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\S 1. Introduction.

Let $X_{1},$ $X_{2},$
$\cdots,$

$X_{n}$ be independent identically distributed random
variables with unknown distribution function (d.f.) $F$ contained in a set
$\Theta$ of d.f.’s on the real line $R$ . Let $g_{n}(\cdot, F)$ be a d.f. on $R$ parametrized
by $ F\in\Theta$ , which will be considered to be a sampling d.f. of an appro-
priately normalized statistic based on the sample $X_{n}=(X_{1}, X_{2}, \cdots, X_{n})$

under $F$. We consider in this paper the estimation problem of $g_{n}(\cdot, F)$

based on the sample $X_{n}=(X_{1}, \cdots, X_{n})$ . In particular, we discuss some
asymptotic properties of the bootstrap estimator $\hat{g}_{n,B}=g_{n}(\cdot,\hat{F}_{n})$ of $g_{n}(\cdot, F)$

where $\hat{F}_{n}$ is the empirical (sample) d.f. based on $X_{n}=(X_{1}, \cdots, X_{n})$ . Con-
sistency of $\hat{g}_{n,B}$ has been proved by Efron [6] and by Bickel and Freedman
[4]. In Bickel and Freedman [3] and in Singh [8] Edgeworth type expan-
sions of $\hat{g}_{n,B}$ for some typical $g_{n}$ (the sampling d.f. of normalized sample
mean and sample quantile) has been discussed. Beran [2] has proved
that $\hat{g}_{n,B}$ is locally asymptotically minimax for estimating $g_{n}$ under some
smoothness conditions with respect to $F$. In this paper we prove the
second order asymptotic efficiency of appropriately corrected version of
$\hat{g}_{n,B}$ under conditions about $g_{n}(\cdot, F)$ similar to Assumption 1 or Assump-
tion 1’ of Beran [2]. The concept of second order asymptotic efficiency
in our case is essentially due to Akahira and Takeuchi [1]. We note
that, in general, locally asymptotically minimax property does not imply
second order efficiency as the following example shows: Let each $X_{i}$ obey
the distribution with density

$f(x, \theta)=2^{-1}\exp(-|x-\theta|)$ $(\theta\in R, x\in R)$ .
In this case $med_{1\leq i\leq n}X_{i}$ are locally asymptotically minimax, but not
second order asymptotically efficient for estimating $\theta\in\Theta$ (cf. Akahira
and Takeuchi [1], p. 96).
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In Section 2 we shall describe some conditions about $g_{n}$ which will
play an important role in the following sections. In Section 3 we try
to get a bound of the second order asymptotic distributions of the
second order asymptotically median unbiased estimator $\hat{g}_{n}$ of $g_{n}(\cdot, F)$ ,
which is calculated in a similar way to the one developed in Akahira
and Takeuchi [1]. In Section 4 it will be proved that the bound obtained
in Section 3 is attained by the bootstrap estimator $\hat{g}_{n,B}$ with a correcting
term of order $n^{-1}$ , and so it is second order asymptotically efficient in
this sense. The final section is devoted to describing a typical example
which satisfies the conditions given in Section 2.

\S 2. Notations and assumptions.

Let.$\mathscr{G}^{-}$ be the set of all d.f.’s on the real line $R$ and $\Theta$ be a subset
of $\mathscr{G}^{-}$ Let $\mathscr{G}$ be the set of all bounded functions on $R$ . We denote
by $\Vert\cdot\Vert$ the sup norm in ta. We mean the topology of a subset va of
$\mathscr{G}$ by the relative topology of ta as a subset of the normed space
$(\ovalbox{\tt\small REJECT}\Vert\cdot\Vert)$ . Let $X_{1},$ $X_{2},$

$\cdots,$
$X_{n}$ be independent identically distributed

random variables with unknown d.f. $F$ in $\Theta$ . Let $\mu$ be a a-finite measure
on $R$ , and for $k\in L^{1}(\mu)$ and $h\in \mathscr{G}$ let $\langle k, h\rangle=\int_{R}k\cdot hd\mu$ where $L^{1}(\mu)$ is
the set of all $\mu$-integrable functions on $R$ . Let $\{g_{n};n\geqq 1\}$ be a sequence
of maps $g_{n}(\cdot, F)$ from $\Theta^{*}$ to $\mathscr{G}^{-}$ where $\Theta^{*}$ is an open set in $\backslash \mathscr{F}$ containing
$\Theta$ . For each $ F\in\Theta$ and $c>0$ define $B_{n}(F, c)$ as the set of $G\in\Theta^{*}$ satisfying
$\Vert G-F\Vert\leqq c/n^{1/2}$ . We consider the following conditions about $\{g_{n}\}$ on the
second degree asymptotic differentiability of $g_{n}$ as a function of $F$.

ASSUMPTION 1. (a) There exist sequences of maps $\{g_{n}. (\cdot, F);n\geqq 1\}$ ,
$i=0,1,2$ , from $\Theta^{*}$ to $\mathscr{G}^{-}$ such that for each $c>0$ and each $ F\in\Theta$

$\sup_{GeB_{n}(F,\epsilon)}\Vert g_{n}(\cdot, G)-g_{n,0}(\cdot, G)-n^{-1/2}g_{n,1}(\cdot, G)-n^{-1}g_{n,2}(\cdot, G)\Vert=o(n^{-1})$ .
(b) There exist $\{w_{F}^{(i)};i=1,2,3\}\subset \mathscr{G},$ $\{\tilde{w}_{F}^{(2)},\tilde{w}_{F}^{(3)}\}\subset \mathscr{G},$ $\{u_{F}, v_{F}, v_{F}\sim\}\subset L^{1}(\mu)$

and $\{q_{F}, q_{F}\sim\}\subset L^{1}(\mu)xL^{1}(\mu)$ defined for each $F\in\Theta^{*}$ such that for each
$ F\in\Theta$ and each $c>0$

(i) $\sup_{GeB_{*}(F.\epsilon)}\Vert g_{n,0}(\cdot, G)-g_{n,0}(\cdot, F)-w_{F}^{(1)}\langle u_{F}, G-F\rangle$

$-2^{-1}\{w_{F}^{(2)}\langle q_{F}(G-F), G-F\rangle+\tilde{w}_{F}^{(2)}\langle q_{F}\sim(G-F), G-F\rangle\}||=o(n^{-1})$ ,

(ii) $\sup_{GeB_{n}(F.\iota)}\Vert g_{n,1}(\cdot, G)-g_{n,1}(\cdot, F)-w_{F}^{(\$)}\langle v_{F}, G-F\rangle$

$-\tilde{w}_{\pi}^{(3)}\langle v_{\pi}\sim. G-F\rangle||=o(n^{-1/2})$ .
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(iii) $\sup_{GeB_{n}(F.c)}\Vert g_{n,2}(\cdot, G)-g_{n,2}(\cdot, F)\Vert=o(1)$ .
(c) For each $ F\in\Theta$

(i) the d.f. of $\langle u_{F}, y_{F,1}\rangle$ under $F$ is non-lattice,
(ii) $E_{F}(\langle u_{F}, y_{F,1}\rangle^{2})>0$ ,
where $y_{F,1}(t)=I_{(-\infty,tl}(X)-F(t)$ and $I_{(-\infty,tJ}(X)$ denotes the indicator function
of the set $(-\infty, t$].

