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Introduction

Let [x#] denote the greatest integer less than or equal to the real
number x, and p and ¢q be relatively prime positive integers. It is a
difficult problem to determine the exact value of the Dedekind sum
g[—’;ﬂ]n except the trivial case: ZZ—‘; [%@-Jz-%(p——l)(q—l). In general, it
is impossible to evaluate the sum for n=2 as a polynomial on p and q.
However, in case of n=2, we can express the sum as a finite sum with
fewer terms using the sequence of remainders in the Euclidean algorithm
for calculating the ged(p, ¢) (see T. M. Apostol [1], p. 78).

On the other hand, instead of evaluating the sum, the reciprocity
formulas which can be used as an aid in calculating the Dedekind sums

have been studied. The only results we have known are:

(1) 6p 5| 2 [ +60 5| 22 [=(r—1@-DEp—D2a-1)

and

(2) 40~ [ 2 [ +400- D [ 22 =0 —130-10@Pa-p—011) .
h=1 P k=1 q

(See, for example, L. Carlitz [4] (1.7).)

There are some ways to prove these formulas (see, for example,
T. M. Apostol and T.H. Vu [2], L. Carlitz [4], H. Rademacher and A.
Whiteman [11], (3.5) and D. Zagier [12]). In the preceding paper [9],
we introduced a lemma which was derived, for example, from Rademacher
and Whiteman’s method and is available to reduce almost all types of the
generalized Dedekind sums to the sums of fewer terms. So, in this paper,

we shall apply the lemma to evaluate the sum :2‘,-1 %p— 2.
=1
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We show, in §1, a recursive formula and we evaluate the sum
z_‘, [—";ﬁ " as a polynomial in §2. The result is Theorem 3:

S kp 2 _D p 1 n-ig
S22 [=3o-1a-D-20-0+F 5+ 1

_Q_" 11'[‘1{-1] =(—1)"
612 ) q‘ +6( )an—1’

where the integers g, are defined inductively by q_,=p», ¢,=¢, ¢,=¢,_.—
[qt—z_]q‘_l (t=1,2, -+--) and ¢,=1 and a positive integer a,_, (<—2—)
t—1

represented by a polynomial on [—q‘;;‘-:l (¢t=0, 1, -+, »—1) which is also

determined uniquely by the equation qa,_,=(—1)" modulo p.
We represent the eta-invariant 7(p; q) for the 3-dimensional lens space

L(p; @) by the sum :2:‘: %D—]z in §3 and, in §4, we prove Theorem 5 which
states its complete invariantness for the isometric class when p is a

prime number or p=kp’ where p’ is a prime number and k=2 or 3.

As for the case where p is a general composite number, we study,
in §5, to what extent the eta-invariant 7(p; ¢) is available taking the
length of the sequence of remainders in the Euclidean algorithm for
calculating the ged(p, ¢) into account. Our main result is Theorem 12
which states, by clarifying when exceptional cases will occur, that the
eta-invariant is “almost complete”.

§1. Recursive formula.

Let p, ¢ be relatively prime positive integers and put
q
for k=1, -+--,q—1. Then
[-p-:|+1 if v, 4v2q,

[ +q p:H: ;’:|= [%']

for each integer k¥ 1=<k=q-1).
Since

otherwise ,
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qii {[ (kfll)p :I—l: kqp :l} =(q—-1)[—§-]+#{k; Yo+ 20}

k=

329

and the left-hand side is equal to p— [ :] there exist p— [2 :lq=71 such

integers that satisfy v,+7v,=q. We put these integers as
k1<k2<.' b <kr1_1<k71 o
Then we obtain the following

LEMMA 1. These integers are represented as Jollows:

b= L] for =1, e 1

and
ky=q—1.
PROOF. It follows from the inequalities
gy Jie e
7 71 1
that

i [ ]
q RE

and since 7,<q, we get [[%q—:ll]=i—1 for each 7=1,..., 7,—1.
1= 4

HER =2 Z}Q i [[ ]—]‘1 T

A [[‘“'1”1 [ 2 e+

5 (i 2
a—{ia—| S ](o-[2 Jo)}+

=q ‘(“‘q T}"‘]“’*)*"l

1

Il
Py
L]

l
|

=q+1,

Thus
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and we conclude that [L_;I— =k, 1=t=7,—1). The last equation k,,=¢—1
follows from the fact thalt Yo +7=q and k;_,<g—1.

