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Introduction

We consider the asymptotic behaviors of the spectrum of pseudo-
differential operators on R"” containing the Schrodinger operator:

n 2

0.1) P(x, D)=—A+ V(x) where A=Z{§? .
b= 1
If the potential V() is a positive C>-function satisfying lim,,_. V(%)= o,
then P(x, D) is essentially self-adjoint in L*R") and its unique self-adjoint
extension P is positively definite and has a compact resolvent in L*(R™).
Therefore the spectrum of P consists only of eigenvalues of finite multi-
plicity: =2\, =<---, lim, . \,=+ o with repetition according to multi-
plicity. Let Np(\) be the counting function of eigenvalues: Np(\)=
card{s; n;=\}.
In the particular case where P(x, D) is the harmonic oscillator:

P, D)=—A+ V() where V(x)=|z|*,

the asymptotic behavior of Np(\) is well known (cf. Helffer and Robert
[4]). Moreover Helffer and Robert [6] have obtained the asymptotic
formula of N,(\) for a class of quasi-elliptic pseudodifferential operators
containing the anharmonic oscillator:

Pz, D)= —A+ V(x) where V(x)=a|z[* (a real >0, k integer =2) .

They have found not only the first term but also the following several
terms of N-(\).

In this paper, we shall extend the result of [6] on N,(\) for a class
of quasi-elliptic pseudodifferential operators containing, in particular, the
one on R*:
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(0.2) P(x, D)=—A+ V(x) where V(x)=z!+at+ax; (a real >0).

In order to obtain the asymptotic behavior of Np(\), we may essentially
examine the asymptotic behavior of

(0.3) I(p)=Tracel:(27c)“‘ Se““’ﬁ(t)e“"dt:‘= i:; o(t—2)

as pt— +o where p is a suitable function belonging to the Schwartz
space .“(R") (cf. Duistermaat and Guillemin [2]). In order to do so, the
authors in [4], [6] and [2] approximate e *f by the Fourier integral
operator for small ¢. In contrast to this, our method is more direct:
First of all, we construct the complex powers P~ (s€C) of P. Then it
is well known that if the real part of s is sufficiently large, P~ are of
trace class and the trace has a meromorphic extension Z.(s) in C. Then
by using the inverse Mellin transformation we have for Re 2>0,
0.4) 0.(z)=Trace e** =—l: S 27 Zp(s)[(s)ds

271 JRes=¢
where ¢>0 is sufficiently large and I'(s) is the I'-function. Shifting
¢c— —oc, we have the asymptotic behavior of 64,(z) as z—0, Rez>0.
Finally we show that

(0.5) I(@)=lim(2z)" Sﬂp(e+it)ﬁ(t)e““dt ,

and we can obtain the asymptotic formula of Np(\) using the one of
0-(¢ +1it). Consequently, for example, for the operator (0.2), we have:

2 1 1 a? 1 3
N =—<_Bl—=, — my & B(=, 2~ OO/ , oo .
XN =iz (z 4)7” *20m (2 4)’“ +O0, A=

Here B(-, -) is the Beta function.

§1. Main theorems.

In this section we shall state the main theorems. Let P(x, D) be a
pseudodifferential operator with the symbol p(zx, &):

(1.1) P(zx, D)u(x)=(2x)™" Se‘“’”p(x, pugyds, ueSF(R")
where {(x, &)=, z,& and #(¢) is the Fourier transformation of wu:

) = Se‘“’“”u(x)dw
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and S“(R") denotes the totality of rapidly decreasing C=-functions.

DEFINITION 1.1. Let m be a real number and (h; k)=(hy, h,, +--, h,;
k, ks, -+, k) a fixed multi-index such that h;, k;=1 for every ;5=
1,2, ---,n. Then the space S7;,, is the set of all symbols p(x, &) e
C*(R"x R™) satisfying the following:

1.2) There exists a sequence of functions {p,_;j(, &)}j=.... Where
Pn-i(x, &) are C>-functions in R*™\0 and quasi-homogeneous of
degree m—j of type (h; k) such that :

P, e>~;; Pi(®, £) «

Here the quasi-homogeneity of p,_;(x, &) of degree m—j of type (h;k)
means: ‘ '

pm—i()‘hlxu ) thmm kkl&u ct Yy )ansn)—_-xm—‘jpm_j(w, E)
for all A>0 and (z, &) € R*"\ 0.

For brevity of the notations, we put

(1.8)  T=the least common multiple of {h,, -+, k,, ks, + -+, k.}, D;j=T/h;,
0= Tk; and A@, & =[1+ 3 (1o, + &) ]07.
Then the meaning of the asymptotic sum of (1.2) is as follows: For

every integer N=1 and any multi-indices «, G, there exists a positive’]
constant C=Cy ,, such that

DﬁDe"[p(w, s)—z;;f_‘(;1 D%, 5)]] <Cx\(x, &7

for all (z, &) € R*™ such that A\(x, £)=1. Finally the class of pseudodifferen- '
tial operators of type (1.1) with symbols in S%., is denoted by OPS%.,,. !
Throughout this paper we impose the following hypotheses.

(H.1) The order of P(x, D) is positive, i.e., m>0.

(H.2) The symbol »p(zx, &) is real valued and P(x, D) is quasi-elliptic, i.e.,
Palz, £)>0 for all (=, &) e R*™\O.

