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§1. Introduction.

Let X, X,, --+, X, be independent identically distributed random
variables with unknown distribution funection (d.f.) F' contained in a set
O of d.f.’s on the real line R. Let g,(-, F) be a d.f. on R parametrized
by F €6, which will be considered to be a sampling d.f. of an appro-
priately normalized statistic based on the sample X,=(X, X, ---, X,)
under F. We consider in this paper the estimation problem of g.(-, F')

based on the sample X,=(X,, -+, X,). In particular, we discuss some
asymptotic properties of the bootstrap estimator §, =g.(:, F,) of g.(-, F')
where F', is the empirical (sample) d.f. based on X,=(X,, -+, X,). Con-

sistency of §, has been proved by Efron [6] and by Bickel and Freedman
[4]. In Bickel and Freedman [3] and in Singh [8] Edgeworth type expan-
sions of §, 5 for some typical g, (the sampling d.f. of normalized sample
mean and sample quantile) has been discussed. Beran [2] has proved
that §, s is locally asymptotically minimax for estimating g, under some
smoothness conditions with respect to F. In this paper we prove the
second order asymptotic efficiency of appropriately corrected version of
§. s under conditions about g,(-, F') similar to Assumption 1 or Assump-
tion 1’ of Beran [2]. The concept of second order asymptotic efficiency
in our case is essentially due to Akahira and Takeuchi [1]. We note
that, in general, locally asymptotically minimax property does not imply
second order efficiency as the following example shows: Let each X, obey
the distribution with density

Az, 6)=2"'exp(—|x—0]) (eR, xeR).

In this case med,s;<, X, are locally asymptotically minimax, but not
second order asymptotically efficient for estimating €6 (cf. Akahira
and Takeuchi [1], p. 96).
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In Section 2 we shall deseribe some conditions about g, which will
play an important role in the following sections. In Section 3 we try
to get a bound of the second order asymptotic distributions of the
second order asymptotically median unbiased estimator §, of g.(+, F),
which is calculated in a similar way to the one developed in Akahira
and Takeuchi [1]. In Section 4 it will be proved that the bound obtained
in Section 3 is attained by the bootstrap estimator 9.5 with a correcting
term of order n7!, and so it is second order asymptotically efficient in
this sense. The final section is devoted to describing a typical example
which satisfies the conditions given in Section 2.

§2. Notations and assumptions.

Let & be the set of all d.f.’s on the real line R and & be a subset
of . Let < be the set of all bounded functions on R. We denote
by ||-|| the sup norm in <& We mean the topology of a subset %, of
&% by the relative topology of <& as a subset of the normed space
(%, ||-I). Let X, X, --+, X, be independent identically distributed
random variables with unknown d.f. F in 6. Let ¢ be a ¢-finite measure

on R, and for ke L'(¢) and he < let (k, h>=§nk-hdﬂ where L'(y) is

the set of all p-integrable functions on R. Let {g,; n=1} be a sequence
of maps g,(-, F') from 6* to &, where 6* is an open set in .& containing
6. For each F €O and ¢>0 define B,(F, ¢) as the set of G ¢ 6* satisfying
|G—F|=c/n?. We consider the following conditions about {g,} on the
second degree asymptotic differentiability of g, as a function of F.

ASSUMPTION 1. (a) There exist sequences of maps {g,.(:, F); n=1},
1=0, 1, 2, from 6* to & such that for each ¢>0 and each Fe@®

sup | g.(s, G)—g,,(+, G)—n"g,,(+, G)—n7'g,(+, @) ||=0(n7?) .

GeB,(F,ec)

(b) There exist {w); i=1, 2, 3}C <, (B, WP}, {ur, vr, T} L)
and {gr, @} L'(pt) x L*(¢t) defined for each Fe®6* such that for each
F e and each ¢>0

(i) sup || g.o(+, G)—g,..(+, F)—wH<uy,, G—F)

G eB,(F,c)

—2Hwig(G—F), G—F)+WF{G(G—F), G—F)}||=0(n"?),
(ii) sup || g,.(+, G)—g..(+, F)—w vy, G—F)
GeB,(F,c)

— WP Vs, G—F) ||=0(n""?),
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(iii) s Sup 1 9n,e(sy G) =g, (¢, F)||=0(1) .