Applying Lemma 1, we get
kz [(k+1)p:| [kp] |: Zk2+zk2

k=1 =1

=_€15_q(q 1)(2q— 1)[ ]+2[ ]+(q 1)*.

On the other hand, since the left-hand side is equal to

S {te+ 1)2[-(-’-‘-1‘61)—”]—#[1‘(1&]} 28 b+ 1)[-(_"_1112]+ SR + Lp ]

k=1
=plg—1r-2 5 {22+ 5 [kp]
k=1 q k=1
we get

(3) 2E 221+ 5[ [ 2o-1e-DeEe-D-ae- e[ Z].

Now, since the numbers '7,,=kp—[k—;’-:|q for k=1, .-, g—1 are simply

the numbers 1, --+, ¢g—1 in some order, we get
q—~1 q—1 g—1 2

(4) S e —2pg 5 i 22 |+ S| 22 = 2a0-Di2g -1 .
k=1 k=1 q k=1L q 6

Combining the equations (3) and (4) we obtain the equation:

s5)  iy[E].lE[ET
:—é;q—<p—1)<2p—1xq—1><2q—1)—%«1——1)(2(1—1)[%] :

Note that the equation (5) coincides with the reciprocity formula (1)
when p<q. On the other hand, v,<q when p>q and hence the equation

—_- 1—1
(5) means that the sum qzl, [-l‘;ﬁ] is reduced to the sum TZ ] which

k=1
has definitely fewer terms. Thus we assume 1=<¢g<p in the rest of this
paper and let us regard the equation (5) as a recursive formula.
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§2. Calculation.
Let

4.=D, %=4, q1='n=p—[%:|q

and

Q=02 Jg (=01, 3.
[/ FER)
Then it follows easily that

0=q,>q,>q, >+
and

7,=1

for some n (=1). Note that » is, in most cases, small enough as compared
with q.
We also get, as in §1, the following recursive formulas:
1 94411 kqi gg42—1

= 3 ]2.1_ 1 S -J_qﬁl_]z
q; =1 Qi Qiyyg 9=t Qi

(g:—1)(29,—1)(¢s+.—1)(2¢;4,—1)

T

- "“(Q¢+1 1)(2q,,,—1) 9 ]

{+1

(qt—l)z(qm-—1)2+—géi—(qi-—1)2(q¢+1—1)

6Qiqi+1

+

(q,+1—1>2<q¢+2-—1>+-};-<q¢+1—1><qi+2——1>

6q,.
for 1=-1,0, +++, n—2.

Multlplymg (=1 to the both sides and then adding them from
1=—1 to n—2, we get

—1 an—1 > 2
1 q [ ] +( 1)1;—1 . Z an—l ]
p = 0., =Ll g,

n—1

=5 @ 1= D+ =1 D)
G -1 1>+z< g~ D@1 -

Substituting ¢q,=1, this equation reduces to
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1 & . (=1 .
P k=1|: ] ———(p Dg—1+ Z 6d.00s ~——(q;,—1) (Q¢+1 1)
2 = - D@1 .

Thus we have expressed the sum qz_l[ﬁ:r as a sum of fewer terms.

k=1
Next we are going to express the sum 5_“ kp

:I in some polynomial
k=1 q

form for it has an integral value. Since

L (g— 1>2(q,+1—1>2——<q‘ 1)@ —1) — = (gs — 1)(¢sps—1)
T 0 6q,
1 1 1
——1 - —n+L1-1 _ + :
6‘1¢+1 ! o 6 6q, 64q,., 64,9,
we get
4—1
1 [ =1 (p—1)g—1)+L1p—1)g—1)
P k=1 6p 6

+ 5 (D@ D@~ D

Qi1

(Qt—l)(Qt+1—1)}
1, 1=(=1) 1 (=D, 1% (]

+T5- 2 6p 6q9,_, 6f=‘1 491
=35 @~ VE-D-F (- D{g e 1><q¢—1>—L@‘—l)(qm—-l)}
—( 1) 1 _1 1 1 —(— l)n 1 n—l( 1)¢+1
64, @)@ "+ 2 610 T g 2

Now, the sum of the second term on the right-hand side of the above
equation is reduced to

A

L {yn-s e (—1\n—~2 _1 & i Q51
=g P ==V (- - B -1 L= ]

L 4

and as for the sum of the last term we have the following lemma which
is proved easily by induction on h.

