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Introduction.

Let $M$ be a compact convex set in a real locally convex linear top-
ological space $V$ and denote by $A(M)$ the set of restrictions on $M$ of all
real affine and continuous functionals in $V$, i.e. $f\in A(M)$ iff $f(tx+(1-t)y)=$

$tf(x)+(1-t)f(y)$ for any $t\in R$ . Remind that a subset $N$ of $M$ is called
an end subset of $M$ iff it consists of points $z$ that satisfy the following
condition: $z$ can not be represented as $z=xx+\mu y$ with $x>0,$ $\mu>0,$ $\lambda+\mu=1$ ,
unless $x$ and $y$ belong to N. Extreme points of $M$ are the points that
are end subsets of $M$. Let $E(M)$ stand for the closure of extreme
points of $M$. This is the smallest closed subset of $M$ within which any
positive element of $A(M)$ attains its minimum. Indeed, let $f\in A(M)$ ,
$f>0$ , and let $\min_{xeH}f(x)=a<b=\min_{xeEtM)}f(x)$ . Since $f$ is affine, the set
$M\cap\{f(x)\geqq b\}$ is a compact convex set that contains $E(M)$ and consequently
it contains also the closed convex hull of $E(M)$ , i.e., it contains the whole
set $M$ according to the Krein-Milman’s theorem $(e.g. [1])$ . Hence $f(x)\geqq b>a$

on $M$ , that is a contradiction. So every positive element of $A(M)$ attains
its minimum within $E(M)$ . If a closed subset $N$ of $M$ possesses the same
property, then its closed convex hull $[\langle N\rangle]$ will coincide with $M$. In fact,
if $[\langle N\rangle]\neq M$ we can find a positive continuous affine functional $f\in A(M)$

for which $f(x)\geqq a>0$ on $[\langle N\rangle]$ but $f(x_{0})<a$ for some point $x_{0}\in M$ in con-
tradiction with our supposition on $N$. But the equality $[\langle N\rangle]=M$ implies
that $N\supset E(M)$ since the latter is the smallest closed subset of $M$ for
which $[\langle N\rangle]=M$ (e.g. [2]). Here we introduce n-dimensional analogues
to the closure $E(M)$ of extreme points of a compact convex set $M$.

\S 1. Af[ine n-boundaries.

Denote by $A^{n}(M)$ the set of all n-tuples $(f_{1}, \cdots, f_{n})$ of elements of
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$A(M)$ , by $Z(f_{1}, \cdots, f_{n})$ the zero set of $(f_{1}, \cdots, f_{n})$ , i.e. $Z(f_{1}, \cdots, f_{n})=$

$\{x\in M:f_{1}(x)=f_{2}(x)=\cdots=f_{n}(x)=0\}$ and by $A_{*}^{n}(M)$ the set of all regular n-
tuples over $A(M)$ , i.e. $(f_{1}, \cdots, f_{n})eA_{*}^{n}(M)$ iff $ Z(f_{1}, \cdots, f_{n})=\emptyset$ . $A_{*}^{0}(M)$

will stand for all constant elements of $A(M)$ . Let $\Vert(f_{1}, \cdots, f_{n})\Vert$ be the
following function on $M$:

(1) $\Vert(f_{1}, \cdots, f_{n})(x)\Vert=(\sum_{\dot{g}=1}^{n}f_{\dot{f}}^{2}(x))^{1/2}$ .

DEFINITION 1. A subset $E$ of a compact convex subset $M$ of a real
locally convex linear topological space $V$ is called an affine n-boundary
of $M$ iff for every regular n-tuple $(f_{1}, \cdots, f_{n})$ of affine continuous func-
tionals on $M$ there exists a point $x_{0}$ belonging to $E$ such that for any
$x\in M$ it holds:

(2) $\Vert(f_{1}, \cdots, f_{n})(x_{0})\Vert\leqq\Vert(f_{1}, \cdots, f_{n})(x)||$ ,

i.e. iff the minimum of the function $\Vert(f_{1}, \cdots, f_{n})\Vert$ is attained within $E$

for every regular n-tuple $(f_{1}, \cdots, f_{n})\in A_{*}^{n}(M)$ .
DEFINITION 2. The intersection $E_{n}(M)$ of all closed affine n-boundaries

of a compact convex subset $M$ of $V$ is called the minimal affine n-boundary
of $M$.