REMARK 1. The function $u_{F}$ appeared in Assumption 1 is unique in the
following sense: If Assumption 1 is satisfied with $\tilde{w}_{F}^{(1)}\in \mathscr{B}$ and $\tilde{u}_{F}\in L^{1}(\mu)$

instead of $w_{F}^{(1)}$ and $u_{F}$ respectively, then for every $ h\in$ ta and $ F\in\Theta$

$ w_{F}^{(1)}\langle u_{F}, h-c(h)F\rangle=\tilde{w}_{F}^{(1)}\langle\tilde{u}_{F}, h-c(h)F\rangle$ ,

where $\mathscr{G}_{0}$ is the class of bounded functions on $R$ such that $c(h)=$
$\lim_{t\rightarrow\infty}h(t)$ exists and $\lim_{t\rightarrow-\infty}h(t)=0$ .

We have the following proposition which is an easy consequence of
our assumption.

PROPOSITION 1. Suppose that the conditions (a) and (b) in Assump-
tion 1 are satisfied. Then we have for each $c>0$ and each $ F\in\Theta$

$\sup_{\theta eB_{n}(F,c)}\Vert g_{n}(\cdot, G)-g_{n}(\cdot, F)-w_{F}^{(1)}\langle u_{F}, G-F\rangle$

$-2^{-1}\{w_{F}^{(2)}\langle q_{F}(G-F), G-F\rangle+\tilde{w}_{F}^{(2)}\langle q_{F}\sim(G-F), G-F\rangle\}$

$-n^{-1/2}\{w_{F}^{(3)}\langle v_{F}, G-F\rangle+\tilde{w}_{F}^{(3)}\langle v_{F}\sim, G-F\rangle\}\Vert=o(n^{-1})$ .
We consider the following condition stronger than previous one,

which will be used in Section 4 to prove second order asymptotic efficiency
of the bootstrap estimators. This condition is almost the same as As-
sumption 1.

ASSUMPTION 2. (a) There exist sequences of maps $\{g_{n,i}(\cdot, F);n\geqq 1\}$ ,
$i=0,1,2$ , from $\Theta^{*}$ to $\ovalbox{\tt\small REJECT}$ such that for every $ F\in\Theta$

$\sup_{GeB_{n}(Fo_{n})},\Vert g_{n}(\cdot, G)-g_{n,0}(\cdot, G)-n^{-1/2}g_{n,1}(\cdot, G)-n^{-1}g_{n,2}(\cdot, G)\Vert=o(n^{-1})$ ,

where $\{c_{n}\}$ is a sequence of positive numbers satisfying

$\lim_{n\rightarrow\infty}\{4c_{n}^{2}-\log n\}=\infty$

(b) There exist $\{w_{F}^{(t)}; i=1,2,3\}\subset \mathscr{B},$ $\{\tilde{w}_{F}^{(2)},\tilde{w}_{F}^{(3)}\}\subset \mathscr{P},$ $\{u_{F}, v_{F}, v_{F}\sim\}\subset L^{1}(\mu)$

and $\{q_{F}, q_{F}\sim\}\subset L^{1}(\mu)\times L^{1}(\mu)$ defined for each $F\in\Theta^{*}$ such that
(i) $\sup_{GeB_{n}(Fc_{n})},\Vert g_{n,0}(\cdot, G)-g_{n,0}(\cdot, F)-w_{F}^{\langle 1)}\langle u_{F}, G-F\rangle$
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$-2^{-1}\{w_{F}^{(2)}\langle q_{F}(G-F), G-F\rangle+\tilde{w}_{F}^{(2)}\langle q_{F}\sim(G-F), G-F\rangle\}||=o(n^{-1})$ ,

(ii) $\sup_{OeB_{n}(F,\iota)}\Vert g_{n.1}(\cdot, G)-g_{n,1}(\cdot, F)-w_{F}^{(3)}\langle v_{F}, G-F\rangle$

$-\tilde{w}_{F}^{\{3)}\langle v_{F}\sim, G-F\rangle\Vert=o(n^{-1/2})$ ,

(iii) $\sup_{GeB_{n}\{F,c_{\hslash})}\Vert g_{n,2}(\cdot, G)-g_{n,2}(\cdot, F)\Vert=o(1)$ .
(c) For each $ F\in\Theta$

(i) the d.f. of $\langle u_{F}, y_{P,1}\rangle$ under $F$ is non-lattice,
(ii) $E_{F}(\langle u_{F}, y_{F,1}\rangle^{2})>0$ .

We have the following proposition which can be verified in the same
way as Proposition 1.

PROPOSITION 2. Suppose that the conditions (a) and (b) in Assump-
tion 2 are satisfied. Then we have for each $ F\in\Theta$

$\sup_{GeB_{n}(Fc_{n})}.\Vert g_{n}(\cdot, G)-g_{n}(\cdot, F)-w_{F}^{(1)}\langle u_{F}, G-F\rangle$

$-2^{-1}\{w_{F}^{(2)}\langle q_{F}(G-F), G-F\rangle+\tilde{w}_{F}^{(2)}\langle q_{F}\sim(G-F), G-F\rangle\}$

$-n^{-1/2}\{w_{F}^{(\S)}\langle v_{F}, G-F\rangle+\tilde{w}_{F}^{(\S)}\langle v_{F}\sim, G-F\rangle\}||=o(n^{-1})$ .
REMARK 2. The smoothed d.f. $g_{n}$ of a second degree U-statistic

satisfies Assumption 2 with any sequence $\{c_{n}\}$ of positive numbers
satisfying

lim {$\log n-6$ log $c_{n}$} $=\infty$ .
$ n\rightarrow\infty$

We discuss this example more precisely in Section 5.

\S 3. A bound of second order asymptotic distributions.