M, '

(¢) For each Fe®
(i) the d.f. of {uy, yr,> under F is non-lattice,
(i) E(Kus, Yr10")>0,
where y,,(t)=I_.  (X)—F(t) and I_.. (X) denotes the indicator function
of the set (— o, ¢].

REMARK 1. The function u; appeared in Assumption 1 is unique in the
following sense: If Assumption 1 is satisfied with @ € <& and %, ¢ L(%)
instead of w§ and u, respectively, then for every hec <&, and Fe6

w® g, h—c(R)F> =mE (fy, h—c(h)F> ,

where <&, is the class of bounded functions on R such that ¢(h)=
lim,_... k() exists and lim,._,, A(¢)=0.

We have the following proposition which is an easy consequence of
our assumption.

PROPOSITION 1. Suppose that the conditions (a) and (b) in Assump-
tion 1 are satisfied. Then we have for each ¢>0 and each Fe®

sup Hgn( G)—g.(+, F)—w$<uy, G—F)

2w (g (G F), G—F + 59 GG —F), G—F}
— 0w (vp, G — Iy + B (Fry G FD} || =0(n™) .

We consider the following condition stronger than previous one,
which will be used in Section 4 to prove second order asymptotic efficiency
of the bootstrap estimators. This condition is almost the same as As-
sumption 1.

ASSUMPTION 2. (a) There exist sequences of maps {g, .-, F); n=1},
1=0, 1, 2, from 6* to & such that for every Fe@®

sup  |[9.(+, G)—g.(+, G)—n""2g, (+, G)—n7'g,.(-, )| =0(n"Y,

GeB,(F,cy)
where {c,} is a sequence of positive numbers satisfying

lim {4c: —log n}=cc .

n—oo

(b) There exist {wi; =1, 2, 3}CZ, (WP, TP} B, {ur, vs, Fr} LY (L)
and {gr, Gr}CL'(pt) X L(t) defined for each F ¢ ©* such that

(i) sup llgno(,G) — 9oy F)—w§uy, G—F)

GeB,(F,c,
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—27HwPlge(G—F), G—F) +WFq(G—F), G—F)}||=0(n7?),

(ii) s SUp 1 Gun(sy @) —gni(sy F)—w<ve, G—F)
— WPV, G—F)||=0(n""?),
(iii) sup  [19,,.(+, G)—g..(+, F)||=0(1) .
GeB, (F,c,)

(¢) For each F'e®
(i) the d.f. of {ug, yYp,> under F' is non-lattice,
(i) Er(Kug, Yr,1")>0.

We have the following proposition which can be verified in the same
way as Proposition 1.

PROPOSITION 2. Suppose that the conditions (a) and (b) in Assump-
tion 2 are satisfied. Then we have for each Fe®
650D 9.+, G)—g.(+, F)—wP<uzr, G—F)
—2HwP{ge(G—F), G—F) +®F{Gs(G—F), G—F)}
—nHwvp, G—F) + W {0p, G—F)}||=0(n™") .

REMARK 2. The smoothed d.f. g, of a second degree U-statistic
satisfies Assumption 2 with any sequence {c¢,} of positive numbers
satisfying

lim{log n—6logec,}=c .

n—oo

We discuss this example more precisely in Section 5.

§3. A bound of second order asymptotic distributions.

We mean by the estimator of g, the measurable map g, from 25 to
&, where 2° is the sample space of random vector X,=(X,, ---, X,)
equipped with the Borel g-field. For each F'e® we denote by Py, the
probability distribution of X, provided that each X, obeys the d.f. F.
Let K be the set of all ke L'(¢) satisfying Snlkld)u=1. We denote by
BX(F', ¢) the intersection of B,(F, ¢) and &(F'):={G € &; F is absolutely
continuous with respect to G}. Let & be the class of sequences {g,} of
estimators of {g,} such that for each ke K, each F €6, each ¢>0 and
each sequence {¢,} of real numbers satisfying s,=o(n""?) we have

3.1 sup | Py {n"k, §,—9.(+, G))=e,}—27|=0(n""?) .