LEMMA 2. Let a_ =1, a0=|:_§_] and a; (j=1,2, ---, n—1) be the pos-

itive integers defined inductively by the following relation:
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(6) P=0;q;+a;_1Q;+1
Then we get

(=™ _(=D""a, (h=—1,0, - .., n—1) .
t=—1 @, Q41 Pyt ’ '

Note that a_ =a,<a,<-- °<an_1<l§— and also note that |

" n—1 ( _ 1)t+1
(7) (—1) qa,_,=1+pq 3, ~———
=0 Q.Q;4,

=1 modulo p,

n—1(¢___ i+1
since qz(,) —(TJ%)——=(—1)"0‘L”_1 is an integer where &@,_, is defined induc-
i44+1

tively by a@,=1, o‘al=[-g—:l and the equation
1

q=6iq:i+dj—1q1'+1 ’ j=1, 2, LIL LN n—1.

Hence we have only to express a,_, in some polynomial form and an
induction argument using the recursive equation

a,,-+1=a,-_1—l—a,-[ k) ] (.7=0’ ..., n—2)

J+1

yields
_<| P qi,-x [ g, :I q,,,_l][ 9y, ] qn_z]
G = Z[ :I[ ] ] Qiy4s @, L0 Qnt
NEXEAPY q,._z]+ 14(=1"
q g, Qns 2

where % denotes deleting x and the sum is taken over all integers satis-
fying 1§k§[-”2£], 0<i, +»-, 4, =n—2 and 2=<é;—i;..

Thus we get
g—1 2
& [‘I'cqg =—1—<p—1>2<q—1>—%{p—q—(—1>"-°qn_2—<—1)"'=qn-1}

+2%5 - 1)[‘1*-1]—ﬁ(—1)"-lqn_2+2-(—1)n-l

+ 2L |1 2 22 - =+ =1y,
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and hence we obtain the following

—1 2
THEOREM 8. GZ [-’92] can be evaluated as a polynomial on p, q
q

k=1

and I:_‘I_;-L] (=0, 1, -+, n—1):
[

®)  E[2[-2o-1e-1D-Lo-0+L-1il gy

+2 3% (- L=+ L-1ypa,,
6 i=o q; 6

§3. Eta-invariant for L(p; q).

Let C* be the space of pairs (z, 2z,) of complex numbers with the
standard flat Kdhler metric ds*=dz,-dz,+dz, -dz,. Let p and q be rel-

atively prime integers satisfying 1<qg<p. Put z=exp2_7‘__ ”p—l and define
an isometry g of C* by

g (2, 2,)=(22, 2°2,) .

Then g generates a cyclic subgroup G={g"},.,,....,_. of the unitary group
U(2) and the elements g* act on the unit sphere

S*={(z, 2,) € C* ZZ,+2,2,=1}

without fixed point. The sphere S°® is the universal covering manifold
of the differentiable manifold S*/G with the covering projection ¢: S*—>
S?*/G and S%/G has a unique riemannian metric so that @ gives a loecal
isometry of S® onto S®/G. This riemannian manifold S*G is called a lens
space and denoted by L(p; q).

The eta-invariant for L(p; ¢) is given by the explicit formula:

77(p; q) = —-._.1_ pz—:lcot _-Zicotfll_ql
pi= o p P
(see M. F. Atiyah, V.K. Patodi and I. M. Singer [3]). Note that this eta-
invariant corresponds to the trivial one-dimensional unitary representation
of Z/pZ.