We mean by the estimator of $g_{n}$ the measurable map $\hat{g}_{n}$ from $\mathscr{F}_{n}$ to
$-\mathscr{F}$ where $\mathscr{F}_{n}$ is the sample space of random vector $X_{n}=(X_{1}, \cdots, X_{n})$

equipped with the Borel $\sigma- field$ . For each $ F\in\Theta$ we denote by $P_{F,n}$ the
probability distribution of $X_{n}$ provided that each $X_{i}$ obeys the d.f. $F$.
Let $K$ be the set of all $k\in L^{1}(\mu)$ satisfying $\int_{R}|k|d\mu=1$ . We denote by
$B_{n}^{*}(F, c)$ the intersection of $B_{n}(F, c)$ and $C(F):=\{Ge\mathscr{G}^{-};F$ is absolutely
continuous with respect to $G$}. Let $g$ be the class of sequences $\{\hat{g}_{n}\}$ of
estimators of $\{g_{n}\}$ such that for each $k\in K$, each $ Fe\Theta$ , each $c>0$ and
each sequence $\{\epsilon_{n}\}$ of real numbers satisfying $\epsilon_{n}=o(n^{-1/2})$ we have

(3.1) $\sup_{GeB_{\dot{n}}(Fc-)}.|P_{G,n}\{n^{1/2}\langle k,\hat{g}_{n}-g_{n}(\cdot, G)\rangle\leqq\epsilon_{n}\}-2^{-1}|=o(n^{-1/2})$ .
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We note that if (3.1) holds with $\epsilon_{n}=0,$ $n=1,2,$ $\cdots$ , and $ n^{1/2}\langle k,\hat{g}_{n}-g_{n}(\cdot, G)\rangle$

admits Edgeworth expansion uniformly in $G$ over $B_{n}^{*}(F, c)$ up to order
$n^{-1/2}$ for each keK and each $ Fe\Theta$ , then $\{\hat{g}_{n}\}$ is an element of $g$. Fol-
lowing Akahira and Takeuchi [1] we call in this paper the sequence $\{\hat{g}_{n}\}$

of estimators in $g$ second order asymptotically median unbiased (or
second order AMU). This definition is a modification of the concept of
AMU estimator defined in Akahira and Takeuchi [1] to our situation.
Before describing the theorem we define some notations here. Let
$y_{F,i}(t)=I_{(-\infty,tJ}(X_{i})-F(t),$ $i=1,2$ . Define

$ c_{i}(F, k)=\langle w_{F}^{(i)}, k\rangle$ , $i=1,2,3$ , $ c_{i}\sim(F, k)=\langle\tilde{w}_{F}^{(l)}, k\rangle$ , $i=2,3$ ,

$\alpha(F)=E_{F}(\langle u_{F}, y_{F,1}\rangle\langle v_{F}, y_{F,1}\rangle)$ , $\tilde{\alpha}(F)=E_{F}(\langle u_{F}, y_{F,1}\rangle\langle v_{F}\sim, y_{F,1}\rangle)$ ,

$\beta(F)=E_{F}(\langle u_{F}, y_{F,1}\rangle^{3})$ ,

$\gamma(F)=E_{F}(\langle q_{F}, y_{F,1}\rangle)$ , $\tilde{\gamma}(F)=E_{F}(\langle q_{F}\sim y_{F,1}, y_{F,1}\rangle)$ ,

$\delta(F)=E_{F}(\langle u_{F}, y_{F,1}\rangle\langle u_{F}, y_{F,2}\rangle\langle q_{F}y_{F,1}, y_{F,2}\rangle)$ ,

$\delta(F)=E_{F}(\langle u_{F}, y_{F,1}\rangle\langle u_{F}, y_{F,2}\rangle\langle q_{F}\sim y_{F,1}, y_{F,2}\rangle)$ .
We state a theorem which gives a second order bound of asymptotic
distributions of the estimators $\{\hat{g}_{n}\}$ in $g$. In the following $\Phi$ denotes
the standard normal distribution function and $\phi$ the density function of
$\Phi$ .

THEOREM 1. Suppose that Assumption 1 is satisfied. Then for any
sequence $\{\hat{g}_{n}\}$ of estimators of $\{g_{n}\}$ in $\mathscr{G}$, for every $ F\in\Theta$ and for every
$k\in K$, we have

(3.2) $P_{F,n}\{n^{1/2}\langle k,\hat{g}_{n}-g_{n}(\cdot, F)\rangle\leqq t\}$

$\leqq\Phi(t/J^{1/2}(F, k))-n^{-1/2}\phi(t/J^{1/2}(F, k))\Psi(t, F, k)+o(n^{-1/2})$

$(\geqq)$

for every $t>0$ ($t<0$ , respectively), where

$\Psi(t, F, k)=tc_{1}(F, k)(c_{8}(F, k)\alpha(F)+c_{3}\sim(F, k)\tilde{\alpha}(F))/J^{s/2}(F, k)$

$+t^{2}(c_{1}^{3}(F, k)\beta(F))+3c_{1}^{2}(F, k)(c_{2}(F, k)\delta(F)+c_{2}\sim(F, k)\delta(F))/(6J^{\iota/2}(F, k))$ .
PROOF. We can prove this in a similar way to the one in Akahira

and Takeuchi [1]. We face, however, some difficulties because parametric
model is infinite dimensional. Take $t>0,$ $ F\in\Theta$ and $keK$ arbitrarily and
then fix them. We define functions $a_{F.1},$ $a_{F.2},$ $b_{F}$ in va as follows:
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$a_{F,1}(X_{1})=c_{1}(F, k)\langle u_{F}, y_{F,1}\rangle/J(F, k)$ ,

$a_{F,2}(X_{1})=-\{c_{3}(F, k)\langle v_{F}, y_{F,1}\rangle+c_{3}\sim(F, k)\langle v_{F}\sim, y_{F,1}\rangle\}/J(F, k)$ ,

$ b_{F}(X_{1})=-c_{1}(F, k)\{\int_{R}(c_{2}(F, k)\langle u_{F}, y_{F,2}\rangle\langle q_{F}y_{F,1}, y_{F,2}\rangle$

$+c_{2}\sim(F, k)\langle u_{F}, y_{F,2}\rangle\langle q_{F}\sim y_{F,1}, y_{F,2}\rangle)dF(X_{2})\}/(2J^{2}(F, k))$ .
Using these functions we can construct a sequence $\{g_{t,n};n\geqq n_{0}\}$ of prob-
ability density functions on $R$ with respect to $dF$ as follows:

$g_{t,n}(x)=1+n^{-1/2}t(a_{F,1}(x)+a_{F,2}(x)/n^{1/2})+n^{-1}t^{2}b_{F}(x)$ ,

where the integer $n_{0}$ depends only on $t$ .
Let $G_{t,n}$ be the d.f. on $R$ corresponding to the density $g_{t,n}$ . Let

$\phi_{n}^{*}=\phi_{n}^{*}(X_{n})$ be the most powerful test with asymptotic level $2^{-1}+o(n^{-1/2})$

for the problem of testing the hypothesis $H_{0}$ : “true distribution is $G_{t,n}$
’

versus the alternative $H_{1}$ : “true distribution is $F’$ . Define the random
variables $Z_{in}=\log((dG_{t,n}/dF)(X_{i}))=\log g_{t,n}(X_{i})$ and let $T_{n}=\sum_{i=1}^{n}Z_{in}$ . We note
that the test $\phi_{n}^{*}(X_{n})$ mentioned above has the following form: $\phi_{n}^{*}(X_{n})=1$

if $T_{n}<d_{n},$ $=0$ otherwise for appropriately chosen number $d_{n}$ . By Taylor
expansion we have the following results:

$E_{F}(Z_{in})=-(2n)^{-1}t^{2}J_{0}(F, k)+n^{-3/2}t^{3}\{-E_{F}(a_{F,1}b_{F})+3^{-1}E_{F}(a_{F,1}^{3})$

$-t^{-1}E_{F}(a_{F,1}a_{F,2})\}+o(n^{-3/2})$ , $(J_{0}(F, k)=J^{-1}(F, k))$ ,

$E_{F}(Z_{in}^{2})=n^{-1}t^{2}J_{0}(F, k)+2n^{-s/2}t^{3}\{E_{F}(a_{F,1}b_{F})-2^{-1}E_{F}(a_{F,1}^{3})$

$+t^{-1}E_{F}(a_{F,1}a_{F,2})\}+o(n^{-\epsilon/2})$ ,

$E_{F}(Z_{in}^{3})=n^{-s/2}t^{3}E_{F}(a_{F,1}^{8})+o(n^{-a/2})$ ,

$E_{G_{t,,*}}(Z_{ln})=(2n)^{-1}t^{2}J_{0}(F, k)+n^{-3/2}t^{3}\{t^{-1}E_{F}(a_{F,1}, a_{F,2})$

$+E_{F}(a_{F,1}b_{F})-6^{-1}E_{F}(a_{F,1}^{3})\}+o(n^{-3/2})$ ,

$E_{a_{t,,*}}(Z_{in}^{2})=n^{-1}t^{2}J_{0}(F, k)+2n^{-3/2}t^{3}\{t^{-1}E_{F}(a_{F,1}a_{F,2})+E_{F}(a_{F,1}b_{F})\}+o(n^{-3/2})$ ,

$E_{a_{t,,*}}(Z_{in}^{3})=n^{-s/2}t^{3}E_{F}(a_{F,1}^{3})+o(n^{-3/2})$ .
From these we have

$E_{F}(T_{n})=-2^{-1}t^{2}J_{0}(F, k)+n^{-1/2}t^{3}\{-E_{F}(a_{F.1}b_{F})+3^{-1}E_{F}(a_{F,1}^{3})$

$-t^{-1}E_{F}(a_{F,1}a_{F,2})\}+o(n^{-1/2})$ ,

$V_{F}(T_{n})=E_{F}((T_{n}-E_{F}(T_{n}))^{2})=t^{2}J_{0}(F, k)+2n^{-1/2}t^{3}\{E_{F}(a_{F.1}b_{F})$
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$-2^{-1}E_{F}(a_{F,1}^{3})+t^{-1}E_{F}(a_{F,1}a_{F,2})\}+o(n^{-1/2})$ ,

$E_{F}((T_{n}-E_{F}(T_{n}))^{3})=n^{-1/2}t^{3}E_{F}(a_{F,1}^{3})+o(n^{-1/2})$ .
We also have

$E_{a_{t,n}}(T_{n})=2^{-1}t^{2}J_{0}(F, k)+n^{-1/2}t^{3}\{t^{-1}E_{F}(a_{F,1}a_{F,2})+E_{F}(a_{F,1}b_{F})$

$-6^{-1}E_{F}(a_{F,1}^{3})\}+o(n^{-1/2})$ ,

$V_{G_{t,n}}(T_{n})=t^{2}J_{0}(F, k)+2n^{-1/2}t^{3}\{t^{-1}E_{F}(a_{F,1}a_{F,2})+E_{F}(a_{F,1}b_{F})\}+o(n^{-1/l})$ ,

$E_{a_{t,n}}((T_{n}-E_{a_{t}},, (T_{n}))^{s})=n^{-1/2}t^{3}E_{F}(a_{F,1}^{3})+o(n^{-1/2})$ .
Thus, according to the Gram-Charlier (Edgeworth) expansion, we have

(3.3) $P_{G_{t,n},n}\{T_{n}\leqq d_{n}\}=P_{G_{t,n},n}\{(T_{n}-2^{-1}t^{2}J_{0}(F, k))/(tJ_{0}^{1/2}(F, k))\leqq\tilde{d}_{n}\}$

$=\Phi(\tilde{d}_{n})-n^{-1/2}\phi(\tilde{d}_{n})\{t^{2}J_{0}^{-1/2}(F, k)(t^{-1}E_{F}(a_{F,1}a_{F,2})+E_{F}(a_{F,1}b_{F})$

$-6^{-1}E_{F}(a_{F,1}^{3}))+tJ_{0}^{-1}(F, k)(t^{-1}E_{F}(a_{F,1}a_{F,2})+E_{F}(a_{F,1}b_{F}))\tilde{d}_{n}$

$+(E_{F}(a_{F,1}^{3}))/(6J_{0}^{a/2}(F, k))(\tilde{d}_{n}^{2}-1)\}+o(n^{-1/2})$

where $\tilde{d}_{n}=(d_{n}-2^{-1}t^{2}J_{0}(F, k))/(tJ_{0}^{1/2}(F, k))$ .
In fact, the validity of the expansion (3.3) can be verified by a

similar method used in the proof of Theorem 1 in Feller [7], XVI. 4,
page 512. We need the condition (c) in Assumption 1 to prove this.
The proof is relatively easy but long, so it will be omitted here.