(H.3) P(xz, D) is formally self-adjoint, i.e., for any u, v € F(R"),

(P, Dyu, v)=(u, P, Dyv)  where (, v)=|u(@yo@ds ;
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If we define an operator P, on L* R") with definition domain D(P,)=
S(R™) so that Pau= P(x, D)u, u € D(P,), it is well known under (H.1)~(H.3)
that P, is essentially self-adjoint and the closure P of P, has the spectrum
consisting only of eigenvalues of finite multlphclty Moreover P is semi-
bounded from below, i.e., there exists a real number C such that for all
u € LR, (P+C)u, u)gO (cf. [8]). Let M=\,=:--, lim_.. \y= o be the
sequence of eigenvalues with repetition according t04 multiplicity and let
Nz(\) be the counting function as in 1ntroduct10n In addition to (H.1)~
(H.3), if we assume: S

(H.4) P is positively definite, i‘.e., Mm>0,

we can construct complex powers P~* by the spectral resolution of P and
it follows from: Seeley [9] that P~ is pseudodifferential operators of order
—mRe s. :

If we define

W4 @=Pw=  where M=LEEL i _Sih, =Sk,
i=1 i=1

then @ has also the discrete spectrum cdnsistingb only of Athe eigéniralues
py=23". By Robert [8] and also Aramaki [1] we have p;~ g (ef;
Remark 3.3). Thus we can define

@€.5) . 0Q(z) Trace e = Ze""f - for Rez>0.

§=1
For the asymptotlc behavior of 64(z) as z —0, we Vhave: o

THEOREM 1. Assume that P(x, D)€ OPS%.,, satisfies (H.1)~(H.4).
Let Q and 6o(z) be as in (1.4) and (1.5). Then we have
(1) 6q(2) 18 holomorphic in z for Re z>0.

(i) Ge(2)~ >, F(n———-——)A z"‘*”‘“”+ >y B,-z4'logz-+§o C2

—ntjiCM) e Z —nt§/GM=leZ

as z—0, Rez>0. Here

‘(1.6)7 . &:ﬁ(én);ns .p,(b')“'“'+'.”"’f'd0,

-1 & _ n
A;—zMZ ‘lr E(th-lkl J+mi)2r)”

XS d.i(@)Pa(a) - M- H-mbimdg
S (hs3k)

for j=1,2, -, B,-:—-A,-'("—l)'“ﬂ! and C, are some constants where
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. . n . 1/2
S =1, &) € R Mol £)=1}, N, §)= {JZ=1 (las 7%+ & 12”"’)}
and do is the Riemannian density on Sg...-

We note that the asymptotic sum in (ii) means: For every integer
N>0, there exist an 1nteger ¢ and a constant. C>0 such that for all z,
|z|<1, Rez>0,

(L.7) |2 {0a(2) - [

F(n—— J_ )A e
—'n+$/(2M) ez em /" g

+ > B,z log z—i—g C,z']} l <C. M

I Py
Nei‘;t we chbose p € & (R) satisfying _the‘followingé (cf. »[3]):
(1.8) supp‘ ﬁ is in a ‘neighborhood of 0 and p;O, 0(0)>0, ﬁ(O)—-—_l .
Then we have - |

THEOREM 2. Assume that P(x, D) satisfies (H.1)~(H.4) and let 0 be
a function satisfying (1.8). Then we have

I(r)= SP(#—T)dNQ(T)= g Ot— )= 2 Red,; =77 + R, (1)
where M,=Max{j € N; j<2M} and

R()=0"")  as p—ooo if nz2,
R, (p)=0(p*?%) Jor some 6>0 as p— oo .

Finalljr ‘we can state the result ori,.,the asymptotic behavior of Np(x,).

THEOREM 3. Assume that P(x, D) sat'&sﬁes (H.1)~(H.8). Then we
have

M N i ::
NP()\’)zzooDi)“(lh’|+lkl-—j)/m+O(N(n—l)(|h|+|kl)/(mn)) as X—)oo ,
= :
where

D,=(21)~" S dade

pm(ﬁ G)Sl

D=5 L _TL (k| +1kl i+ m’o)(27r)‘"§ - i, Odadg
=1 m 7 &) s1

Py (@,

Jor 1=j=M,.
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d.(z, £) in this theorem are determined later ((2.4)) and we note that
they depend only on the symbol of P(x, D). For example, we have

~

Ju(x: §)=—DPu(2, &), d,=0,

822(37, &) =Du(®, &), glz(x: £)=—DPus(®, &) , Jsz':gu:() ’
Jss(x’ §)=—Du(2, £, &28(5'77 £)=2D p5(%, E)Pm(%, &)

gm(% §)=—Dms( &), 343 = Jsa = gea =0.

REMARK. For the proof of Theorem 38, without loss of generality,
we can assume that P(x, D) satisfies (H.4).

§2. Preliminaries.

In this section we consider the properties of parametrices of
P(z, D)—{ for some {eC in order to construct complex powers of P.

By (H.2), there exists a positive constant v, such that p.(x, &)=, if
Mm@, £)=1/2. Choose a function X € C*(R**) such that

_ 1 if o, 8)=1
e 5)‘{0 if A, £)s1/2.
For {¢[7, + ), we can define:
2.1) b, _u(®, &)=X(x, &)(Pulz, £)—C)7",

and for 7=1

2.2)  brw i@ = —ben@ &) S L pa_ i, &)@ Db, &) .

14+, h+k)= 1
Hglip=s al

Then b _._ij(x, &) is quasi-homogeneous for A\, (x, £)=1 of degree —m—j
in the sense: If p=1 and C, o™ &[7, + ), N2, &) =1,

bome,—m—i(O*1Ty, = = =y O*Ly, OF&), -« ¢y P*E) =07 " b¢,_m_i(®, &) .

On the other hand, we can also write

23) b i@ O=3, dule, Ou@, OO for j21.