GeB}(F,c,)
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We note that if (3.1) holds with ¢,=0, n=1, 2, ---, and n'%k, §,—9.(-, @)
admits Edgeworth expansion uniformly in G over B*(F, ¢) up to order
n~"% for each ke K and each F €6, then {§,} is an element of &. Fol-
lowing Akahira and Takeuchi [1] we call in this paper the sequence {§,}
of estimators in & second order asymptotically median unbiased (or
second order AMU). This definition is a modification of the concept of
AMU estimator defined in Akahira and Takeuchi [1] to our situation.
Before describing the theorem we define some notations here. Let
Yr()=I _wn(X)—F(t), i=1, 2. Define

cF, B)y=<w®, k), =1,2,3, &(F k=P ky, 1=23,
a(F)=Ee({Ur, Yr,)<Vr Yr) »  HF)=Ep(p, Yr,)<{Vr Yr))
B(F)=Ep({%s, Yr,)°) »
V(F)=Ex({@r, Yr,) »  VE)=Ep({TrYr, Yr,)) »
O(F)=Ep({tr, Yr,1) Ur, Yr,2)<{qrYr,1 Yr,2)) »
O(F)=Ep({thg, Yr.1) s, Y, {TeYr,10 Yr,2)) -

We state a theorem which gives a second order bound of asymptotic
distributions of the estimators {§,} in &. In the following & denotes

the standard normal distribution function and ¢ the density function of
P.

THEOREM 1. Suppose that Assumption 1 is satisfied. Then for any
sequence {§,} of estimators of {g,} in &, for every F €6 and for every
ke K, we have

(3.2) Pr {n*k, §,—9.(-, F)) <t}
SO(t/JVHEF, k))—n~ gt/ (F, B)T(L, F, k)+o(n™")
(=)

Jor every t>0 (£<0, respectively), where

U, F, k)=te,(F, k)(cy(F, k)a(F)+&y(F, k)a(F))[J**(F, k)
+tX(cX(F, k)B(F))+3cX(F, k)co(F, k)o(F)+&,(F, k)3(F))/(6J**(F, k)) .
PrOOF. We can prove this in a similar way to the one in Akahira
and Takeuchi [1]. We face, however, some difficulties because parametric

model is infinite dimensional. Take t>0, Fe€® and k¢ K arbitrarily and
then fix them. We define functions az,, ar, br in <& as follows:
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aF,l(X1)=cl(Fv k)<uF’ yF,1>/J(F, k) ’
ar (X)) = —{cs(F, k) vr, Yr,) +C(F, k)Vs, yr 0} J(F, k),

be(X) = —(F, B){| (euF, )tte, Ur, ) @rlirs Ur)
FEAF, B)Yttr, U Trlirs U DAFX} [@TE, B) -

Using these functions we can construct a sequence {g,,; n=n,} of prob-
ability density functions on R with respect to dF' as follows:

9: () =1+n""2t(ar (X) + ar (X)) + 0" t?0p(2) ,

where the integer =7, depends only on ¢.

Let G,, be the d.f. on R corresponding to the denmsity g,,. Let
ox=¢x(X,) be the most powerful test with asymptotic level 27'+o(n")
for the problem of testing the hypothesis H,: “true distribution is G,,”
versus the alternative H,: “true distribution is F”’. Define the random
variables Z,,=log((dG, ./dF)(X,))=log g, .(X,) and let T,,=>7, Z,.. We note
that the test ¢¥(X,) mentioned above has the following form: ¢:(X,)=1
if T,<d,, =0 otherwise for appropriately chosen number d,. By Taylor
expansion we have the following results:

Ew(Z,)=—2n) ' CJ(F, k)+n""*t{— Ep(ar,br)+37 Ex(af,)
—t T Er(ar, ar )} o™,  (Jo(F, B)=J7F, k) ,

ELZL)y=n""CJ(F, k)+2n "t Ep(ar,br) — 27 Ep(a%,)
+ 1T Ep(0r, 0p )} + o(n*%) ,

E(Z:)=n"""t"Ep(a%,,)+o(n™*?) ,

Ejs, (Zi)=@2n) "I (F, B)+n~ " t{t T Epx(ar,,, @r,)
+ E(@r,br) — 67 Ep(af, )} +o(n™") ,