Although the result is well-known, we first rewrite 7(p; @) in the

-1

sum >, l:-lipi]z by the most elementary method (cf. Zagier [12]).
q

k=1

Put {=exp 37'1‘;_:1, then
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1/-:I cot.j_n;-_—__.l_—.‘__g_= _—1—-__2_ .
»p 1-C

. p—1 p—1
Since k§‘,C"=—1 and 3kt =_PL _ we get
=1 k=1

-1
Vet =S - 280 =% (1- 20 )
P k=1 P k=1 k=1 P
so that

70 0=2 5 (& (1-Z)oHE (1- 2L e}

—_—%. :Z: {:gil <1—%>(1_%>Ch+kq} .
Now we know that

= -1 if plh+k
Zchﬂq:{il if ﬁmikz,

and hence we get

oi0= 5 (- 2)a-2) L (1-2)(1-2%)

2ih+kg p k=t p p
P—-1
=5 (1-Za+k)+Sone} .
hok=1 D P
Plh+kq

Since » (1<h=<p—1) is uniquely determined according as %k moves
from 1 to p—1, we obtain the following equations:

c
p
h+kq=pq
h+kg=(¢—1)p
P
9 b h+kq=2p
211
[‘1] T T rht+kq=p
0 A
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p—1

(9) 3 1=p-1,

Plh+kq

(10)

To calculate MZ;‘ L, hk, we must clarify the lattice points (&, k)
Plhtkq

satisfying h+kg=mp for some integer m (1=<m=gq). (See the figure on
the previous page.) The result is as follows:

(h, B)=(p—gq, 1), (D—2q, 2), *+-, p—[ﬁ]q, [l’i.]

(-2 J1)e [2]+1) - o[ Z R [2])

(qp—(:g—_qli]+1)q, l:-(q—_é-lﬁ:|+l>, -+, (gp—(p—1)q, p—1) .

Hence we get
an ¥ hk=p{1-(l+2+---+'|:%:|)

T () (2]e)e[2)

ooooooooooooooooooooooo

+q- [i‘l%ﬂ]+1)+ ot @-D)—a S e
=p{ > pp—1)+3( p(p—l)—[%]([-’-;-]ﬂ))
O Y )
+{(p-1) —[(q’;l)p 10 (q";ll)p ]+1))} -2 pate—12p—1)
=~pap—1)—cpep—Ep-1—L s ([Z‘qﬂ]z+[-’%ﬂ:|)

Substituting the equations (9), (10) and (11), we obtain the following

THEOREM 4. The eta-invariant for the 3-dimensional lens space L(p; q)
18 represented as follows:
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i g—1 2
7(p; q)=§1——(p—1)(2pq—3p——q+3)——2- 2[.@.] .
. p p k=1 q

§4. Complete invariantness of eta-invariant.

We now prove the complete invariantness of the eta-invariant for the
3-dimensional lens space with a certain type of p, that is,

THEOREM 5. Let p be a prime number or p=Fkp’ where p' is a prime
number and k=2 or 8. Then two lens spaces L(p; @) and L(p; q’) are
isometric to each other if and only if n(p; q)=+7(p;¢) (cf. H. Donnelly
[6] Prop. 4.2).

PROOF. Necessity is well known and to prove sufficiency we use
the following

THEOREM 6. Two lens spaces L(p; q9) and L(p;q') are isometric to
each other if and only if

g==+q" modulop or q¢'==+1 modulop .
(See, for examplé, M. M. Cohen [5] or A. Ikeda and Y. Yamamoto [7].)
We obtain

qg—1 kp 2
(12) 60 3 [T] =(@—1)2¢—1)  modulo p
=1
from the reciprocity formula (1) and, on the cher hand, we obtain
g—1 kp 2
61‘2 —q_:] =29—3+(—D"a,_, modulo p

from the equation (8). Hence we get
(@—1)(2¢—1)=q{2¢—3+(—1)"a,_,} modulo p
so that
qa,_,=(—1)" = modulo p.
Note that, since p and q are relatively prime, the positive integer
a,_, <<%) is uniquely determined by this equation for given p, ¢ and n

satisfying q,=1.
Now, as
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13) 3p7(p; 9)=(p—1)(2pg—3p—q-+3)—6 :5;311 [Z‘Ep. "

is an integer, we get
3pn(p; 9)=—q—(—1"a,_,  modulo p.