Here d;;(x, &) are independent of { and quasi-homogeneous of degree ml—j
for n(x, &)=1.

2.4) We write the quasi-homogeneous extension of d,;(z, &) for (z, &)+#0
by dli(wr E) and Re dl:’(xt E) by Jli(wf 5) .

For every b, _._;, we have the following estimate.
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LEMMA 2.1 (cf. Helffer and Robert [7] and [8]). For every j=0 and
multi-indices a, B, there exists a constant C=C;, ;>0 such that

(2.5) | D2D2be,—m—s(%, €)| , el gl
< Ona, )50 (po(a, &+10)(LEL )"

for all (z, &) € R, L[, +oo) where d(Q)=dist(C, [Yo + o).
PrOOF. At first we consider the case j =0. We claim:
(2.6) For any multi-indices a, 8, we have
DEDfb,-ale, D=3, Cie, O(Dulw, H— 0
where C, are independent of { and satisfy:

(2.7) For every multi-indices v, §, there exists a constant C,, in-
dependent of { such that
| DIDICi(x, &) S Cra(@, Hmi-eb—pp=ri=p

In fact, we prove (2.6) by induction on |a|+|B|. (2.6) is clear for |a|+
|B1=0. We assume that (2.6) is true for |a|+|8|=% and let |a|+|B|=
t+1. Without loss of generality, we may assume «,#0 and let a=

,0,:-+,0+a’. Then
DIDEb, =3} [(D..C)(Dw— )7 — U+ U D, P )P0 ]
=3, (D, C)(Ba— 0= 3 IC,(Dop)Pa— O
Obviously D,C, and C,_,(D, p,) satisfy (2.7). Thus (2.6) is proved. Since

(D=0 =Ll 12D for A =172,

—d(©)
we have for some constant C independent of ,
lael+-181 lCl i+1
| DEDfbe - [SC 3 Ma, 94D
la 18l e, kY—<B, ) ~f 18]V
=C 3 e, 9 (at1ED7(ge5) -

If we note that there exists a positive constant C’>0 such that
[£1/d)=C" for all {&[v, + ), we have (2.5) for j=0. For general j,
we use (2.2) and induction on j. This completes the proof.

Now we define b (x, &)= b _n_i(x, & and write
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@8 - - O# =141

where # means: (p;C)#béN)~Za 1/al)p—Q) D™
For r{", we have the following estimate.

LEMMA 2.2 (cf. [7]). For every N=1 and any wmulti-indices o, B,
there exist an integer N>0 and a positive constant C which are in-
dependent of { such that

-3 N) m—~N—{a,h>—{B,k ICI i -1 l
(2.9) | DEDtr™(a, OIS Cola, <o+ (2L )¢
for all (z, &) e R*™ and 0L & [Y, + o).

PrROOF. Since p#bM =1+ +r{™ and we can write

p#béN) Z 1 (a)Dab(N) +,r(

lal<N a'
we have _ ‘
(2.10) " —rfh= 3, L p@ Db b 1.
lal<N a!

By the composition formula of two pseudodifferential operators, for every
multi-indices «, B, there exist constants C,, and C,, independent of ,
and positive integers h,, k, such that

[C] (=, ¥ —mH@m+ BB DEDir |
<C.{ 3  sup|rz, &) mH=oP+EPDeDipl}

(el <Ko, 1B1Sky (2,6)

x{ > . |Clsup|n@, =+ «P+ELDIDD™ |}

lalsho, 8lsky

<c, ( Ci (CC') >h0+ko+N .

Thus r{% satisfies (2.9). If we put E=r" —r{"}, then by (2.10), (2.1) and
(2.2), we have

7)
E= 5 Lonpn ot 5 L(o-Fpas) Dibem

1‘ W17 ll f\;—al 04! Lirlsv—1 7Y
1 1 N-—-1 (¢g]
= > Lpwpm ot B 2(p—3 Ps) Dibn
”'H'ﬂ" h+k).>=N 7! L,irlsNv—1 Y| !

Therefore by Lemma 2.1, we have for some constants C%:5., C and C',

a' all
S, Cpy

a’+a’’'=a [¢+l+ h+k)=N
= t.tj’r'l N1

| D:D{E|=

7+8") (8
D1 GH? bc.—m-¢(£+a")
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N—1 )(r+ﬁ’)

(81 ’
+ % (P E Pact) | bemilitn |
i,rIsN—-1 =0

>2N—1+lal+lﬁ[ .

e

(e’)

<O, grr-e-on( AL

This completes the proof.

If necessary, we replace 7, with smaller one, so we may assume
Yo=M. Therefore for {¢[v, + ), (P—{)™* exists. Since - ‘

2.11) (P—-0b¢"(w, D)=I+r{" (%, D) ,

we have | ) -

(2.12) | (P=0)'=b"(x, D)— D (2, D)

where

(2.18) D (w, D)y=(P—-8)7'r{"(x, D),  {&[Yy +o°).

For the distribution kernels of r(x, D) and D (x, D), we have the
following two lemmas.

LeEMMA 2.8. Let K(r{)(x, y) be the distribution kernel of r&(x, D).
Then for Nzm+(n+1)T, K(r{")(«, y¥) 18 continuous 'gn R™ and, for some
constant C independent of £ and a positive integer N,

(2.19) | Krt™(a, 9)| < 0ay ) mess=r-minen(JE0) | ¢

for any 0L e[V, + ) and all (x, y) e R*™. Here {(x)={1+31, 23}~

PrROOF. For every p e N, we have
K(r")@, y)=@—p)~#@a) | v oA~ A ri"(@, Ods .