From (3.3) it follows that if we take $\tilde{d}_{n}=c_{0}(t, F)/n^{1/2}$ then we have

$P_{G_{t,n},n}\{T_{n}\leqq d_{n}\}=2^{-1}+o(n^{-1/2})$

where

$c_{0}(t, F)=t^{2}\{t^{-1}E_{F}(a_{F,1}a_{F,2})+E_{F}(a_{F,1}b_{F})-6^{-1}E_{F}(a_{F,1}^{3})\}/J_{0}^{1/2}(F, k)$

$-E_{F}(a_{F,1}^{3})/(6J_{0}^{3/2}(F, k))$ .
Choosing such a sequence $\{\tilde{d}_{n}\}$ we can calculate the power function cor-
responding to the test sequence $\{I_{\{T_{n}\xi d_{n}\}}(X_{n})\}$ . In a similar way to (3.3)

we have

(3.4) $P_{F,n}\{T_{n}\leqq d_{n}\}$

$=\Phi(tJ^{-1/2}(F, k))-n^{-1/2}\phi(tJ^{-1/2}(F, k))[-tJ^{1/2}(F, k)E_{F}(a_{F,1}a_{F,2})$

$+t^{2}J^{1/2}(F, k)(E_{F}(a_{F,1}^{3})/6-E_{F}(a_{F,1}b_{F}))]+o(n^{-1/2})$ .
We can check easily that

$E_{F}(a_{F,1}^{3})=c_{1}^{3}(F, k)\beta(F)/J^{3}(F, k)$ ,
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$E_{F}(a_{F.1}a_{F,2})=-c_{1}(F, k)(c_{8}(F, k)\alpha(F)+c_{s}\sim(F, k)\tilde{\alpha}(F))/J(F, k)$ ,

$E_{F}(a_{F,1}b_{F})=-c_{1}^{2}(F, k)(c_{2}(F, k)\delta(F)+c_{2}\sim(F, k)\delta(F))/(2J^{s}(F, k))$ .
Hence the right hand side (R.H.S.) of the inequality (3.2) equals the
R.H.S. of (3.4) up to the order $n^{-1/2}$ .

Let $\{\hat{g}_{n}\}$ be any element of $g$. We have by Proposition 1
(3.5) $P_{F,n}\{n^{1/2}\langle k,\hat{g}_{n}-g_{n}(\cdot, F)\rangle\leqq t\}=P_{F,n}\{n^{1/2}\langle k,\hat{g}_{n}-g_{n}(\cdot, G_{t,n})\rangle\leqq\epsilon_{n}\}$ ,

where $\{\epsilon_{n}\}$ is a sequence of real numbers satisfying $\epsilon_{n}=o(n^{-1/2})$ . As $\{\hat{g}_{n}\}$

is a second order AMU estimator, we have

$P_{G_{t.\hslash},n}\{n^{1/2}\langle k,\hat{g}_{n}-g_{n}(\cdot, G_{t,n})\rangle\leqq\epsilon_{n}\}=2^{-1}+o(n^{-1/2})$ .
Since the test sequence $\{I_{1r_{n}\leqq d_{*}I}\}$ is asymptotically most powerful with
level $2^{-1}+o(n^{-1/2})$ , it holds that

(3.6) $P_{F,n}\{n^{1/2}\langle k,\hat{g}_{n}-g_{n}(\cdot, G_{t,n})\rangle\leqq\epsilon_{n}\}\leqq P_{F,n}\{T_{n}\leqq d_{n}\}+o(n^{-1/2})$ .
From (3.4), (3.5) and (3.6) we have the inequality (3.2) for $t>0$ . Sub $\cdot$

stituting $-k$ for $k$ in the inequality (3.2) for $t>0$ we have another
inequality for $t<0$ .

REMARK 3. Theorem 1 remains valid for $g_{0}$ instead of $g$, where
$g_{0}$ is the class of $\{\hat{g}_{n}\}$ satisfying the same conditions as imposed for ?
except for $B_{n}^{*}(F, c)$ being replaced by $B_{n}^{*}*$ ($F,$ c) in (3.1). Here $B_{n}^{**}(F, c)$

means the intersection of $B_{n}(F, c)$ and $C_{0}(F):=\{Ge\mathscr{G}^{-};dG=(1+k_{n}(x))dF$,
$\sup\{|k_{n}(x)|;xeR\}=O(n^{-1/2})\}$ .

The following definition of second order asymptotic efficiency owes
essentially to Akahira and Takeuchi [1]. If a sequence $\{\hat{g}_{n}\}$ in $g$ attains
the bounds (3.2) for every $ F\in\Theta$ for every $t\in R$ , and for every $k\in K$,
then we call them second order asymptotically efficient AMU estimators.

\S 4. Second order asymptotic efficiency of bootstrap estimator.

Let $fl_{n}$ be the empirical (sample) d.f. based on the sample $X_{1},$ $X_{2}$ ,. . ., $X_{n}$ . In this section we study some second order asymptotic properties
of bootstrap estimator $\hat{g}_{n,B}(\cdot)=g_{n}(\cdot,\hat{F}_{n})$ . We have the following result
about the second order asymptotic distribution of $\{\hat{g}_{n,B}\}$ .

THEOREM 2. Suppose that Assumption 2 is satisfied. Then, for
every $ Fe\Theta$ , every $teR$ and every $k\in K$ we have
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(4.1) $P_{F,n}\{n^{1/2}\langle k,\hat{g}_{n,B}-g_{n}(\cdot, F)\rangle\leqq t\}$

$=\Phi(tJ^{-1/2}(F, k))-n^{-1/2}\phi(tJ^{-1/2}(F, k))\Psi^{*}(t, F, k)+o(n^{-1/2})$ ,

where

$\Psi^{*}(t, F, k)=(c_{2}(F, k)\gamma(F)+c_{2}\sim(F, k)\tilde{\gamma}(F))/(2J^{1/2}(F, k))$

$-(c_{1}^{3}(F, k)\beta(F)+3c_{1}^{2}(F, k)(c_{2}(F, k)\delta(F)+c_{2}\sim(F, k)\delta(F)))/(6J^{3/2}(F, k))$

$+\Psi(t, F, k)$ .
PROOF. For $k\in K$ and $ F\in\Theta$ let $ S_{n}=n^{1/2}\langle k,\hat{g}_{n,B}-g_{n}(\cdot, F)\rangle$ , $W_{n}=$

$n^{1/2}(\hat{F}_{n}-F)$ and $A_{n}=\{x_{n}eX_{n};\hat{F}_{n}\in B_{n}(F, c_{n})\}$ . By Proposition 2 and by the
property $P_{F,n}\{A_{n}^{c}\}=o(n^{-1/2})$ we can verify