It is clear that $ E_{1}(M)\subset E_{2}(M)\subset\cdots\subset E_{n}(M)\subset\cdots$ . According to the
remark from the Introduction, we have that $ E_{1}(M)=E(M)\neq\emptyset$ . The next
theorem shows that minimal affine n-boundaries of $M$ are nonempty subsets
of $M$ for every $n>1$ and, moreover, it gives a description of them.

THEOREM 1. The sets

(3) $[\cup\{E(Z(f_{1}, \cdots, f_{n-1})):(f_{1}, \cdots, f_{n-1})\in A^{n-1}(M)\}]$

coincide with the minimal affine n-boundaries $E_{n}(M)$ of compact convex
subsets Mof $V$, where $[N]$ denotes the closure of $N$ for a subset $N$ in $V$.

PROOF. First we shall prove that the set (3) is an affine n-boundary
of $M$. Let $(f_{1}, \cdots, f_{n})\in A_{*}^{n}(M)$ and $x_{0}\in M$. Without loss of generality
(applying, if necessary, certain orthogonal transformation in $R^{n}$) we can
assume that $f_{j}(x_{0})=0$ for any $j>1$ , so that $(f_{1}(x_{0}), f_{2}(x_{0}),$

$\cdots,$ $f_{n}(x_{0}))=$

$(f_{1}(x_{0}), 0, \cdots, 0)$ and $||(f_{1}, \cdots, f_{n})(x_{0})\Vert^{2}=f_{1}^{2}(x_{0})$ . The set $Z_{1}=Z(f_{2}, \cdots, f_{n})$ is
an affine manifold, i.e. a translated linear subspace of $V$. Because $f_{1}$ does
not vanish at $Z_{1}$ and $x_{0}\in M\cap Z_{1},$ $f_{1}^{2}(x_{0})\geqq\min_{E(Z_{1})}f_{1}^{2}(x)$ according to our re-
mark in the Introduction. applied to $Z$, and $f.|_{\vee}$ . Conseouentlv
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$\Vert(f_{1}, \cdots, f_{n})(x_{0})\Vert^{2}=\sum_{g=1}^{n}f_{\dot{f}}^{2}(x_{0})=f_{1}^{2}(x_{0})\geqq\min_{E(Z_{1})}f_{1}^{2}(x)=\min_{E(Z_{1})}(\sum_{j=1}^{n}f_{j}^{2}(x))$

$\geqq\inf\{\sum_{j=1}^{n}f_{j}^{2}(x):x\in\cup\{E(Z(g_{1}, \cdots, g_{n-1})):(g_{1}, \cdots, g_{n-1})\in A^{n-1}(M)\}\}$

Hence the continuous function $||(f_{1}, \cdots, f_{n})(x)\Vert$ attains its minimum within
the set $[\cup\{E(Z(f_{1}, \cdots, f_{n-1}):(f_{1}, \cdots, f_{n-1})\in A^{n-1}(M)\}]$ for any regular n-
tuple $(f_{1}, \cdots, f_{n})\in A_{*}^{n}(M)$ , i.e. (3) is an affine boundary of $M$. But (3) is
the smallest affine n-boundary of $M$. Indeed, let $E\subset M$ be a closed affine
n-boundary of $M$ , i.e. let the minimum of the function $\Vert(f_{1}, \cdots, f_{n})(x)\Vert$

is attained within $E$ for any regular n-tuple over $A(M)$ . Let $(g_{1}, \cdots, g_{n-1})$

be a fixed $(n-1)$-tuple over $A(M)$ and suppose that for some $f\in A(M)$

the restriction $f|_{Z(g_{1},\cdots,g_{n-1}}$ ) is positive on the set $Z(g_{1}, \cdots, g_{n-1})$ and that
$f(x)\geqq\gamma>0$ for some positive $r$ and for every $x\in Z(g_{1}, \cdots, g_{n-1})\cap E$. We
shall show that then $f(x)\geqq r$ on the whole $Z(g_{1}, \cdots, g_{n-1})$ . For any $\epsilon>0$ ,
$\epsilon<\gamma$ there exists a neighborhood $U_{\epsilon}\subset M$ of the set $Z(g_{1}, \cdots, g_{n-1})\cap E$ on
which $ f(x)\geqq\gamma-\epsilon$ . Consequently for some positive constant $C_{\epsilon}$ , big enough,

on $E$ we will have:

(4) $C_{\epsilon}^{2}\sum_{j=1}^{n-1}g_{j}^{2}(x)+f^{2}(x)\geqq(r-\epsilon)^{2}$

Consequently (4) will hold on the whole $M$ because the n-tuple $(C_{\epsilon}g_{1},$ $\cdots$ ,
$C_{\epsilon}g_{n-1},$ $f$) is regular and $E$ is a closed affine n-boundary of $M$. In par-
ticular on $Z(g_{1}, \cdots, g_{n-1})$ we will have that $f^{2}(x)\geqq(r-\epsilon)^{2}$ , from where
$f^{2}(x)\geqq r^{2}$ because of the liberty of the choice of $\epsilon$ . We obtain that all
affine functionals of $A(Z(g_{1}, \cdots, g_{n-1}))$ that are positive attain their mini-
mums within $Z(g_{1}, \cdots, g_{n-1})\cap E$, wherefrom $Z(g_{1}, \cdots, g_{n-1})\cap E\supset E(Z(g_{1},$ $\cdots$ ,
$g_{n-1}))$ because the latter set is the smallest closed affine l-boundary of
$Z(g_{1}, \cdots, g_{n-1})$ . Now $ E\supset\cup\{Z(g_{1}, \cdots, g_{n-1})\cap E:(g_{1}, \cdots, g_{n-1})\in A^{n-1}(M)\}\supset$

$U\{E(Z(g_{1}, \cdots, g_{n-1})):(g_{1}, \cdots, g_{n-1})\in A^{n-1}(M)\}$ and by taking the closures we
obtain finally that $E$ contains the set (3). Q.E.D.

\S 2. Properties of n-affine boundaries.

COROLLARY 1. The range of the minimal affine n-boundary of a
compact convex subset $M$ of $V$ through any n-tuple $(f_{1}, \cdots, f_{n})$ of affine
functionals from $A(M)$ contains the topological boundary of the range of
$M$, i.e.

(5) $(f_{1}, \cdots, f_{n})(E_{n}(M))\supset b((f_{1}, \cdots, f_{n})(M))$ , $\forall(f_{1}, \cdots, f_{n})\in A^{n}(M)$ .
PROOF. Supposing that $ b((f_{1}, \cdots, f_{n})(M))\backslash (f_{1}, \cdots, f_{n})(E_{n}(M))\neq\emptyset$ , let
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$x_{0}$ be such a point of $M$ that $(f_{1}, \cdots, f_{n})(x_{0})\in b((f_{1}, \cdots, f_{n})(M))\backslash (f_{1},$ $\cdots$ ,
$f_{n})(E_{n}(M))$ and let

$\min_{E_{\hslash}(H)}\Vert(f_{1}, \cdots, f_{n})(x_{0})-(f_{1}, \cdots, f_{n})(x)\Vert=\delta>0$ .
The continuous function $||(f_{1}, \cdots, f_{n})(x)-X^{0}\Vert$ on $M$, where $X^{0}=(x_{1}^{0}, \cdots, x_{n}^{0})$

is a fixed point from $R^{n}\backslash (f_{1}, \cdots, f_{n})(M)$ with I $X^{0}-(f_{1}, \cdots, f_{n})(x_{0})\Vert<\delta/2$ ,
satisfies the following inequality:

$\Vert(f_{1}-x_{1}^{0}, \cdots, f_{n}-x_{n}^{0})(x)||=\Vert(f_{1}, \cdots, f_{n})(x)-X^{0}\Vert$

$\geqq|\Vert(f_{1}, \cdots, f_{n})(x)-(f_{1}, \cdots, f_{n})(x_{0})\Vert-||(f_{1}, \cdots, f_{n})(x_{0})-X^{0}\Vert|\geqq\delta/2$

for any $x\in E_{n}(M)$ . Hence

$\Vert(f_{1}-x_{1}^{0}, \cdots, f_{n}-x_{n}^{0})(x)\Vert=\Vert(f_{1}, \cdots, f_{n})(x)-X^{0}\Vert\geqq\delta/2$

for any $x\in M$ because $(f_{1}-x_{1}^{0}, \cdots, f_{n}-x_{n}^{0})$ is a regular n-tuple over $A(M)$

(since $X^{0}\not\in(f_{1},$
$\cdots,$ $f_{n})(M)$) in contradiction with the choice of $X^{0}$ . Conse-

quently $ b((f_{1}, \cdots, f_{n})(M))\backslash (f_{1}, \cdots, f_{n})(E_{n}(M))=\emptyset$ . Q.E.D.

