distributions.

The Fourier transformation ¢ of a function ¢ €.~ is defined by
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s=\" e .

Since the mapping ¢— ¢ of .&” onto .5 is linear continuous in the topology
of &~ the Fourier transform #% of at empered distribution % can be defined
as the tempered distribution # defined through

(B, gy=Lu, g (pe€.).

DEFINITION >1. Let p be a real number such that 1<p<c. And let
Il and k be non-negative integers. ? (R) denotes the space in &’ of
functions on R satisfying

a%,.(¢) =max {||x*DPs(x) || z»: 0= =K, 0=pB=l<e

where Df=d?/dx* in the sense of distributional derivative. Moreover
C{"(R) denotes the space of functions on R such that B-th derivative
(0=B=l) is continuous and

llgllcr =max {sup [x*D’g(x)|: 0L a=sk, 0=B=}< o .
k seER

The following Lemmas 1 and 2 easily follow by the usual arguments
of functional analysis.

LEMMA 1. Let p be a real number such that 1<p<co. And let 1
and k be non-negative integers. Then,

(i) L%.(R) is a reflexive Banach space with norm g%,

(ii) s cLiwR)cLi (R and L (R)CLE (R)C’
and

(iii) each imbedding map in (ii) 18 continuous and ¥ ts a dense set
wn each space.

LEMMA 2. If we define
d%,.(¢) =max {|| D’x°¢(x)||.»: 0= =k, 0=R=1}
(lgllo =max {sup [D’zp(x)|: 0=a=xk, 0=B=I)) ,
then ¢¢; and @i (|| llop and || |low) are equivalent morms im L. (R)
(C(R)).

DEFINITION 2. We can, by Lemma 1, define, for 1<p<c and non-
negative integer £,

Z 3(R)=1im proj [L{ (R)] .
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Clearly, Z,2(R) is a Fréchet space with the system of countable semi-
norms {gf;:1=0,1,2, ---}. Z»(R)* is the dual space of Z12(R).

By Lemma 1 and the properties of the projective limit, the following
Lemma 3 immediately follows.

LEMMA 3. Let p be a real number such that 1<p<oco. And let k
be a non-negative integer. Then,

(1) Fcap (RcI2p(R)cs
and

(ii) each imbedding map in (i) is continuous and & is a dense set
in each space.

THEOREM 1. Let p be a real number such that 1<p<oco. Amnd let k
be a non-negative integer. Then,

(i) Zu(R)*=limind;-.[L{(R)*]
and

(ii) Z12(R) 18 a reflexive Fréchet space.

PROOF. Since Lemma 1 shows that {Lf.(R)*}i, is an increasing
sequence of reflexive Banach spaces, limind,..[L}(R)*] is a regular in-
ductive limit ([10]). By the properties of inductive limits and projective
limits (see, for example, [6], [10] and [13]) and Lemma 1 (), we get
that

(1) [limind [L£(R)*]]* =1im proj [LE,(R)**]=1lim proj [L{.(R)]= Z3(R) .

Also, we see ([10]) that lim ind,..[L}.(R)*] is reflexive, that is
(2) [lixP ind [LZ,;(R)*]]**=1ixln ind [L},.(R)*] .

Then, we, by (1) and (2), get that
[Z(R)]*= [lirP ind [LE,.(R)*]]** =lirln ind [LE,:(R)*]

and

[Z(R)]* = [liIE. ind (L} (RY*]1***= [lirlr}. °iond [LL(R)*]]*==2.2(R) .

Therefore, we obtain (i) and (ii). This completes the proof.

LEMMA 4. Let q be a real number such that 1<g<<oco. And let k
and a be any mon-negative integers. Let g be any function in L' (R) and
P be any infinitely differentiable function such that
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DiP(z)
(L2

Then there exist functions g; (§=0,1,2, ---, @) such that

sup < oo for any mon-negative integer j .

zE€ER

(3) P(w)D*g(x)=§ Digya) amd ||g;@)/A+a2)*|| < oo .

PrROOF. We shall prove this lemma by induction. Let a=0. Since
P(x)/(1+x*)** is bounded, we see that

P(x)g(x)/(1+2*)** € LYR) .

Then, (3) immediately follows, if we put g,(x)=P(x)g(x).
Next we prove (8) for «+1 under the assumption that (3) is true for
a. Since DP is a function having derivatives of all order such that

D?DP(x)

Tty < oo for all non-negative integer j ,

ZER

there exist g; (=0, 1, ---a) such that
DP@)D*g@) =3, Digie) and lgi@)/(1+a) "< oo .

Hence, we, by assumption, see that
P(x) D**"'g(x) = D[ P(x) D*g(x)] — [ DP(x)][ D*g(x)]
=D(3, Dig;)~ 3, Dg;

=—g,+ ’2=1 Di(g;_,—g3)+D**g, .