(4.2) $S_{n}=c_{1}(F, k)U_{n}+(c_{2}(F, k)Q_{n}+c_{2}\sim(F, k)\tilde{Q}_{n})/(2n^{1/2})$

$+(c_{3}(F, k)V_{n}+c_{3}\sim(F, k)\tilde{V}_{n})/n^{1/2}+\tilde{\epsilon}_{n}$ ,

where $U_{n}=\langle u_{F}, W_{n}\rangle,$ $Q_{n}=\langle q_{F}W_{n}, W_{n}\rangle,\tilde{Q}_{n}=\langle q_{F}\sim W_{n}, W_{n}\rangle,$ $ V_{n}=\langle v_{F}, W_{n}\rangle$ and
$ V_{n}=\langle v_{F}\sim, W_{n}\rangle$ . Here $\{\tilde{\epsilon}_{n}\}$ is a sequence of random variables such that
$\sup\{|\overline{\epsilon}_{n}|;x_{n}eA_{n}\}=o(n^{-1/2})$ . We put

$S_{n}^{*}=c_{1}(F, k)U_{n}+(c_{2}(F, k)Q_{n}+c_{2}\sim(F, k)\tilde{Q}_{n})/(2n^{1/2})$

$+(c_{3}(F, k)V_{n}+c_{3}\sim(F, k)\tilde{V}_{n})/n^{1/2}$ ,

then we have

$E_{F}(S_{n}^{*})=(c_{2}(F, k)\gamma(F)+c_{2}\sim(F, k)\tilde{\gamma}(F))/(2n^{1/2})$ ,

$V_{F}(S_{n}^{*})=J(F, k)+2c_{1}(F, k)(c_{3}(F, k)\alpha(F)+c_{3}\sim(F, k)\tilde{\alpha}(F))/n^{1/2}$ ,

$E_{F}((S_{n}^{*}-E_{F}(S_{n}^{*}))^{3})=[c_{1}^{3}(F, k)\beta(F)+3c_{1}^{2}(F, k)(c_{2}(F, k)\delta(F)$

$+c_{2}\sim(F, k)\delta(F))]\sim/n^{1/2}+o(n^{-1/2})$ .
To prove this we use the fact that

$E_{F}(U_{n}^{2})=c_{1}^{-2}(F, k)J(F, k)$ , $E_{F}(Q_{n})=\gamma(F)$ ,

$E_{F}(U_{n}^{2}Q_{n})=2\delta(F)+c_{1}^{-2}(F, k)J(F, k)\gamma(F)+O(n^{-1})$ ,

$E_{F}(U_{n}^{2}\tilde{Q}_{n})=2\delta(F)+c_{1}^{-2}(F, k)J(F, k)\tilde{\gamma}(F)+O(n^{-1})$ ,

$E_{F}(U_{n}^{2}V_{n})=O(n^{-1/2})$ , $E_{F}(U_{n}^{2}\tilde{V}_{n})=O(n^{-1/2})$ , $E_{F}(U_{n}^{3})=\beta(F)/n^{1/2}$ ,

$E_{F}(U_{n}Q_{n})=O(n^{-1/2})$ , $E_{F}(U_{n}\tilde{Q}_{n})=O(n^{-1/2})$ , $E_{F}(V_{n}Q_{n})=O(n^{-1/2})$ ,

$E_{F}(V_{n}\tilde{Q}_{n})=O(n^{-1/2})$ , $E_{F}(\tilde{V}_{n}Q_{n})=O(n^{-1/2})$ and $E_{F}(\tilde{V}_{n}\tilde{Q}_{n})=O(n^{-1/2})$ .
Hence according to the Gram-Charlier (Edgeworth) expansion, we have
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(4.3) $P_{F,n}\{S_{n}^{*}\leqq t\}=\Phi(tJ^{-1/2}(F, k))-n^{-1/2}\phi(tJ^{-1/2}(F, k))\Psi^{*}(t, F, k)+o(n^{-1/2})$ .
In fact, this can be shown by Esseen’s smoothing lemma as $follow|$

(cf. Feller [7], XVI. 3, Lemma 2). Let $\tilde{S}_{n}=(S_{n}^{*}-\mu_{n}^{*})/\sigma_{n}^{*},$ $\mu_{n}^{*}=E_{F}(S_{n}^{*})$

$\sigma_{n}^{*2}=V_{F}(S_{n}^{*})$ and $\kappa_{3,n}=E_{F}(\tilde{S}_{n}^{8})$ . Define $\tilde{F}_{n}(x)=P_{F,n}\{\tilde{S}_{n}\leqq x\}$ and $K_{n}(x)=\Phi(x)-$

$\phi(x)(x^{2}-1)\kappa_{3,n}/6$ , and denote by $\rho_{n}(u),$ $\psi_{n}(u)$ the Fourier transforms of $\tilde{F}_{n}$

$K_{n}$ respectively. We note that $\psi_{n}(u)=e^{-u^{2}/2}(1+\kappa_{3,n}(iu)^{3}/6)$ . By Esseen’
lemma, for any $M>0$

(4.4) $\sup_{xeR}|\tilde{F}_{n}(x)-K_{n}(x)|\leqq\pi^{-1}\int_{-Hn^{1/2}}^{Hn^{1/2}}(|\rho_{n}(u)-\psi_{n}(u)|/|u|)du+K_{0}/(n^{1/2}M)$ ,

where $K_{0}$ is a constant not depending on $n$ and $M$. For $\delta>0(\delta<M)$ le

$J_{1,n}=\int_{|u|\leqq\delta n^{1/2}}(|\rho_{n}(u)-\psi_{n}(u)|/|u|)du$ ,

$J_{2,n}=\int_{\delta n^{1/2}}\leqq Iu|\leq Hn^{1/2}(|\rho_{n}(u)-\psi_{n}(u)|/|u|)du$ .
We note that $S_{n}^{*}$ can be rewritten as follows:

$S_{n}^{*}=n^{-1/2}\sum_{i=1}^{\cdot}U_{i,n}^{*}+n^{-1}\sum_{i=1}^{n}V_{i,n}^{*}+2^{-1}n^{-3/2}\sum_{i=1}^{n}\sum_{\dot{g}=1}^{n}Q_{ij,n}^{*}$ ,

where

$U_{n}^{*}=\langle c_{1}(F, k)u_{F}, y_{F,i}\rangle/\sigma_{n}^{*}$ ,

$V_{i,n}^{*}=\langle c_{1}(F, k)V_{F}+c_{2}(F, k)\tilde{V}_{F}, y_{F,i}\rangle/\sigma_{n}^{*}$ ,

$Q_{i\dot{g},n}^{*}=(\langle(c_{2}(F, k)q_{F}+c_{2}\sim(F, k)q_{F}\sim)y_{F,i}, y_{F,j}\rangle-\mu_{ij})/\sigma_{n}^{*}$

and

$\mu_{ij}=E_{F}(\langle(c_{2}(F, k)q_{F}+c_{2}\sim(F, k)q_{F}\sim)y_{F,i}, y_{F,j}\rangle)$ .
Taking account of the condition (c) of Assumption 2, since the randol

variables $\{U_{i,n}^{*}, V_{i,n}^{*}, Q_{i\dot{g},n}^{*}\}$ are bounded, we can verify $J_{1,n}=o(n^{-1/2})$ wit
argument similar to Callaert et al. [5], Section 3.