THEOREM 2. The minimal affine n-boundary of a compact convex
subset $M$ of $Vco$incides with the intersection of all closed subsets $E$ of
$M$, such that $(f_{1}, \cdots, f_{n})(E)\supset b((f_{1}, \cdots, f_{n})(M))$ for every n-tuple $(f_{1},$ $\cdots$ ,
$f_{n})\in A^{n}(M)$ , i.e.

(6) $E_{n}(M)=\cap\{E:E=[E]\subset M,$ $(f_{1}, \cdots, f_{n})(E)\supset b((f_{1}, \cdots, f_{n})(M))$

for each $(f_{1}, \cdots, f_{n})\in A^{n}(M)$}.

PROOF. Corollary 1 shows that $E_{n}(M)$ contains the right hand side
set of (6). Let $E$ be a closed subset of $M$ such that $(f_{1}, \cdots, f_{n})(E)\supset$

$b((f_{1}, \cdots, f_{n})(M))$ for every n-tuple $(f_{1}, \cdots, f_{n})\in A^{n}(M)$ and let $(g_{1}, \cdots, g_{n})$

be a fixed regular n-tuple over $A(M)$ . Because of $(g_{1}, \cdots, g_{n})(M)$ a
$(0, \cdots, 0)$ , we can find a point $X^{0}\in b((g_{1}, \cdots, g_{n})(M))$ such that $|X^{0}||=$

$\Vert(x_{1}^{0}, \cdots, x_{n}^{0})\Vert=\min_{x\in H}\Vert(g_{1}, \cdots, g_{n})(x)\Vert$ . Now

$||(g_{1}, \cdots, g_{n})(x)||\geqq||X^{0}\Vert=\min_{xeH}\Vert(g_{1}, \cdots, g_{n})(x)||=\min_{Xe(g_{1},\ldots.g_{n})(H)}||X\Vert$

$=\min ffXeb((g_{1’ n})(\kappa))||X||\geqq\min_{X\in(g_{1},\ldots,g_{n})(E)}\Vert X\Vert=\min_{xeE}||(g_{1}, \cdots, g_{n})(x)\Vert$ ,

because $(g_{1}, \cdots, g_{n})(E)\supset b((g_{1}, \cdots, g_{n})(M))$ according to our supposition.
Consequently the minimum of the function $||(f_{1}, \cdots, f_{n})(x)\Vert$ is attained
within $E$ for every regular n-tuple $(f_{1}, \cdots, f_{n})\in A_{*}^{n}(M)$ , i.e. $E$ is an affine
n-boundary of $M$. Hence $E\supset E_{n}(M)$ because the latter is the smallest
closed affine n-boundary of $M$. Q.E.D.
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COROLLARY 2. Let $\Vert(f_{1}, \cdots, f_{n})(x)\Vert$ be one of the following convex
functions:

$\sum_{\dot{g}=1}^{n}|f_{j}(x)|$ ; $\max_{\dot{J}^{=1}}^{n}|f_{j}(x)|$ ; $(\sum_{\dot{g}=1}^{n}|f_{\dot{f}}(x)|^{p})^{1/p}$ , $p\geqq 2$ .
Then $E_{n}(M)$ is the smallest closed subset $E$ of $M$ that satisfies one of the
following equivalent conditions:

1) $\min_{xeE}\Vert F(x)\Vert\leqq\min\{\Vert x\Vert:X\in bF(M)\}$ for every $ F=(f_{1}, \cdots, f_{n})\in$

$A^{n}(M)$ ;
2) $B(\min\{\Vert X\Vert:X\in F(E)\cap bF(M)\})$ is contained either entirely in $F(M)$

or entirely outside $F(M)$ for every $F\in A^{n}(M)$ , where $B(r)$ is the open ball
in $R^{n}$ centered at the origin and with radius $\gamma$ ;

3) $\min_{xeE}\Vert F(x)\Vert=\min_{xeu}\Vert F(x)\Vert$ for every regular n-tuple $F\in A_{*}^{n}(M)$ ;
4) $F$ vanishes within $E$ for every $F\in A^{n}(M)$ such that $ bF(M)\ni$