Eq, (Z5)=n""CJ(F, k)+ 207"t {t 7 Er(@r,Qr,2) + Eo(ar b)) +o(n2) ,
EG,,,,(Z&) =n"* P Ep(a%,) +o(n™%) .
From these we have

EL(T,)=—2""¢J(F, k) +n"""t}{— Er(ar,br) +3 ' Er(ak, )
- t—lEF(aF,laF,Z)} +o(n™?) ,

Ve(T)=Es(T.,— EL(T,)))=tJ(F, k)+2n""*t{Ep(ar,br)
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—27 Ep(a% )+t Er(ar, 05 )} Ho(n ™)
Er(Tu— Ex(T,)) =0t Ex(a¥ ) +0(n™") .

We also have

B, (T)=2"1J(F, k)+n "0t Ee(ar,0r,) + Er(@r br)

— 67 Ex(a%, )} +o(n%)

Ve, T =t'T(F, k)+207 (" Erlar 0.+ Erar,be)} +o(n™") ,

Es, J(T,—Ej;, (T))=n""tEg(a%,)+o(n™*) .
Thus, according to the Gram-Charlier (Edgeworth) expansion, we have

(3.3) Py, ol Tu=d,} =Py, , (T, —27CJ(F, k))/(tJ*(F, k)=d.,}
=0(d,) —n"¢@ T V(F, k)t Ee(ar, 0r,.) + Er(@r,.br)
- 6~1EF(“2‘,1)) +tJ(F, k)(t—lEF(aF,laF,z) + EF(a’F,le))dn
+ (Er(a%,))/(6JY(F, k) di—1)}+o(n™?)
where d,=(d,—27*J(F, k))/tJ3(F, k).
In fact, the validity of the expansion (8.83) can be verified by a
similar method used in the proof of Theorem 1 in Feller [7], XVL. 4,
page 512. We need the condition (c) in Assumption 1 to prove this.

The proof is relatively easy but long, so if; will be omitted here.
From (8.8) it follows that if we take d,=c,(t, F')/n"* then we have

PGt,mn{ Tn§ d,}=2"1+ O(n—l/z)
where
eit, F) =0l Er(ar i0p.) + Br(r bs)— 6 Enlad, Y JVF, k)
— Eg(a% )/(6J¥*(F, k)) .

Choosing such a sequence {J,,} we can calculate the power function cor-
responding to the test sequence {I;, <., (X,)}. In a similar way to (3.3)
we have
(3.4) Pp AT, =d,}
=0tJVA(F, k))—n"2gtJ(F, k) —tJV*(F, k)Er(ar,r,.)
+ T VA(F, k)(Er(ak,)[6 — Erx(arbs)]+o0(n") .

We can check easily that
Ex(a%,,)=ci(F, b)BF)/J*(F, k) ,
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Er(@r, r )= —CF, k)c(F, ) F)+&(F, k)A(F))[JXF, k) ,
Er(arbr)=—ci(F, k)cF, B)(F)+e,(F, k)3(F))/2JI*F, k)) .

Hence the right hand side (R.H.S.) of the inequality (8.2) equals the
R.H.S. of (8.4) up to the order n~'~,
Let {§,} be any element of . We have by Proposition 1

(3'5) PF,n{n1/2<k’ an'—gn(': F)>§t}:PF,n{n1/2<k’ gn_gn('s Gt,n)>§en} ’

where {¢,} is a sequence of real numbers satisfying ¢, =o(n 2. As {§,}
is a second order AMU estimator, we have

PG,,,.,n{nI/2<k, 0.—9.(:, G, ) =<e,}=2""4+o0o(n"'2) .

Since the test sequence {I,,,} is asymptotically most powerful with
level 27'+0(n~?), it holds that

(3'6) PF,n{n1/2<k) g\n - gn( ) Gt,n)> —S— sn} é PF,'n{ Tn g dn} + O(n_l/z) .

From (3.4), (8.5) and (8.6) we have the inequality (3.2) for t>0. Sub-
stituting —k for k in the inequality (8.2) for ¢>0 we have another
inequality for t<O.

REMARK 3. Theorem 1 remains valid for &, instead of &, where
&, is the class of {§,} satisfying the same conditions as imposed for &
except for BX(F, ¢) being replaced by BX*(F,c¢) in (38.1). Here BX*(F,c)
means the intersection of B,(F, ¢) and &(F):={G € &5 dG=QQ+k,(x))dF,
sup{| k.(x)|; x € R}=0(n""%)}.