Let

$J_{2,n}^{\prime}=\int_{\delta n^{1}/2<|u|<Hn^{1/2}}(|\rho_{n}(u)|/|u|)du$ ,

$J_{2,n}^{\prime\prime}=|_{z_{n}1/2zI1z\pi_{n}1/2}(|\psi_{n}(u)|/|u|)du$ .
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It is clear that $J_{2,n}^{\prime\prime}=o(n^{-1/2})$ . By a similar method to the one used
in Callaert et al. [5], Section 4, we can evaluate $J_{2,n}^{\prime}$ as follows. Let

$g_{in}\sim=U_{i,n}^{*}+n^{-1/2}V_{i,n}^{*}+2^{-1}n^{-1}Q_{ii,n}^{*}$ ,

$A_{m,n}=\sum_{i=1}^{m}\tilde{g}_{in}$ and $B_{r,\epsilon,n}=\sum_{k=1}^{\prime}\sum_{l=k+1}^{\epsilon}Q_{k,l,n}^{*}$ .
We have by Taylor expansion

(4.5) $\gamma_{n}(u):=E_{F}(\exp(iuS_{n}^{*}))$

$=E_{F}[\alpha\{1+i(2u)n^{-a/2}B_{m,n}+2^{-1}(2iun^{-3/2}B_{m,2})^{2}\exp(2i\theta un^{-s/2}B_{m,n})\}]$ ,

where $\alpha=\exp(iun^{-1/2}A_{n})\exp(2iun^{-3/2}(B_{n-1,n}-B_{m,n}))$ and $0<\theta<1$ . We put

$I_{1}=E_{F}(\alpha)$ ,
$I_{2}=E_{F}(2i\alpha un^{-3/2}B_{m,n})$ ,
$I_{3}=E_{F}[2^{-1}(2iun^{-3/2}B_{m,n})^{2}\exp(2i\theta un^{-3/2}B_{m,n})]$ .

From Lemma 4 in Feller [7], XV. 1, we have

$|I_{1}|\leqq|E_{F}(\exp(iun^{-1/2}A_{m}))|\leqq(1-\eta_{0})^{m}$

(4.6) for some constant $\eta_{0},0<\eta_{0}<1$ , and also

$|I_{2}|\leqq 2|u|n^{-3/2}\sum_{j=1}^{m}\sum_{k=j+1}^{n}\{|E_{F}(\exp(iun2g_{1,n}(X_{1}))|^{m-2}\cdot E_{F}(|Q_{j,,k,n}^{*}|)\}$

$\leqq K_{1}|u|n^{-1/2}m(1-\eta_{0})^{m-2}$

( $K_{1}$ is a constant not depending on $m,$ $n$ and $u$).

From the martingale property of $\{B_{m,n}\}$ (cf. Lemma 1 in Callaert et al.
[5]) we have

(4.7) $|I_{3}|\leqq u^{2}n^{-3}E_{F}(|B_{m,n}|^{2})\leqq K_{2}n^{-2}mu^{2}$

( $K_{2}$ is a constant independent of $u,$ $n,$ $m$).

Taking $m$ to be $m=n^{1/4}$ it follows from (4.5), (4.6) and (4.7) that

(4.8) $\sup\{|\gamma_{n}(u)|;n^{1/2}\delta<|u|<n^{1/2}M\}=o(n^{-1/2})$ .
Thus we have $J_{2,n}=o(n^{-1/2})$ . Hence it follows from (4.4) that

(4.9) $\sup_{xeR}|\tilde{F}_{n}(x)-K_{n}(x)|=o(n^{-1/2})$ .
We note that from (4.2) it follows
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(4.10) $P_{F,n}\{S_{n}\leqq t\}=P_{F,n}\{S_{n}^{*}\leqq t\}+o(n^{-1/2})$ .
From (4.9) and (4.10) we have the desired expansion (4.1).

For $Fe\Theta^{*}$ let $\tau(F)=E_{F}(\langle u_{F}, y_{F,1}\rangle^{2})$ , and define

$h(x, F)=w_{F}^{(2)}(x)\{-(\gamma(F)/2)+\delta(F)/(2\tau(F))\}$

$+\tilde{w}_{F}^{(2)}(x)\{-(\tilde{\gamma}(F)/2)+\tilde{\delta}(F)/(2\tau(F))\}+w_{F}^{(1)}(x)\beta(F)/(6\tau(F))$ .
We define $g_{n,B}^{*}(x)=\hat{g}_{n,B}(x)+n^{-1}h(x,\hat{F}_{n})$ . From Theorems 1 and 2 we have
the following result which asserts that the corrected bootstrap estimatol
$\{g_{n.B}^{*}\}$ is a second order asymptotic efficient estimator of $\{g_{n}\}$ .