By Lemma 2.2,

~

|1~ A0rE" @, OIS Onw, 9= (JeL) 117

§C(<x>+ <5>)n+1+(m—-m/r<5>—(nfi)(_a]_(%yv'Cl_1 .

Therefore if Nz2m+®+1T, Kr{) is continuous in R*. By Peetre’s
inequality: (x—y) *=<C{x)*{y)>~**, we have
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| K(r")(x, v)|

éC<x>2p<y>-zp(“(il'(%l‘)')NICI—1<w>"+1+(m_N)/TS<$>-._(n+1)de

éC<w>2p+n+1+(m—-N)/r<y>—2p<_‘_il%)1v! C I—x .

If we put 2p=[(N—m—nT)/(2T)], we get the estimate (2.14). This com-
pletes the proof.

LEMMA 2.4. Let K(D{)(x, y) be the distribution kernel of D¢ (x, D).
Then for N>@Bn+2)T, K(D™)(x, y) i continuous in R>™. Moreover there

exist positive constant C independent of  and a positive integer N such
that

(2.15) IK(D(N))(QJ, y)|SC<m>—m/(2T)<y>(T(n+2) (N—m)}/2T) ci(ccl) ICI-—l .

PrOOF. Let K((x, y) be the kernel of (P—{)'. It follows from ([8]
that for some constant C>0, we have | Kz, y)|SC((x}(y))”"""’(]CI/d(C))
Here we note

KDz, )=\ Kela, DKr")z, )iz .
Thus (2.15) follows immediately from Lemma 2.3.

§38. Complex powers of P.
Let P be the self-adjoint realization of P(x, D) e OPS%.,, satisfying
the hypotheses (H.1)~(H.4) in §1. It is well known that

HP—=0)™ for all Ce[v, +co).

1
nyy = ——
||S!(L2(n )) = d(C)

Therefore for Re s>0, we can write

3.1) Pt P
2 Jr

where I" is a curve beginning at infinity, passing along the negative real
line to a circle |{|=¢, (0<e<7,), then clockwise about the circle, and
back to infinity along the negative real line and {~* is defined in C\ R_=
C\{{eC;Im{=0, Re{=<0} and takes the principal value. For Res=0,
choose a positive integer k& such that —k+1=Re s> —k and define P*=
P*P—*~*, Then we have
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PrROPOSITION 3.1 (cf. [8], [1]). Assume that P(x, D) € OPS%.,, satisfies
(H1)~H.4) and let P be the self-adjoint realization of P(x, D). Then
we have for every se€C, P~*ecOPS;%y* and the symbol o(P~*) has the
Jollowing asymptotic expansion:

3.2) | O(P™)~3, P mress
where
Do,-mres(®, &) =X(x, E)Pu(®, )™  and
Do, -mren—i@, )=, 28T ',(s”“l) dii(@, E)pal@, &

= Il

Jor every j=1. Here d,;(x, &) are defined by (2.3).

Note that if Res is large enough, P~ is of trace class. Moreover
we have

PrROPOSITION 3.2 (cf. [8]). Under the same hypotheses as Proposition
3.1, we have:

(i) Trace(P~*) is holomorphic for Res>(|h|+|k|)/m and extended to a
meromorphic function Zp(s) in C.

(ii) The poles of Z,(s) are simple and belong to a sequence {8;=(|h|+
k| —7)/m}im01,... and the residue at §; is as follows:

(3.3) Res(8,)= %(271')_” Ss(h‘k)pm(d)_”M-'-Ikl)/"'dO' ‘
and for every j=1,
. 25 1 -1 . . _
Resp(8) =2, —7m— L (| k| + k| — 5 +mi)@2m)™"
=1 mb =0

x|, dif@pu(@)i-i-timingg .
S (hik)

(ili) Zp(s) is holomorphic at s=0, i.e., Resp(8141:1)=0.

REMARK 3.3. Since Z,(s) is holomorphic for Res>§, and Zy(s)—
(Resp(8,))/(s—8§,) is continuous for Res=§,, it follows from [1] (cf. [8])
that

New=@n | dmdgaermeatom)  as A e

P (2,6) =1

Now we estimate Z.(s).
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PROPOSITION 3.4. For any d, and .d, (d,<d,), there emst posztwe
constants IV and C such that

IZp(s)ISC(1+IIm s|)¥

for any se{seC;d,=Res=d,} excluding neighborhoods of the poles of
Z:(8).

PROOF. Since Zp«(s)=Z(ks), if necessary, replacing P with P* for
large integer k&, we may assume m>2nT. At first we consider the case
d,>0. Then by (8.1) and (3.2), we have

N-—-1

B =52' Pc,—mRea—j(xy D)+E£N)
=0
where _
Ew ="\ D, Dyat .
2 Jr

If N>@Bn+2)T, it ~followas from Lemma 2.4 that there exist some positive
constants C and N such that

l SK(D(m)(w, x)dm‘ §C<d_|(gc_|)_)zvl -

for all 0£{¢[7, + ). Therefore

(3.4) SK(E:”’)(x, a:)dx=é’;? S "'SK(D‘”’)(w, 2)dzdl

is holomorphic for Res>0. Let I'y;=C;+Cj+C; where 6¢€(0, n/2) is
chosen later:

Ct: re?? (e =r< -+ )
C; : g (—0=¢=0)
C;: re . (e=r<+ ).