The following definition of second order asymptotic efficiency owes
essentially to Akahira and Takeuchi [1]. If a sequence {§,} in & attains
the bounds (8.2) for every F €O for every te R, and for every ke K,
then we call them second order asymptotically efficient AMU estimators.

§4. Second order asymptotic efficiency of bootstrap estimator.

Let F’,, be the empirical (sample) d.f. based on the sample X, X,,

-+, X,. In this section we study some second order asymptotic properties

of bootstrap estimator §, (-)=g.(-, F’,,). We have the following result
about the second order asymptotic distribution of {§, 5}.

THEOREM 2. Suppose that Assumption 2 is satisfied. Then, for
every F'e@, every tc R and every ke K we have
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(4'1) PF,n{n1/2<ky gn,B—gn('r F)> ét}
=@(tJ V¥F, k))—n—l/zgﬁ(tJ_l/z(F, k))w*(t, F, k)+o(n“1/2) ,
where .

T, F, k)=(c(F, k)Y(F)+&(F, kY¥(F))[(2J*(F, k))
—(cX(F, k)B(F)+3ci(F, k)(cF, k)o(F)+EF, k)d(F)))/(6J**(F, k))
+¥¢, F, k).

ProOF. For keK and Feo6 let S,=n"%k, §,5—9.(:, F)), W,=
n'F,—F)and A,={x,¢ X,; F,e B,(F, ¢,)}. By Proposition 2 and by the
property Py .{A;}=o0(n""?) we can verify

(4.2) S.=¢\(F, k)U,+(ci(F, k)Q.+&(F, k)@,)/(2n"?)
+(e(F, B)V,+8(F, k) V.)[n*+E, ,

where U,=<ur, W,5, Q.={q:W.,W.5, Gu={@xWnW.), V,=(vs W, and
V,={®z W,. Here {£,}] is a sequence of random variables such that
sup{|é.|; x, € A,}=o0(n""?). We put

S¥=c\(F, k)U,+ (cu(F, k)Q.+&.(F, k)Q.)/(2n"")
+(cs(F, k) V,+C(F, k)V,)[n'?,
then we have
Ex(SX)=(c(F, BYY(F)+C(F, k)YY(F))/(2n'") ,
Ve(S¥)=J(F, k)+2¢,(F, k)c,(F, k)a(F)+¢(F, k)a(F))/n'?,

Er((S3 — Ex(S3)))=[ci(F, B)BF")+3ci(F, k)cx(F, k)o(F)
+&(F, k)o(F))]/n"*+o(n~1?) .

To prove this we use the fact that
E (Ud)y=c(F, k)J(F, k), Ex(Q.)=7F),
E(U2Q,)=20(F)+cTF, k)J(F, k)yy(F)+0n™),
En(U2Q,)=25(F)+cr*(F, k)J(F, kYY(F)+0(n™) ,
EJ(U:V)=0m™"),  EJ(U:V,)=0m",  Ex(UY=pF)n",
E{(U.Q)=0n""),  ExU,Q)=0n""),  E(V.Q)=0n"",
E(V,.@)=0(n""), ExV,Q)=0n"") and Ex(V,3.)=0n"").

Hence according to the Gram-Charlier (Edgeworth) expansion, we have




228 TAKERU SUZUKI
4.8) P (Stst}=0@J V(F, k))—n"6(tdV(F, k))T*QE, F, k)+o(n=") .

In fact, this can be shown by Esseen’s smoothing lemma as follows
(cf. Feller [7], XVI. 8, Lemma 2). Let S,=(S¥—pu)/o¥, Lx=ES¥),
o*=V(SH) and «,,=ExS}). Define F,(x)=Py.{S,<x} and K,(x)=0(x)—
#(x)(x*—1)k, /6, and denote by ©,(u), ¥.(u) the Fourier transforms of F,
K, respectively. We note that «,(u)=e*"*(1+k,,.(iu)*/6). By Esseen’s
lemma, for any M >0