Since ||go()/(L+ 2" ra < o0, [[(g5-— g5@))/(A+a*)**|| e < o0 (§=1, 2, ++-a) and
|g.(2)/(1 4+ 2*)*?|| ;¢ < o0, the proof is completed.

THEOREM 2. Let p be a real number such that 1<p<oco. And let
k be a non-negative integer. Then the following statements are equivalent:

(i) weDpR)*,
(ii) there exist fumctions u; (7=0,1, -+, 1) such that

u=§ Diu; and |lui/(1+2%)**||ze< o0

where 1/p+1/q=1.
Proor. Firstly, we shall prove that (ii) implies (i). Put C=
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maX,gjs; ||#;/(1+ 22| .. We see, by Lemma 2, that, for any ¢ € =,
l ]
s $91= <5, D, 3| = | 5 (—1y~4uy, Digy |

-3 (s (L+ 7Y, (1+x2)"/2D5¢>'

l
=35 /(L +2)" el L+ 2" Do
i
<C 3, I+ Digllr <C'at.a(9)

which implies that (i) holds.
Next, we shall prove that (i) implies (ii). Assume that e Z2(R)™.
Then, there exist M >0 and non-negative integer m such that, for any

¢ €A,
[K{u, )< Mg} m(9)=M max {||z*D?p(x)||.»: 0= a=<k, 0=B8=m} <o .

Since sup,.z|[DI(1+2%)7**)|Q+ 2?2 < =, (=0,1, 2, ---), this implies that,
for any ¢e€ =z,

[<u/@A+2")*", 3| =I<u, ¢/(L+2%)**)]
=M max [|lz*D¥g/(1+2")""||z»

OSﬂSl

=M max
oSgSk

=M’ max || D?g||.»

ospfsl

- z( )Dﬂ-=<1/(1+x2>'=/2>1)f¢

Hence we see that
w(w)/(L+a*)*" € Z2(R)* .
Then, from the theorem of L. Schwartz [15], this implies that there
exist functions ¢g.(a=0, 1, 2, ---l)(€ L R)) such that
I
u(x) =1+ x%)** Zo D=g, .

Putting P(x)=1+2*)** in Lemma 4, we see that there exist functions
e, {@=0,1, ---, 1 and j=0, 1, ---, @) such that

W) =3, 5 Dittes=3, DB thes) 20d ot ifA+P" e <o

a=0 j5=0 =0

This completes the proof.
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Though the following Theorem 8 is seemed to be known (for instance
see [b], for p=2), we mention the proof for the self-consistency as fol-
lows.

LEMMA 5. Let p be a real number such that 1<p<oco. And let 1
and k be mon-negative integers. Then,

(i) L(R)cCPH(R)
and

(i) C(R)cLE(R).
Moreover each natural imbedding map in (i) and (ii) is continuous.

PrROOF. By Lemma 2 and the Sobolev imbedding theorem ([1]), we
see that, for any ¢€ L%, ,(R),

|l =max sup | D?g|
0sask € R
0s8sl

<C max sup | D*x*g|
0Lask 2€R
0sBs!

=C' max || Dfx¢||.»
0sask

0s8sl+1

= C"qi,z+1(¢)

which implies that (i) is true and the natural imbedding map is continuous.
Next we see that, for any ¢ <€ C{,(R),

at,(9)= max |le* DPe|| 1.0

035l
= (1+x2)l/2 « P 1/p
=max[§ ——L__g*Dfgp| da
et a7

s\ redn] tmax sup [+ oDty

x%)P? Osggk zeR

which implies that (ii) is true and the natural imbedding map is contin-
uous. This completes the proof.

THEOREM 3. Let p be a real number such that 1<p<c. Then,
(i) lim proj,.[Zp(R)]=5

and
(i) lim ind,-.[Z2(R)*]="

PROOF. Since



126 SHIRO ISHIKAWA

lil'il groj [ZLg(R)]=li1£1 proj [LLg' (R)] and & =lir§‘1 proj [C(R)] ,
l—v00

{—o0
we see, by Lemma 5, that (i) is true. Also, since

11m md [Z2(R)*]= hm md [L.2 (R)*] and y’=lir? ind [CP(R)*],

l-‘oo l—o0

we see, by Lemma 5, that (ii) is true.

§2. Generalized Hilbert transforms in D 2(R).

DEFINITION 3. Let a=(a, -, a,) be a k-tuple of complex numbers
such that Imfa;}#0 (=1, 2, :--, k), where Im[a;] denotes the imaginary
part of a complex number a;. We define that, for any g€ Z,2(R),

ey )
T(@—a,) - (x—a;) Je<iti<y

(Hy"3)(x) = @—t—ay)- - -<x—t—ak)¢—‘”-”t“—t)dt ,

specially, if £=0,

e, N __1_ #(x—1)
(H ¢)(x)_ T Sc<ltl<N t at .