Since K(D®)(x, x) is holomorphic in C\[v,, + <), we can replace I" in the
integral of (3.4) with I'y. Thus we have with constants C, and C, which
are independent of s, '

lz_";_ Sogc—' SK(DE”’)(x, w)da:d(l <C, S’_as;*‘"-‘g”m" ¥dg

ézacle;llea—leﬂlmcl

and
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‘ -217; S%_FC—’ SK(I?;N))@\, x)dadl 1 <C, S:,.—ne._l dret=sin 5

ng(Re s)—'1s;-ReaedlImcl l sin @ I—-ﬁ .

Choose L>0 sufficiently large such that |sin@|>|60]|/2 for |6|=xn/L and
put 6=7x/2 when |Ims|<L/z, 6=|Ims|™ when |Ims|=L/x. Then there
exists a positive constant C such that . '

| SK(E:M)(x, x)dx] <C(l+|Ims|)¥ .
Next we consider the integral:
Ti(6)= @)™\ D0, mner (5, £)dade

_ ¥ s(st1)-- -, (s+1—1) (27:)‘”§d;,-@, OPa@, ) dwds .

K= 0

Since

dii(@, &)pa(e, &) tdads

Sh)(ﬁ,ﬂSl

is an entire function and |p.(, &) <p.(x, &)~ F°*', we have with a
positive constant C, '

etl)etl=D ory=| diw, Opale, O dude
Al 29(2,6)S1 .

~ =CA+|Ims|)! for d,<Res=d,.

On the other hand, by the quasi-homogeneity of d;(x, &)p.(x, &)t for
Ao(x, £)=1 and the way of meromorphic extension of Trace(P~*), we have

@5  HeibetoDon=|  dye, O O dede
A 2g(2,86) 21
_ —n8(8+1)ee-(s+1—1) 1 ] —a—t
() I ms+3—Ih|— %] } s PP

Thus there exists a positive constant C such that (3.5) is estimated by
C(1+|Ims|)* for d,<Res<d, excluding neighborhoods of the poles s=
(h|+E|—5)/m.

Now we consider the case d,>0. Then there exists a positive integer

I such that Res+1l=1 for se{secC;d,<Res=d,}. In this situation, we
have

N—1
P—'=PIP_'_’=P1{J§) Pc+l.—m(Ren+l)-—.‘i(w’ D)+El(l-x)l} ’
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where

] uv)___'i:_ —s—1 DL
PEZ= - Srz; P'D&MdL

Here we note: P'D¥® =PYP—{)r®(x, D)=(P—)*Pr® (x, D). By the
composition formula of pseudodifferential operators, for every multi-
indices a, B, there exists a positive constant C such that

| D;Dio(Pir (x, D))|§C(%)ﬁlCl“lh(x, £)mUHD-N—a >

By the proof of Lemma 2.3, if N>m(l+1)+(®n+1)T, we have with a
constant C,

IK(Pl,réN))(w’ y)l é C(_til_(cc_l)_)Nl C l—1(<w> <y>)—IN—m(l+l)-T(n+2)l/(21')

for all 0L & [V, + ). Thus by 1;he same arguments as the case d,>0,
we have with a constant C and N,

| SK(P’ Nz, w)dwl <C+|Im s|)¥
for d,<Res=<d,. On the other hand, we have

N-—1
P‘(Z p.+z,_..(ne.+u—j(x’ -D))
=0
1

—_ () )
> —Di,miit Y DiDert,—mrosty—i+ T+
i+ Ha,h+kdsN—1

For the first sum, we can use the same arguments as the case d,>0 and
for the remainder term 7! we use the composition formula. This com-

pletes the proof.
§4. Proof of Theorem 1.

Since Q=P**/™, it follows from Proposition 8.2 that the poles of
Zy(s) are simple and belong to a sequence {s;=n—j/(2M)};,,,... and

)—n S pm(a.)—(lhl-l-lkl)/mdo. ,
S(hik)

: 25
Reso(s) = As=5pr 3 —— I (B 1+1k|—j-+mi)2m)™

X S , d,j(a)p”(g')(5—|h|—lkl—ml)/md0.
S(hik) :
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for j=1. Moreover g;=\j}*/" are eigenvalues of Q. Since px;~j'" by
Remark 3.3, we can define a holomorphic function for Re z>0:

4.1) fo(2)=Trace e*°=3" e~ ,

=1

At first we must study a property of I'-function. For Res>0, let
I'(s) be the function

I'(s)= S:t‘*‘e“‘dt

and, for Res=<0, we choose a positive integer k£ such that Res+k>0
and define as usual

_ 1
re =D eri—p etk -

Then we have:

LEMMA 4.1. For any ce(—k, —k+1) (k=0 integer), there exists a
positive constant L=L(c) such that for all ¢, 0<|e|<xm/2 and d € R,

L
A+[o D

PrROOF. At first we prove the case k=0, i.e., c€(0,1). Making the
change of the variable t—te*, we can write

|I(c+i0)|=

F(c + 7:0') = g—¢lo—10) Swto+ta—1e-—(i sinetcoseltJy
T JO

Here we estimate the integral. Since ¢<(0,1) and cos ¢>0, we have

1 1 1
S l go—1+iog—(isinetcosalt I dt = S tldt=—.
0 0 c

Choose ¢, so that 0<e,<m/2. If O<|e|=s,,
1_1 _ | Swt°+ia-1e—(t sin e+cos‘ a)tdt I __S_ Swte—le—t cos cdt :
1 CJ1
Since |
Smt“‘e“‘cms ‘dt<(cose)°I'(c) ,
1

we have I,=(cos &) I"(¢). ‘ _
Next if ¢,<]|e|<n/2, we have, by the integration by parts,
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e Iz.___ S.wté—1+tae—t cos ce-—'ﬂ sin cdt )
1 : !
— l ge—1+iog—tcoseg—itsin s];o
—t8ine -
+ 'L s]ln Y S {(0 1 + Zﬂ)t°~2+“— (COS 6)t° 1+t¢}e-t cos ce—u 8in cdt
<L IO (“peorgyy COSE rt"-le—ms dt
|sine] |sineg] |sing| 1

1 1+|o] F(c) ¥ 1me
sm & +(sm &)(1—c) + € \cos & )

Thus we get the conclusion of this lemma. for the case k 0
For general case ¢ e( k, —k+1), we have ev1dently, with a con-
stant L,
. T'(c+k+1i0)) Le™*°
I(c+io)|s— 1L < L |
I (e+30)] (c+io)(c+1+10)---(c+k—1+10)  (A+|a])*

This completes the proof.