~ Mnl/2
(4.4)  sup|F(@)— K, (2)|=7" S_Wz(l 0.(4) =4 (w) |/| 4 e+ Ko/ (02M)
where K, is a constant not depending on n and M. For 6>0 (6<M) let

To=\_ (o=@l lu)du,

lulSdn

Jon=| (10a(20) —ra(t0) /. Dl

3nl/2g|ul S Mal/2

We note that S* can be rewritten as follows:

n n n n
St=n7 5 Uratn™'3, Viat2 n ™ 33 31 Q5.0

i=1 j=1

where
U= <el(F, k)ur, Yr,0/0%
fn=LeF, B)Vp+ciF, k) Ve, Yol
Qln=(c(F, B)ar+CAF, B)Tr)Yr,0 Yr,i) — 14i)]Ox
and

i =Ep({(c)F, k)qr+Cy(F, kY0r)Yr,e Yr,i)) »

Taking account of the condition (c) of Assumption 2, since the random
variables {U{,, V., Q%.} are bounded, we can verify J, ,=o(n""*) with
argument similar to Callaert et al. [5], Section 3.

Let

2,n = (| @a(u) |/l w])dw ,

San1/2<lu| <Mnl/2

Jom= () /| u )duw .

Sa’nl/2<1ul <Mnl/2



BOOTSTRAP ESTIMATORS 229

It is clear that J;,=o(n"**). By a similar method to the one used
in Callaert et al. [5], Section 4, we can evaluate J;, as follows. Let

’gin = U;k,n + n—1/2 V::n + 2—1n_1Q1§,n ’

8

2 Q;:,l,n .

r
k=1 l=k+1

Am,n=z gin and Br,s,n=
i=1
We have by Taylor expansion

4.5)  vo(w):=Ex(exp(iuS*))
= Erla{l +i(2u)n~*"B,, ,+27*(2iun"**B,, ,)* exp(2ifun"B,, )}],

where a=exp(iun?A,)exp(2tun"**B,_,;,—B,.) and 0<§<1l. We put

I1 = EF(a) ’
I,=FE,(2iaun""’B,, ,) ,
I,=E [27'(2iun"**B,, )’ exp(2ifun~**B,, )] .

From Lemma 4 in Feller [7], XV.1, we have

| L| = | Er(exp(iun=74,)) | =(1—n)™
(4.6) for some constant 7, 0<7,<1, and also

Lis2luln 3, 33 {| Exexp(iun™ g, (X)) " Byl @f 4., )}

<K, |u|n " m(1—p)=
(K, is a constant not depending on m, n and w).

From the martingale property of {B, ,} (cf. Lemma 1 in Callaert et al.
[6]) we have

4.7) | I | =un™Ep(| By, |") < K;n ™ *mu’
(K, is a constant independent of u, n, m) .

Taking m to be m=n"* it follows from (4.5), (4.6) and (4.7) that
(4.8) sup{|7.(w) |; n20<|u|<n’?M}=o0(n""2) .

Thus we have J,,=o(n""?). Hence it follows from (4.4) that
(4.9) iglglﬁn(x)—Kn(x)|=0(n'1’2) .

We note that from (4.2) it follows
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(4.10) Py (S, =t}= Py {St<t}+o(n""?) .

From (4.9) and (4.10) we have the desired expansion (4.1).
For F e6* let t(F)=Ez{ur, ¥Yr..»>), and define

h(w, Fy=w @}{—(V(F)/2)+o(F)/(2c(F))}
+ @ (@) — (F(F)/2) +6(F)/z(F )} +wi () 8(F)/(6(F)

We define g} z()=4g, s(x)+n""h(z, ﬁ',,). From Theorems 1 and 2 we have
the following result which asserts that the corrected bootstrap estimator
{gns} is a second order asymptotic efficient estimator of {g.}.

THEOREM 3. Suppose that Assumption 2 is satisfied. We assume
that B, 7, ¥, 8, 6 and © are continuous with respect to F on 6* and
that w®(x), w@(x), WL (x) are continuous with respect to F as functions
from ©* to &. Then we have

(@) {g9%*;} is a second order AMU estimator of {g.}.

(b) {g%z} is a second order asymptotically efficient AMU estimator

of {g.}.