Define ¢} (¢.-=1) and a,._, in the similar way corresponding to ¢’ and
assume that 7(p; ¢)=7%(p; ¢'). Then we get

qg+(—Dra,_,=¢ +(—D"a,._, modulo » .

Multiplying qq’ to the both sides of this equation, we get
¢ +q=qq”*+q  modulo p

which reduces to
(14) (¢—q')gqd’—1)=0 modulo p .
Hence we get
(15) g=q or q¢'=1 modulo p .
In fact, if p=38p’, for example, we may obtain

¢—¢'=3a and q¢'—1=p'8
or

¢—¢=p'8 and ¢¢'—1=3«a
for some integers a and 8. However, in either case, we obtain from the
equation containing 3a that

g=¢'=1 modulo8 or ¢=¢'=—1 modulo3

and substituting these to the equation containing »'8 we get that »'B
is a multiple of p if p’ is not equal to 3. When p'=3, i.e., p=9, we
can verify Theorem 5 by computation.

On the other hand, if we assume 7(p; ¢)=—n(p; ¢’), then we get

g+¢=p or ¢¢=-—1 modulo p.
Thus we have proved Theorem 5 via Theorem 6.

REMARK 1. As I. Iwasaki [8] pointed out, we can obtain the equation
(14) by the reciprocity formula of 7(p;q) which is equivalent to the
reciprocity formula (1) without knowing the exact value of the sum
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-1
qZ [-@]2 However, we do not need even the reciprocity formula. In
k=1

fact, we obtain the equation (12) from the equation
q—1 2 g—1
St (k[ 22 Jo) = £ vi=ta¢-1(2g—1)
k=1 q k=1 6

and we obtain

3pn(p; )=q—3—6 :z:‘. [’%’T modulo p

from the equation (18). Thus, if 7(p; ¢)=7(p; ¢') then we get

q-—Q'EG{i [_kql:r-— :Z—‘l _kli]ﬂf modulo p

g
= =il g
and hence we get
9¢'(e—d)=q(¢—1)(2¢9—1)—q(¢'—1)(2¢'—1)  modulo p
so that
(@—q')Yqg’'—1)=0 modulo p .
In the similar way, we get
(@+4¢)(gq’ +1)=0 modulo p
if we assume 7(p; ¢)=—2(p; ¢').

REMARK 2. Theorem 5 does not hold when p=5p’" where p' is a
prime number greater than 5. In fact, we know that L(65;8) and
L(65;18) have the same eta-invariant but are not isometric to each
other. However, we can prove that Theorem 5 holds if p=5p’ and

g=q¢'==+1 modulo5 (or g=—¢ ==+1 modulo 5)

when 7(p; 9)=7(p; ¢') (or 7(p; @)= —n(p; ¢') respectively).

But, in this case, we must exclude the case p’=>5 since we know that
L(25;4) and L(25;9) have the same eta-invariant but are not isometric
to each other.

§5. Further arguments.

Let p be a composite number, ¢ and ¢’ be positive integers less than
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or equal to [—121:\ and relatively prime to p satisfying ¢,=¢.-=1, and assume

that 7(p; ¢)=+7(p; ¢’). Then we get from Theorem 3 and Theorem 4
that

3pn(p; @) —{+3pn(p; ¢')}
= '—"q' —q=x (_' 1)"'(7':-'—1'— (_ 1)”“1;—1

+P{ (D =D +1— (=11

and hence we get the following simultaneous equation:

(16) +q' —q+(—1)"as._,—(—1)a,_,=sp,

an %{i((—1)""‘-—1)+1-—(—1)""‘}

where s=0 or +1.

Note that we had used the equation (16) to prove Theorem 5 and
obtained the equation (14). When p is a composite number ab, we may
have from the equation (14) that

g —q=aa and qq’—1=,8b+[-————qq;1:lp
for some integers a (0<|a|<bd) and B (0<B<a). However, taking the
equation (17) into account we obtain the following result.