Now by the inverse Mellin transformation, if c.>0 is large enough,
we have

(4.2) 0Q(z) S z—~ZQ(s)r(s)ds.
7['), Res=

On the other hand if c<0 and le| is large enough, we have:

LEMMA 4.2. Let N be as in Proposition 3.4. For any ¢c<—N—2—k
(k=0,1, ---), c¢ —N, there exists a positive constant C such that for
any z, 0<|arg z|<m/2,

z"*"(g;)h% SRG 'gcz“ZQ(s)I"(s)ds =C.

PROOF. Since Zy(s)=Z:(2Ms/m), it follows from Proposition 3.4 that

there exists a positive constant C, such that |Z(c+io)|<C.(1+]|a]) .
From Lemma 4.1, it follows that if ¢<— —N—-2—k and c¢ —N, we have
with another positive constant C,

| Zo(e+io)(c+i0)|=CA+|o|)* e for any ¢ (0<e<7/2) .

Therefore we have

otk d k 1 -8 _C__ « oarg s—elo| -2 .
2 <dz 275?: SReasez ZQ(S)F(S)dsl é 2r S—ooe ¢ (1+|0|) da :
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Noting that we can put e=|arg z|, the proof is. complete.

PROOF OF THEOREM 1. Zy(s)I'(s) is a meromorphic function in C.
Moreover if s;=n—j/Q2M)¢ —Z,={0, —1, —2, ---}, Zy(8)I'(s) has a simple
pole at s=s; and the residue is A;I"(n—j/(2M)) and if s;=n—j/2CM)=—1
for some le€Z,, Zy(s)I'(s) has a double pole at s=s; and the coefficient
of (2+10)™* is equal to —B;. Thus taking the residue theorem into
consideration, we can shift the path of the integration in (4.2) by
letting ¢— — . Here we note that by Lemma 3.4 and Lemma 4. 1,
Zo(8)['(s) is rapidly decreasing in all vertical strips, excluding neighbor-
hoods of poles. By the Cauchy theorem, we have for a small §>0,

1 J —s; A T 7 )
-2;;;5.,_,,. . y sAT(n—gie)=2 AT (n—210)

and

271 Jls—sji=2 (3 s)2 s(—B;)=2'B; 932-

Finally if we apply Lemma 4.2, this completes the proof of Theorem 1.

§5. Proof of The;)rem 2. ’_
Let o be a function as in (1.8). By the Lebesgue theorem,
1) =\e(u—r)aNe@@)
=lim Seﬂfp(y-z)dNQ(z) g
=lim 3, e~#i0(pt— ;)

elo §=1

“=lim 3} @n) {emeromipyenar

el0 j=1

=lim (27) {p(e+ i) (B)edt .

We want to obtain the asymptotic behavior of I(y) as g— + o modulo
O(p™?) if n=2 and O(*~?% for some §>0 if n=1. By virtue of Theorem
1 it suffices to study the asymptotic behavior as g#— 4 oo of - the follow-
ing functions: -

. — -1 >4\—n+3/CH) 5 iut
61 Liw=lim @) §(5+zt) wp@erdt (- n+——2M ez+)
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6.2)  Liw=lim (20" S(s+ it) log(e+it)P)edt (e Z,)
6.3)  L()=lim (27:)“1§(s+it)‘ﬁ(t)e‘”‘dt lez,)

G4  RG)=lim @n) | Fe+inpeenat
where
F,(s+z't)=—1-,§ (e+it)*Zo(s)(8)ds -
27(_'1, Re s=¢

At first we consider I,(¢) and I(z).

LEMMA 5.1. For every integer 1=0, we have:
(i) L(g)=0"") as pt— + oo,
(ii) For any integer N=0, I;()=0(p") as pt— + oo,

PRrROOF. (i) At first we consider the case =0. In this case we have
L==2 [{ 2L toge+inpe}emat .
12

If we define a function a,(z) such that a,(z)=e™* if >0 and =0 if <0,
we have

(2rc)“§ (t) retrtdi=a,x o)
—S_w —teo(r)dr = _wp(z')dz':l .
On the other hand, since supp @ is compact and for any a €(0, 1)
|log(e+1it)|=|e+it |‘“+—725-- for all |e|<1, tesupp P,
we have
|tim {Log(e + ity yemat | < [(tr=+Z )o@l .

Thus we have L ()=0(¢™") as pt— + 0. Next we consider the case 1>0.
Since we have :

S(s +1t)* log(e +1t)P(t)e'*dt
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fﬁl‘ SW(GHt)“‘ log(e +it)D(E) +i(s+ ity B (t)
+(e+it)! log(e +it)p"(H)]e™dt

by induction on ! and the fact:
lilrgl S(s+it)‘ log(e+1t)0 ™ (t)e''dt is bounded as pgt—+ o ,

we can obtain L,(¢)=0(x"™") as p—+oo. (ii) is clear. This completes
the proof.