PROOF. Take any k€K, any Fe® and any sequence {G,}, G,€
BX(F, ¢,) and let S,=n"*{k, g¥s—g.(-, G)). By a similar argument to
that developed for {S,} in the proof of Theorem 2 we have the following
expansion for {S.}:

(4'11) PG”,n{§n§t}
=T G, k) —n g T (G, kDT, Gy B)+o(n %) .

From this we have {g*;}€ &. In particular if we take G, to be F in

(4.11) then the R.H.S. of (4.11) equals the R.H.S. of (3.2) up to the
order o(n=v2). Therefore {g*;} is a second order efficient AMU estimator

of {g.}.

§5. An example satisfying Assumption 2.

In this section we give a typical example satisfying Assumption 2.
Following Beran [2], Section 3, let T =2n"Yn—1)"cicisa (X, X;) be
the second degree U-statistic where ¢ is symmetric in its arguments.
We assume that, as in Beran [2], ¢ is absolutely continuous, vanishes
outside a square [—B, B] and has essentially bounded derivative. Let p
be the Lebesgue measure on [—B, B]. Let m(G)=E4 (X, X)), 9(X))=
Eyho(X, X)| X)), he(X, X)) =tX, X;)—m(G), de(X, X;)=h«X, X;)—



BOOTSTRAP ESTIMATORS 231

96(X) — 9a(X;), sh=Eqg5(X)), si(@)=Vsn'"T,) and s(G)=2s,. Let 7; be
the class of functions v on R such that »(f)=a'(1—a™'|t])" for some
a>0. Define

k(G) = 85" Ea9a(X)) +3Es{gs(X)9a(X)do(X,, X,)}] ,

k(G) =85 Es9%(X,) — 384 + 12 E{g3( X9 Xp)de( X;, Xo)}
T12E6{g6(X,)06(Xe)do(X,, X,)do(X,, X}

() =g(x)(2*—1)/6 ,
t,() = (@) — 3)/24
and
| (%) = () (a® — 10a® -+ 15)/72 .

Let ©* be the set of d.f. F' on R such that s,(F)+#0. Let J,(x, G)=
Py 0T, — m(G))/s,(G) <} and define for ve 7, J,.(:, @) =J,(-, G)*v,
which means the convolution of J, and v. Let {c,} be any sequence of
positive numbers satisfying 7 % tending to 0 as m— . Using es-
sentially the same argument as in Beran [2], Section 3, we have
6.1) . sup [8,(G)—8(F)—(hf, G—F)—27Kge(G—F), G=F)|=0(n")

n(F,

and

(5.2)  _ sup |k(G)—k(F)—<vf, G—F)|=0(n™""),

n

where hf(x) = 4(g(x) + 2m(F))es()/3,(F), ex(xx) =SRF(y)tu(w, ydy (Eu(x, )
denotes the derivative of #(x, %)), and q¥, v¥* are some functions contained
in L'(g) x L*(¢) and L'(y) respectively. We can also verify

(5'3) Geguig ) H Jn,u( ¢ ’ G) —@v( * ) +n-1/2k3(G)t1,v( ¢ )
+ 07 (By(Ga,o(+ )+ KA (GLs, () [| =0(n ) .

Here @,, t,, (=1, 2, 3) mean the convolutions of @, ¢, (i=1,2, 8) and v
respectively.

Define g,(x, G)=J, (%/3,(G), G) for some ve 7; and let & be the set
of all F €¢®* such that the d.f. of {(h¥, yr,> is non-lattice. From (5.1),
(5.2) and (5.8) we can verify that {g,} satisfies Assumption 2 with

9a,0(x, G)=0,(2/5,(GF)) , 90,.(&, G)= —ky(G)t,, (/3.(F)) ,
9.:&, G)= —Ek (G, .(x/3,(G)) —E}(G)ts o(2/5.(G)) , uzs(2)=h3(x) ,
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W) =W (@)= —xp, (/s (FN/SF),  BE(x)=—2 -%{m(w/s)/sﬂ.om ,

wP (@) =k (F)xt; (x/s(F))[sy(F) , W (@)= —1t,.(x/s,(F)) ,
ve(x)=h¥ () , Vp(x)=v>r(x) ,
gx(x, ¥)=q*(x, y) and gx(x, ¥)=hr(2)hi(Yy) .
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