THEOREM 7. Let p, q, and q' (q#4q’) be as above.

(i) If n=n"=1 and n(p; @)= —n(p; ¢') then we get q¢’'+1=mp.
(ii) If n=2, n'=1 then n(p; @)+ +n(p; ¢') for any q and ¢'.

(i) If n=n'=2 and 7(p; Q)=7(p; ¢') then we get q¢'=1 modulo p.

PROOF. Case (i). Since s=0 in this case, the equations (16) and (17)
are the following simple equation:

q+q’—[—§—]—[§]=0 )

Multiplying qq’ to both sides of this equation, we obtain
(g+49")qq +1—p)=0



DEDEKIND SUMS 341

and hence
¢ +1=p .

Case (ii). Suppose 7(p; ¢)=7(p; ¢'), then the equations (16) and (17)
are rewritten as follows:

o~ [F- 2T
an s+ [2]-—[2]+[L]-am—s.

If s=0 then substituting q=l:—q—:|q1+1 and the equation (17’) we get from
q
the equation (16") that ‘

(- [2)a)as[£])=o.

However, this equation does not hold. So we have only to consider the
case: s=—1 and hence ¢’<q. In this case we get from the equations

(16’) and (17") that
r=o-[2 ][4

(P—q—a)(g—1)(q,—1)=0.

However, this equation never holds since n>1 and q+q,<p.
Similarly, we can conclude that the equation 7(p; @)= —n(p; q) neve
holds. '
Case (iii). Since s=0 in this case, the equations (16) and (17) are
rewritten as follows:

o[22 T8
[2}-[g)+a-[2):[]-omo.

By multiplying ¢q’ to both sides of the equation (16"), we get

(@ —g)ed' —1)= (q'[é’:] — q[—Z{Dp

1

so that

so that
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as) o(p+[ =L lo)=a[ L]-q L ].

On the other hand, we get from the equation (16"') that

E)alg- (2]

Substituting the equation

[Flra={Eras Z)- 3]

(2)+a)(£)-[2) (2] (22
(2 LD 1D

so that we get

kit

Thus the equation (18) reduces to

aB=(q— q)[ ] [qq ]aa
=(( £ e
a, Y
Hence, =0 modulo a and we get ¢¢'—1=0 modulo p.

REMARK 3. As for the cases n'=1 and n=8, we cannot deduce the

equation (15) from the equation (14). Lens spaces in Remark 2 are the
counter-examples to these cases.

" On the other hand, we obtain the following theorem concerning the
equivalence condition of lens spaces and the length of the sequence of
the remainders in the Euclidean algorithm for calculating the ged(p, q).

THEOREM 8. Let q and q' be positive integers relatively prime to p
satisfying q,=dq=1.
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(i) If q+q'=p and q<—§, then

¢&=qin, for i=0,1, ..., n—1.

Hence, wn particular, n’=n+1.
(i) If q and ¢ are smaller than or equal to -122- and satisfy the

equation q¢' =(—1)" modulo p, then

(20) aJ——l qn; fO’)" j=0, 1; cr, M,
and
(21) a¢_1=q;._¢ fO’)" 'b.=0, 1, cee,

Hence, in particular, n’=mn.

PrROOF. (i) is trivial and so we prove (ii).

Since a,_, <1§an_1<-g> is defined uniquely by the equation ga, ,=
(—1)" modulo p and ¢’ satisfies the equation q¢'=(—1)" modulo p, we get
q’:‘-an—l‘

It follows from the equation (6) that p=aig,+a .¢.=a, ¢, +a,_.q,,
i.e.,

Eﬂq' +0=0¢,_,+a,_, .

’

Hence we get from this equation and the inequalities 0<a, ,<a, ,=¢
that ¢;=a,_, and q,,_l—[—-,-]=ao.
q

In general, it follows from the equation (6) that

ak+1=ak—1+a’k[ e ] for k=0, 1; R n—1 ’

Qi+1

and hence we get

l: ] I:ak+1] for k=-1,0, -, n—1.
Qi+1

Using this equation, we prove (ii) by induction. Suppose that

’ ’ ’ ’
UG=0Cp 1y Qr1=Cp iy Aj1=q,_;, and a;=gq, ;.