$(0, \cdots, 0)$ ;
5) $B(\min_{xeE}\Vert F(x)||)\subset B(\min\{\Vert X\Vert:X\in F(E)\cap bF(M)\})\subset F(M)$ for every

$F\in A^{n}(M)\backslash A_{*}^{n}(M)$ .
PROOF. Actually every one of these conditions characterizes affine

n-boundaries of $M$, as we shall see. 1) If $E$ is an affine n-boundary of
$M$, then according to Theorem 2 $F(E)\supset bF(M)$ for any $F\in A^{n}(M)$ and
hence $\min_{xeE}\Vert F(x)\Vert=\min_{xeF(E)}||X\Vert\leqq\min_{XebF(M)}||X\Vert$ . Conversely, if $E$ is not
an affine n-boundary of $M$, then according to Theorem 2 there will exist an
n-tuple $F=(f_{1}, \cdots, f_{n})\in A^{n}(M)$ so that $F(E)\not\supset bF(M)$ . If $X^{0}\in bF(M)\backslash F(E)$

and $x_{0}\in F^{-1}(X^{0})$ , then for the n-tuple $H=(f_{1}-x_{1}^{0}, \cdots, f_{n}-x_{n}^{0})\in A^{n}(M)$ we
have: $H(x_{0})=(0, \cdots, O)\in bH(M)\backslash H(E)$ since the set $H(M)$ can be obtained
from $F(M)$ by a translation with $X^{0}$ and it preserves the topological
properties of $R^{n}$ . Hence $ 0=\min_{XebH(M)}\Vert X\Vert<\min_{xeE}||H(x)\Vert$ , i.e. condition 1)
is not satisfied for the n-tuple $H\in A^{n}(M)$ . 2) If $F\in A_{*}^{n}(M)$ then $\rho(0,bF(M))=$

$\rho(0, F(M))$ and hence $B(\rho(O, bF(M)))\subset R^{n}\backslash F(M)$ where $O=(0, \cdots, 0)$ and
$\rho(0, N)=\inf_{XeN}\Vert X\Vert$ is the distance in $R^{n}$ from $0$ to the set $N\subset M$ with
respect to the metric $\rho(x, y)=\Vert x-y\Vert$ . Condition 1) now says that
$B(\rho(O, F(E)))\subset B(\rho(O, bF(M)))\subset R^{n}\backslash F(M)$ . If $F\in A^{n}(M)\backslash A_{*}^{n}(M)$ then
$\rho(0, bF(M))=\rho(O, R^{n}\backslash F(M))$ and hence $B(\rho(O, bF(M)))\subset F(M)$ . Now 1)
says that $B(\rho(O, F(E)))\subset B(\rho(O, bF(M)))\subset F(M)$ , which proves the case 2).
Because 1) implies 3), 4) and 5) for the corresponding n-tuples $F\in A^{n}(M)$ ,
these conditions are fulfilled for every affine n-boundary $E$ of $M$. If $E$

is not an affine boundary then, as we saw above, condition 1) does not
hold for the n-tuple $H$ with $(0, \cdots, 0)\in bH(M)$ . This completes the proof
of cases 4) and 5). By a suitable translation with some point $Y^{0}\in R^{n}\backslash H(M)$

we can obtain also a regular n-tuple $H-Y^{0}\in A_{*}^{n}(M)$ such that $\rho(O,$ $b(H-$
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$Y^{0})(M))<\rho(O, (H-Y^{0})(E))$ , i.e. $\min_{x’ B}\Vert H(x)-Y^{0}\Vert>mIn_{(H-Y^{0})(g)}\Vert X\Vert$ in con-
tradiction with condition 3). Q.E.D.

The next corollary gives local characterizations of the points of the
minimal affine n-boundary $E_{n}(M)$ .