Secondly, in order to study I,;(¢), we need the following three lemmas.

LEMMA 5.2. Let 0<a<1l1 and p be as in (1.8). Then we have

e+ pwerdr=—L \e+ityemdt+Ris, ¢

— X
afl
where lim, , R(y, &) exists and 18 of O(1) as p— + oo,

ProOOF. Let supppc(—a, a). Then we have the following decom-
position:

S(e i) (et dt = §(e it et

+| _erity@@—Dewdt—| (e+ityemdt .
tisa tl=a
The first integral is equal to

—¥E S(e +1t)*let it .
a—1

Since P(t)—1=p(t)—p(0)=tp'(6t) for some 6#e(0,1), it follows that
(e +1it)*2(0(t)—1)|<C|t|** where C is independent of # and e. So the
second integral is of O(1l) as pt— + o uniformly in &. As to the third
integral, since we have [(g+1t)* % |<|t|*2, it is also of O(1) as pt— + oo
uniformly in ¢. This completes the proof.

LEMMA 5.3. Let 0<a<1l. Then we have
li{n S(s+it)‘?‘“e*“‘dt=2 sin(ra) " (@)p™* .
elo0

PRrROOF. TFirst of all we claim that

(5.5) | lim e+ ity et
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exists and is equal to
Jatyemar .
In fact, by the mean value theorem, we have
(e+ity=(ity " +ela—1) | (co+ity—ds .
Here we note

“Jim

and for any 4¢(0, 1),

3|
ltls1

If we choose  so that 0<a—d<1, the last integral converges to 0 as
€l0. Thus we obtain (5.5).
Next it is well known that for a < (0, 1),

S(eﬂ+zt)“”2d0|dtSeS t'dt >0 as &l0

1tl21

S (66 +it)**df |dtSs S 0y ot =t .

Itisi1Jo

rt“‘l cos(ut)dt = I'(ax)cos _n?a. p©e,

S”t«-l sin(ut)dt="I(a)sin T p-e .
(1]
Moreover we note

(it)a_l— {ta—le(a—l)ztlz if t>0 ,
- | & |*—1g—(a—vxis2 if t<0.

This completes the proof.

LEMMA 5.4. Let a€[0,1) and =0 integer and p be a fuhction as
wm (1.8). Then we have

lim [e+itreppemdt=0w=  as por+e.
PrROOF. By the integration by parts, we have for =2,
J(e-+itrip@enar=| —2te it @@ +ippaNedt

Therefore repeating this procedure, we are reduced to the following
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equality:
(5.6) lim S(s+it)“‘*ﬁ(t)e‘f“dt=0(y1'“) a8 ft— +oo .
For a € (0, 1), this equality follows from Lemmas 5.2 and 5.3 and for a=0,
(5.6) follows from the integration by parts and the arguments in the

beginning of the proof of Lemma 5.1.
Next we have for j=-—1,

S(e+it)““ﬁ(t)e"“dt

= Eﬁl-{(a +9)(e+it)*H1p(E) + (e +1it)*HP' ()} et dt

Thus we are also reduced to (5.6). This completes the proof.
Finally we study R,(z).

LEMMA 5.5. Let N be the number as in Proposition 8.4. If c<—N—4,
c¢ —Z,, then R,(p)=0(u™®) as p— + . ‘

ProOF. By the integration by parts, we have

SF(s—}—it)ﬁ(t)e"“dt

= ;}X{ —F"(e4it)0(t) + 21F" (e +it)0’'(t) + F(e+it)0" (t)}e'*dt .

Since we can apply Lemma 4.2 and —c—2>0, we have
lligl SF"(s+it)ﬁ(t)e‘”‘dt l <Clim §| e+t |~ (E)ds
=C§;t|—°~2ﬁ(t)dt<oo .

The other terms are similarly estimated and this completes the proof.

PrROOF OF THEOREM 2. By the arguments in the beginning of this
section, it follows that for any ¢<—N—4, c¢¢ —Z,, there exists a
positive integer N such that

)=

- _\I..
_n+j§%‘11v)62+ F(” 2M )IM(#)

BT+, Clue)+Rulgs) -

—n+§/QM)=lecZ.
isN
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But by Lemma 5.1 (ii) and Lemma 5.5, I,(¢)=0(x¢®) and R, (u)=0(y™?)
as p— +o. Put 6=Min{(j—2kM)/2M); 7>2kM, j=1,2,---, N, k=
1,2, ---}. Then it follows from Lemma 5.1 (i) that when n=2, I,(¢)=
O(p»~?*) as t— + . By Proposition 3.2, B,, =0 for n=1. Therefore when
n=1, L(p)=0(? as pg—+o. If j=22M and —n+j/@CM)e¢Z,, we
can choose an integer k=1 such that 2kM<j<2(k+1)M. Therefore by
Lemma 5.4,

Il.i(#) =lim(2n.)—'n S(e + it)—n+k+(j—2kﬂ)/(21!)ﬁ(t)e¢ptdt
€10
— O(#n—k—-l—(j-—zku)/(zll)) — O(#n-—z-—(j—%x)/(zl)) as # —> 00 .