The following lemma easily follows.

LEMMA 6. Let a=(a, -+, a,) be a k-tuple of complex numbers such
that Imfa;]+0 (=1, 2, - -+, k) (where Im[a;] is an tmaginary part of a
complex number a;). A mapping T,: Z.2(R)— Z2(R) such that

T Ar(x)= V() for all v € Z,»(R)
@—a,): - (x—ay) °

8 a bi-continuous surjection.

If a generalized sequence {x;};,c, in a Hausdorff topological vector
space X converges to x as A—), in the topology of X, we denote it by
(XOlim,_,;, ¢, =2.

THEOREM 4. Let p be a real number such that 1<p<<oo. Let
a=(a;, *++,a,) be a k-tuple of complex nmumbers such that Im[a;]+0
(G=1,2, ---, k). Then, for any ¢<c Z.x(R), (ng)liml,v_.H(H;'Ngs) ‘extsts in

4 Lg(R).

ProoF. Let k=0. By Proposition (i), we see that, for any ¢ € Z.2(R)
and any 0<e¢'<e<N<N' < oo,
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@ (H"V¢— H*""V'g)

D= $@—1) gy

=max
(4 t

085l

e’<|t|<e jA S
N<L|t|<N’
1 (D*g)@—1) 4

=maXx S
’
T Iyslisy, ¢

0s8sl

e

—0 as & ¢&—0+ and N, N > .
This implies that {H*"g} is a Cauchy net as e—0+, N—oco in Z;2(R).
Hence limEFH(H"”gﬁ) exists in the topology of Z2(R).

In general case, by the above argument and Lemma 6, we see that,
for any ¢ € Z1(R),

(Zplim Ho"p
pkes

_ . 1 (x—t—a) - (x—t—a,) _

- (@Lg) Elv_l,.ig wx—a)- - (x—ay) Sa<|tl<y t pw—t)dt

=(Zip lim T.H(T:9)
¥ow

= T [(Z12) lig} HY(T;$)] (by Lemma 6)

—

which exists since T:'¢ e D,2(R). This completes the proof.
By this theorem, we can obtain the following definition.

DEFINITION 4. Let a=(a, ---, a;) be a k-tuple of complex numbers
such that Im[e;]#0 (7=1,2, ---, k). We define a generalized Hilbert
transform H,: Z2(R)— Z2(R) such that

Hup=(Zp) im HyY (9 € Zz(R) ,
Neooo

specially, if k=0, »
Hg=(Zp) lgﬂ H""g (¢ € Z2(R)) .
N—voo

Note that a generalized Hilbert transform H, is also represented by
T.HT. '

THEOREM 5. Let p be a real number such that 1<p<<oco. Let k be
a mon-negative integer. And let a=(a, --, a;) be a k-tuple of complex
numbers such that Im[a;]+#0 (=1, 2, -+, k). Then, o

(i) H, is a bounded linear operator on Z2(R)
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and

(i) HJ(Hg)=—¢ (¢€Z2(R)).
Moreover, H,: Z.2(R)— Z2(R) is a bi-continuous surjection such that
H'=—H,.

Proor. It is sufficient to prove (i) and (ii) for k=0 since H,=
T.HT;’. Though this thoerem for k=0 has been proved in [16], we
shall show the proof for the self-consistency.

By the similar way in the Theorem 4, we can easily obtain, from
Proposition (ii), that for any ¢e.@Lg(R) and any 0<e<N<co,

1 DPfg(x—1) dt

a5, (H*"¢) =max l S
T Je<liti<N t

ospsl

L?

<Cmax||D%s||.»
[~ 9:F
=Cq?,(d)

which implies (i) for k=0. Also, by 'Proposition (iii), (ii) immediately
follows since Z.2(R)C L*(R). This completes the proof.

§3. Generalized Hilbert transforms in &',

DEFINITION 5. Let p be any 1<p<c and k be any non-negative
integer. Let a=(a,, *-*, a;) be a k-tuple of complex numbers such that
Im[a;]#0 (=1, ---, k). Since the generalized Hilbert transform
H,: Z.2(R)— Z3(R) is linear continuous in the topology of Z.2(R), we
can define the generalized Hilbert transform Hiu of u e Z2(R)* as the
element of @Lg(R)* defined through

CHiu, ¢y =<u, Hop) (9 € Z12(R)) .
Similarly, H%" is defined as the adjoint operator of H3”.

Note that the adjoint operator Ty of T,: Z.»(R)— Z.2(R) is a bi-
continuous linear operator from Z2;2(R)* onto =,2(R)*, which is represent-
ed by

T*y= w for all ue Z,2(R)* .
ey @—a) o we Tl

The following theorem immediately follows from the property of the
adjoint operator and Theorem 5.