COROLLARY 3. A point $x_{0}eM$ belongs to $E_{n}(M)$ iff for any neigh-
borhood $U$ of $x_{0}$ there exists an n-tuple $F\in A^{n}(M)$ , such that:

1) $F\in A_{*}^{n}(M)$ and $\min_{U}\Vert F(x)\Vert<\min_{r\backslash \sigma}\Vert F(x)||$ ;
2) $bF(M)\ni(0, \cdots, 0)$ and $\min_{H\backslash U}\Vert F(x)||>0$ ;
3) $F\in A^{n}(M)\backslash A_{*}^{n}(M)$ and $\rho(0, F(U)\cap bF(M))<\rho(O, F(M\backslash U)\cap bF(M))$ .
PROOF. If some of these properties fails to be true, then according

to Theorem 1 or Corollary 2 $E_{n}(M)\subset M\backslash U$ in contradiction with $x_{0}\in U$.
If some of these properties holds for every $U\ni x_{0}$ this will imply that
$ U\cap E_{\mathfrak{n}}(M)\neq\emptyset$ so that every neighborhood of $x_{0}$ will contain points from
$E_{n}(M)$ , wherefrom $x_{0}\in E_{n}(M)$ since $E_{n}(M)$ is closed. Q.E.D.

\S 3. Some applications.

The following is an affine version of classical Rouche’s theorem for
analytic functions and of its generalization for n-tuples of uniform algebra
elements, due to Corach and Maestripieri, as well [5].

THEOREM 3. Let $M$ be a compact convex subset of $V$, and $F$ and $G$

be n-tuples from $A^{n}(M)$ . If the inequality

(7) $\Vert F(x)-G(x)||<\Vert F(x)+G(x)\Vert$

holds on $E_{n}(M)$ then $F$ and $G$ are simultaneously regular or irregular
n-tuples of $A^{n}(M)$ .

PROOF. Because the minimal affine n-boundary $E_{n}(M)$ is a compact
subset of $M$, there will exist an integer $m$ such that:

$m\min_{E_{n}(H)}(\Vert F(x)+G(x)||-\Vert F(x)-G(x)\Vert)>\max_{H}||F(x)-G(x)||$ .
Assume that the theorem is not true. Then the end members of the
sequence $2mF,$ $(2m-1)F+G,$ $(2m-2)F+2G,$ $\cdots,$ $F+(2m-1)G$ , 2mG are
not simultaneously regular n-tuples over $A(M)$ . Hence there are two
neighboring members of this sequence, one of which is regular and the
other is irregular. Suppose that $k$ is an integer such that the n-tuple
$(m-k)F+(m+k)G$ is regular but $(m-k+1)F+(m+k-1)G$ is an irregular n-
tuple and let $x_{0}$ be a point of $M$ for which $(m-k+1)F(x_{0})+(m+k-1)G(x_{0})=0$ .
Now
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$\max_{xeK}\Vert F(x)-G(x)\Vert<m\min_{E_{n}(M)}(\Vert F(x)+G(x)\Vert-\Vert F(x)-G(x)\Vert)$

$\leqq\min_{E_{n}(M)}(m\Vert F(x)+G(x)\Vert-k\Vert F(x)-G(x)\Vert)\leqq\min_{E_{n}(M)}\Vert(m-k)F(x)+(m+k)G(x)\Vert$

$=\min_{H}\Vert(m-k)F(x)+(m+k)G(x)\Vert\leqq\Vert(m-k)F(x_{0})+(m+k)G(x_{0})\Vert$

$=\Vert(m-k)F(x_{0})+(m+k)G(x_{0})-[(m-k+1)F(x_{0})+(m+k-1)G(x_{0})]\Vert$

$=\Vert G(x_{0})-F(x_{0})\Vert\leqq\max_{xeH}\Vert F(x)-G(x)\Vert$ .
The obtained contradiction proves the theorem. Q.E.D.

An other application of minimal affine n-boundaries is the proving of
the following affine version of a theorem of Hartogs for analytic functions
in the unit ball in $C^{n}$ and its generalization for pairs of uniform algebra
elements, due to Sibony [6], as well.

THEOREM 4. Let $M$ be a compact convex subset of $V$, and $F$ and $G$

be n-tuples of elements of $A(M)$ . If the equality

(8) $||F(x)\Vert=\Vert G(x)\Vert$

holds on $E_{2n}(M)$ then it holds everywhere in $M$.
It is interesting to know if the minimal affine n-boundary $E_{n}(M)$

coincides with the closure of these end subsets of $M$, that are contained
in $(n-1)$-dimensional affine subspaces of $V$ as in the case $n=1$ .

NOTE. Recently M. Hayashi has proved positively this problem (private
communication).
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