Then
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Q=05+ aa‘[ ch ]

QJ+1

[——-L—"- =L la;+a;_,
n—f—z

=| dazt=s ]qn—l—1+qn—i

qu-:—l
=qp-j-2 s

and hence we get the equation (20). We get the equation (21) similarly.
In particular, we get g,=a_,=1 so that n'=n.

According to Theorem 8 together with Theorem 7 and Remark 3, one
may conjecture that 7(»; ¢@)=(—1)"7(»; ¢') and n=n' for ¢ and ¢’ smaller
than —7-2?- imply the equation q¢'=(—1)" modulo p. This conjecture is true

for almost all cases. In fact, we obtain the following theorem.

THEOREM 9. Let p=ab (a, b>1), a composite number, and q and ¢’
(q;ﬁq’g[—g{l) be positive integers relatively prime to p. Moreover, assume
that n=n' and P®; ¢)=(—1)"0®; q). If n®;)+#0 and ¢ is a unique
integer satisfying the above assumption for given q, then the equation

' =(—1)" modulo p
holds.

Theorem 9 is easily shown by the fact that ¢'=a,_, satisfies the
equation q¢’=(—1)" modulo p and this equation implies n=n" and 7(p; ¢')=
(—=1)"p(p; g). As for the exceptional cases of the assumption in Theorem
9, we obtain the following lemma.

LEMMA 10. Let p, q, and q be as im Theorem 9 and let n=n'.
(i) If n(p; @)=n(p; ¢)=0 for ¢’ +#4q, then q and ¢’ satisfy the following
equations:

¢ —(—1)rg=aa for some a 0<|a|<b),

(22) r_ n
a¢'—(—1y'= @b+ L2 ; " lo sor some 8 (0<8<a).

(i) If n(p; @) =(—=1)"n(p; @) for some q" (q’iq"é[%] and n=n”),
then q and ¢ or q and q" satisfy the equations (22).
PROOF. At first, note that from the assumption 7(p; ¢")=(—1)"5(p; @)
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we obtain the equation
(28) {¢’—(—1)qHed'—(—=1)"}=0  modulo p .
Case (i). It follows from the assumption 7(p; ¢)=0 that

0=~ (=17t S+ (~1yp—p 3 (— 1) Lt |
=0 q,
=(-1)""a,_, modulo p .

Since 0<a,,_1<-§-, we conclude that » is odd and ¢=a,_,. Hence we get

@, =q¢'=—1 modulo p .
In the same way, assuming 7(p; ¢')=0 we get
= modulo p .
It follows from the equation
9"—¢'=(q+4¢)g'—¢)=0  modulo p
that
¢+¢=a,a and ¢ —g=a_b
for some integers a, (0<a,<b) and a_(0<|a_|<a). Hence we have
29" —q)=qa.b .

On the other hand, the left hand side of this equation is equal to
99 —¢*=qq’+1 modulo p. Hence we have

qq’—~(—1)"=qq’+1=6b+l:———-———qqp+1 j]p

for some integer B (0<B<a). :

Case (ii). If we assume that ¢¢”’=(—1)" modulo p, then, by the
uniqueness of ¢ satisfying this equation, ¢’ should satisfy the inequality:
gq'#(—1)" modulo p. However, since ¢’ satisfies the equation (23), ¢’
should satisfy the equation (22).

In contrast with Theorem 9, we obtain the following theorem which,
combined with Theorem 9 and Lemma 10, shows the existence of some
relation between the orientation of a lens space L(p;q) and the length
of the Euclidean algorithm for a pair (p, ¢).
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THEOREM 11. Let p, ¢, and ¢ be as in Theorem 9 and let n=n'. If
7(p; ¢)=—(—1)"n(p; q) then q and q’ satisfy the equations

7 +(—1)rg=aa for some a (0<|a|<b),

(24) ’ — 1)\
qq'+(—1)"=ﬁb+[ﬂ—+%:|p SJor some B (0<B<a).