THEOREM 6. It follows that
(i) H? is linear continuous in the topology of ng(R)*,
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(i) Hi(HIuw)=—u (ueZw(R)").
Therefore, Hy '=—H.

THEOREM 7. Let p be a real number such that 1<p<ec. Let k be
a non-negative integer. And let a=(a,, -+, a,) be a k-tuple of complex
numbers such that Im[a;]1#0 (=1, «+-, k). Then, for any ue.@Lz(R)*,
Hiu=(2:p) lim Hy"u .

&0+
N—ooo

PROOF. Firstly we shall prove this theorem in the case that k=0.
Let u be any element in .@Lg(R)*. We can easily obtain that H*"Dig=
D;H*"¢ and HD’¢=D’Hg¢ for any ¢ € Z»(R) (j=1, 2, ---). Hence we see
by Theorem 2 that, for any ¢e.@Lg(R),

K™ — HYu, 6))
= (g 0ws a1+~ 15)

<3 Kuy, (H*"—H)Dig)|

=2 (™ — H*Yu;, Dig)|
_s_Z (B — H*| o [| D o

where u; (7=1,2, ---, 1) are defined as in Theorem 2. By Proposition
(i), this implies that, for any bounded set Bc Z»(R)

sup [K(HY — H*u, ¢)|

<C 3 ICH = Ho

—0 (as e—0+, N—oo) .
Hence we get that, for any u e Z2(R)*,

H*u=(Z},) lim H*"'y .

0 e—0+
N—soo

In general case, we see that, for any uGQLg(R)*,

(27 lim Hy™u=(27%) lim (T2 H* T)u)
Rz s

=T (Z}) lim (H*"T3)w)
0 &—0+

N-ooo
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=T (H*Tw)
=H¥u .

This completes the proof.

THEOREM 8. Let p be a real number such that 1<p<oco. Let k be
a nom-negative integer. And let a=(a, -, a;) be a k-tuple of complex
numbers such that Im[a;]+#0 (j=1, ---, k). Then, for any u<c Z;2(R)*,
— i@, ) for all ¢ € = such that supp[s] (0, éo)

(HZw)", ¢>= {i(ﬁ, é) for all ¢ € @ such that supp[s](~ <, 0)

where @ 18 the Fourier transform of w in .

PRrROOF. Let ¢ be any element in & such that supp[¢]=(0, ). From
the properties of Fourier transforms and Proposition (iv), we see that

{(Hzu)", ¢y =<HZu, ¢
=<{u, T'HT,$)
=<u, T H[[(37'D—a,)(t7' D—a,) - - -(0'D—an)g]”
=Llu, T [—1(i7' D—a,)(t7'D—a,)- - -(17'D—a.)¢]™)
= —iu, T T.$)
= 7'<u! $>
=—1{q, ¢) .

In a similar way, we can prove this theorem when ¢ is any element in
< such that supp[g]c(— <, 0). Hence this completes the proof.

COROLLARY 1. Let p be a real number such that 1<p<c. Let k,
m and n be non-negative integers such that k<m=n. And let a=
@y, *++*, a,) and b=(b, -+, b,) be respectively m-tuple and n-tuple of
complex numbers such that Im[a;]0 (=1, 2, -+, m) and Im[b;]#0 (4=
1,2, ---,n). Then, forany u € Zp(R)* (C D2 (R)*C2.2(R)*), Hiu— H}u
18 a polynomaial. ‘

ProoOF. By Theorem 8, we see that, for any ¢ € &2 with supp[¢] (0, <o),

(4) ((Hiu—Hyw)", ¢)=<(Hiu)", > —(H}uw)", ¢)
=—1h, ¢ —(—0)<%, ¢)=0.

Similarly we see that, for any ¢ € &2 with supp[¢]C(— «, 0),
(5) {(Huw—Hu)", ¢)=0.
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By (4) and (B), if follows that supp[(H u— Hfw)"]c{0}. This implies that
(H*uw— Hu)" is a finite linear combination of a Delta function &(x) and
its derivatives. Therefore, H*u—H}u is a certain polynomial. This

completes that proof.

REMARK. Let u be any element in .&¥’. Since Theorem 3 implies
that u belongs to Z,2(R)* for some k, the generalized Hilbert transform
of u can be defined by H*u, where a=(a,, -+, a;) is a k-tuple of complex
numbers such that Im[a;]#0 (=1, 2, -+, k). The above Corollary 1 shows
that it is well defined independently of choosing k£ and a under the
identification of the difference of polynomials.

The author wishes to express his sincere thanks to Professor S.
Koizumi of Keio University.
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