Thus if we write

K= z.r =L AL+

we have
5.7 rP()=0(?) if n=2 and rP(Y=0(L""? as p— + oo,

Finally we compute I,;(¢) for 5=0,1, ---, M,, By Lemma 5.4 and
by induction on 7, we have

S (e + it)—n+j/(2l)ﬁ(t)e¢ytdt

= ﬂ"_l —1+35/2M) fut 1)
(n—1—3/@M))- - -(1—3/@MD) [e+inyrrmmprendt+ro, o ,

where r® (¢, &)=0(¢"*) uniformly in ¢ as g—+ o if =2 and (g, )=0
Here we have

lim(27)" S(e+it)‘ p(tedt =lim a x ()

=\"_p@dr= p(0>+§ o(c)de =1+0(p™)

for any N>0as #— + . By Lemmas 5.2 and 5.3, we have for 1=j<M,,
lim(2x7)—* S iy, 1+i/2M) 5(¢ etmdt_ sin '7;; r(_]_) —j/eMm
im(2z)™ (e+1¢)” o(t) —sin el (S1r )¢

Thus it follows that

I =T(m) Ay +3 r(n— S1o)iat sin L2

1)| =1 2M
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J (-1 n—1—3/ (30
<G ) T aaany Ty

where 7r,(2) has the same property as (5.7). We note

I N pe1——3 N (1—_I_ __J_
F(n 2M> (n 1 2M> (1 2M>F<1 2M>
and for 1<j5<2M, I'A—j/@M)T(5/(2M))=r/sin(jz/(2M)). This completes
the proof of Theorem 2.

§6. Proof of Theorem 3.

Since the proof of Theorem 3 is essentially due to [3], we shall give
only an outline of the proof. First of all, we quote the following two
lemmas.

LEMMA 6.1 (cf. [3; Lemma 4.2.8)). Under the hypotheses of Theorem 2,
there exists a constant v>0 such that for all K>0 and p,

(6.1) AN (D =7A+K)" A+ pe)" .

Slp-—rl =K

LEMMA 6.2 (cf. [3; Lemma 4.2.9]). Under the hypotheses of the above
lemma, for all ¢>0 there exists a constant K>0 such that

6.2) Sp(p—f)dNQ(f)_s_ew—l for all =1,

2
6.3) S»“_K(S_mp(u—r)dp>dNQ(z')ésx,”“ for all =1,
6.4) Std_K(S:op(;z—r)dy)dNQ(T)ée)\,"" for all AZ=1.

Now we give the proof of Theorem 3. Since the support of the
measure dN, is contained in [0, + =) and p is rapidly decreasing, there
exists a constant C>0 such that

(6.5) | remansc.

By integrating the asymptotic formula of Theorem 2 from —1 to A and
taking (6.5) into consideration, we have

2 i} A .
6.6 T — J n—3/2M) n—1 — oo ,
(6.6) S_w (t)d e g)_——n—j/(ZM)x« +O0Q"™) as A—+

On the other hand we rewrite the left hand side of (6.6) in the
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form A+ B+C where

-—00

(I ew—oaman ,

-0

A
B
C

S ()
|

le—2l Sx( S iwp(# - T)dl")dN (7).

It is clear from (6.3) that A is of O(A"™") a8 A — + . Next, since p(0)=1,
we have

B= S«z—deQ(r) - §r<1—x(§ :op(# - t)dp) dNQ(T)
(1 ote—2)ap)aNe() .

It follows from (6.1) and (6.4) that the second term and third term in the
last integral are of O(\"*) as A— + . Since the term C is estimated by

=New—| __aN@-|

A-KScsS2 t<i—-K

const. S zl“qu(z-) ,

T

it follows from (6.1) that C is also of O(\*"") as A—> co.
Therefore we have

Mo .
No)=3 —Ai__rs00 1007 a8 Ao +oo .

= n—7j/(2M)
Since Np(A)=N,(\*'™), we have
My A
N =2, L)\ un=/mp QM) ag A oo,

= n—3/(2M)
This completes the proof of Theorem 3.

REMARK 6.8. When h;=k;=1 for j=1,2, --., n, the same result is
in [4; Theorem 3]. When h,=h,=---=h,=h, k,=k,=+--=k,=Fk, see [6;
Theorem 3] and also [5].

§7. Examples.

(1) Let P(x, D)=D:+x*+ax’ on R (a € R). Then if we put p(x, &)=
g+, py(x, & =ax®, Pz, D)cOPSY;,. We note M=3/2, hence M,=2. By
Theorem 3, we see

1 1 1 3a’ 3 1
N =——B _-, = 8/4 4 OW =, = 1/4 — oo
»(\) 3 ( 2 )x + 327:B 2 )7\. +0Q1) as



ASYMPTOTIC BEHAVIORS 505

where B(-, -) denotes the Beta function. This operator is treated in [5].

(2) Let P(x, D)=D; +D;,++ x4+ axi+bx, +cxi+dx,+e on R* (a,b,
¢, d, ec R). Then if we put p,(x, & =8+&+ai+af, p(x, &)=ax}, Dz, &)=
bw,+cx;, pi(®, §)=dx,, P, &)=e, we see P(x, D)eOPSY,,,. We note
M="7/4 and hence M,=8. By Theorem 3, we see

NP()\')_-z_l;c-B(; 1)7\.7/44-2;3—”“ B( ))x.b/“-l—O()\,m) as A—co .,

(3) Let P, D)= D; + Dz, + i+ x; +ax; +bD;, + e, +dD,, +ex; + fD3, +
R(x, D) on R* where a, b, ¢, d, ¢, f are real numbers and Rz, D) is a
polynomial in &, and D,, of order 1 with real constant coefficients. Then
if we put p,(x, §)=4+&+xi+at, P, §)=axi+be, p(x, &) =cw,+dE +exi+
f&, we can regard P(x, D) € OPSY,,,,,,.- In this case we see M=38/2, hence
M,=2. By Theorem 3, we see

— 1 1 8/2 [ 2 py OXT> 8/4
NV =pB(%, T+ @ 2T (o) g T+
as A\ — oo,
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