ProOOF. It follows from the assumption that
{¢ +(—1)"q}{qq’+(—1)"}=0  modulo p.
Multiplying a,_, to this equation, we have

(¢ +(=Drg}{ea,_.a’ + (=), }=(—1"{¢ +(—1)"¢}¢'+@a,,)  modulo p
=0 modulo » .

Since 0#¢' +(—1)"¢<p and 0<q¢'+a,_,<p, we obtain
g+ (—Dg=aa for some a (0<|a|<D) ,
and
qg+a, ,=7b for some v (0<7v<a) .
Thus we obtain Theorem 11.

Note that the entirely same proof shows that Theorem 11 remains
true even if n’#=mn. Also note that the equation: ¢¢’—(—1)"=0 modulo p
never follows from 7(p; ¢')=(—1)"n(p; @) when n'#~n. From Theorems 7,
9, and 11 and the above facts, we obtain the following main theorem.

THEOREM 12. Let p=ab (1<a, b), a composite number not of the type
2p’ or 3p’ where P’ is a prime number, and let q and ¢’ (q, q'g[-zzl:])

be positive integers relatively prime to p satisfying q,=¢q..=1.

(1) If p(p; ¢)=(—1)"n(p; @) and n=n', then qq¢'—(—1)"=0 modulo p
except the following cases.

(i) 7(; @) (=7(p; ¢')=0.

(ii) There exists a positive integer q" <§[—g—]) which is different from

q and ¢ and satisfies the equations:
n(; d)=(—)7m;q) and n'=n.

(II) If n(p; ¢)=(—1)"n(p; q) and n'#mn, then qq'—(—1)*#0 modulo p.
(A1) If 7(p; ¢)=—(—1)"n(p; q) then qq'+(—1)"*#0 modulo p.
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Note that in these exceptional cases ¢ and ¢ satisfy the equations:
d (-1 q=aa for some integer a (0<|a|<b)

and

qq’i(-—l)"=Bb+|: qq’iz()——l)" :‘p for some integer B (0<B<a),

according as qq'+(—1)"#0 modulo p.
Also note that there exists no exceptional case for n=n'=1 or 2 in
(I) and there exist no ¢ (n=2) and ¢’ (n’=1) satisfying 7(p; ¢")= +7(p; ¢).

References

[1] T.M. ArostoL, Modular Functions and Dirichlet Series in Number Theory, Graduate
Texts in Mathematies, 41, Springer-Verlag, 1976.

[2] T.M. ArostoL and T.H. VU, Elementary proofs of Berndt’s reciprocity laws, Pacific J.
Math., 98 (1982), 17-23.

{3] M.F. Ativam, V.K. Paropr and I.M. SINGER, Spectral asymmetry and Riemannian
geometry II, Math. Proc. Cambridge Philos. Soc., 78 (1975), 405-432.

[4] L. CARLITZ, Some sums containing the greatest integer function, Fibonacei Quart., 15
1977), 78-84.

[5] M.M. CoueN, A Course in Simple-Homotopy Theory, Graduate Texts in Mathematics,
10, Springer-Verlag, 1970.

[6] H. DoNNELLY, Eta invariants for G-spaces, Indiana Univ. Math. J., 27 (1978), 889-918.

[7]1 A. Ixepa and Y. Yamamoro, On the spectra of 8-dimensional lens spaces, Osaka J.
Math., 16 (1979), 447-469.

[8] I. IwasAki, Some trigonometric series, in preparation.

[9] K. KATASE, A certain generalized Dedekind sum, Tokyo J. Math., 10 (1987), 139-149.

[10] G. MEYERSON, On the values of the Dedekind sum, Math. Z., 189 (1985), 337-341.

[11] H. RADEMACHER and A. WHITEMAN, Theorems on Dedekind sums, Amer. J. Math., 63
(1941), 377-407.

[12] D. ZAGIER, Higher dimensional Dedekind sums, Math. Ann., 202 (1973), 149-172,

Present Address:

DEPARTMENT OF MATHEMATICS
GAKUSHUIN UNIVERSITY

MEeJ1ro, ToSHIMA-KU, TokYyo 171