THEOREM 3. Suppose that Assumption 2 is satisfied. We assumt

that $\beta,$
$\gamma,\tilde{\gamma},$ $\delta,\tilde{\delta}$ and $\tau$ are continuous with respect to $F$ on $\Theta^{*}an\dot{a}$

that $w_{F}^{(1)}(x),$ $w_{F}^{(2)}(x),\tilde{w}_{F}^{(2)}(x)$ are continuous with respect to $F$ as function‘

from $\Theta^{*}$ to ta Then we have
(a) $\{g_{n,B}^{*}\}$ is a second order AMU estimator of $\{g_{n}\}$ .
(b) $\{g_{n,B}^{*}\}$ is a second order asymptotically efficient AMU estimator

of $\{g_{n}\}$ .
PROOF. Take any $keK$, any $ F\in\Theta$ and any sequence $\{G_{n}\}$ , $ G_{n}\in$

$B_{n}^{*}(F, c_{n})$ and let $\hat{S}_{n}=n^{1/2}\langle k, g_{n,B}^{*}-g_{n}(\cdot, G_{n})\rangle$ . By a similar argument to
that developed for $\{S_{n}\}$ in the proof of Theorem 2 we have the following
expansion for $\{\hat{S}_{n}\}$ :

(4.11) $P_{G_{\hslash},n}\{\hat{S}_{n}\leqq t\}$

$=\Phi(tJ^{-1/2}(G_{n}, k))-n^{-1/2}\phi(tJ^{-1/2}(G_{n}, k))\Psi(t, G_{n}, k)+o(n^{-1/2})$ .
From this we have $\{g_{n,B}^{*}\}\in$ EZS7. In particular if we take $G_{n}$ to be $F$ in
(4.11) then the R.H.S. of (4.11) equals the R.H.S. of (3.2) up to the
order $o(n^{-1/2})$ . Therefore $\{g_{n,B}^{*}\}$ is a second order efficient AMU estimator
of $\{g_{n}\}$ .

\S 5. An example satisfying Assumption 2.

In this section we give a typical example satisfying Assumption 2,

Following Beran [2], Section 3, let $\hat{T}_{n}=2n^{-1}(n-1)^{-1}\sum_{1\leq i<j\leqq n}t(X_{i}, X_{\dot{f}})b\epsilon$

the second degree U-statistic where $t$ is symmetric in its arguments,
We assume that, as in Beran [2], $t$ is absolutely continuous, vanishes
outside a square $[-B, B]$ and has essentially bounded derivative. Let $\rho$

be the Lebesgue measure on $[-B. B]$ . Let $m(G)=E_{a}(t(X_{1}, X_{2})),$ $g_{a}(X)=$

$\pi_{-}$( $h_{\cap}(X_{P-}X_{:})$ I $X,$). $h_{a}(X,. X_{:})=t(X_{i}. X_{;})-m(G)$ , $d_{G}(X_{i}, X_{i})=h_{a}(X_{i}, X_{j})-$
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$g_{G}(X_{i})-g_{a}(X_{j}),$ $s_{G}^{2}=E_{G}(g_{G}^{2}(X_{1})),$ $s_{n}^{2}(G)=V_{a}(n^{1/2}\hat{T}_{n})$ and $s_{0}(G)=2s_{G}$ . Let S77 be
the class of functions $v$ on $R$ such that $v(t)=a^{-1}(1-a^{-1}|t|)^{+}$ for some
$a>0$ . Define

$k_{3}(G)=s_{\overline{a}^{3}}[E_{a}g_{a}^{3}(X_{1})+3E_{a}\{g_{a}(X_{1})g_{G}(X_{2})d_{a}(X_{1}, X_{2})\}]$ ,

$k_{4}(G)=s_{G}^{-}[E_{G}g_{a}^{4}(X_{1})-3s_{a}^{4}+12E_{a}\{g_{a}^{2}(X_{1})g_{a}(X_{2})d_{a}(X_{1}, X_{2})\}$

$+12E_{G}\{g_{a}(X_{2})g_{a}(X_{3})d_{G}(X_{1}, X_{2})d_{a}(X_{1}, X_{3})\}]$ ,

$t_{1}(x)=\phi(x)(x^{2}-1)/6$ ,

$t_{2}(x)=\phi(x)(x^{3}-3x)/24$

and
$t_{3}(x)=\phi(x)(x^{6}-10x^{3}+15x)/72$ .

Let $\Theta^{*}$ be the set of d.f. $F$ on $R$ such that $s_{0}(F)\neq 0$ . Let $J_{n}(x, G)=$

$P_{G,n}\{n^{1/2}(\hat{T}_{n}-m(G))/s_{n}(G)\leqq x\}$ and define for $ve$ ST $J_{n,v}(\cdot, G)=J_{n}(\cdot, G)*v$ ,
which means the convolution of $J_{n}$ and $v$ . Let $\{c_{n}\}$ be any sequence of
positive numbers satisfying $n^{-1/2}c_{n}^{3}$ tending to $0$ as $ n\rightarrow\infty$ . Using es-
sentially the same argument as in Beran [2], Section 3, we have

(5.1) $\sup_{GeB_{n}(Fc_{n})},|s_{n}(G)-s_{n}(F)-\langle h_{F}^{*}, G-F\rangle-2^{-1}\langle q_{F}(G-F), G-F\rangle|=o(n^{-1})$

and

(5.2) $\sup_{GeB_{n}(F\sigma_{n})},|k_{3}(G)-k_{\epsilon}(F)-\langle v_{F}^{*}, G-F\rangle|=o(n^{-1/2})$ ,

where $h_{F}^{*}(x)=4(g_{F}(x)+2m(F))e_{F}(x)/s_{0}(F),$ $e_{F}(x)=\int_{R}F(y)t_{11}(x, y)dy(t_{11}(x, y)$

denotes the derivative of $t(x, y))$ , and $q_{F}^{*},$ $v_{F}^{*}$ are some functions contained
in $L^{1}(\mu)\times L^{1}(\mu)$ and $L^{1}(\mu)$ respectively. We can also verify

(5.3) $\sup_{GeB_{n}(Fe_{n})}.\Vert J_{n,v}(\cdot, G)-\Phi_{v}(\cdot)+n^{-1/2}k_{3}(G)t_{1,v}(\cdot)$

$+n^{-1}(k_{4}(G)t_{2,v}(\cdot)+k_{3}^{2}(G)t_{3,v}(\cdot))||=o(n^{-1})$ .
Here $\Phi_{v},$ $t_{l,v}(i=1,2,3)$ mean the convolutions of $\Phi,$ $t_{i}(i=1,2,3)$ and $v$

respectively.
Define $g_{n}(x, G)=J_{n,v}(x/s_{n}(G), G)$ for some $ve$ % and let $\Theta$ be the set

of all $F\in\Theta^{*}$ such that the d.f. of $\langle h_{F}^{*}, y_{F,1}\rangle$ is non-lattice. From (5.1),
(5.2) and (5.3) we can verify that $\{g_{n}\}$ satisfies Assumption 2 with

$g_{n,0}(x, G)=\Phi_{v}(x/s_{n}(G))$ , $g_{n,1}(x, G)=-k_{3}(G)t_{1,v}(x/s_{n}(G))$ ,

$g_{n,2}(x, G)=-k_{4}(G)t_{2,v}(x/s_{n}(G))-k_{3}^{2}(G)t_{3,v}(x/s_{n}(G))$ , $u_{F}(x)=h_{F}^{*}(x)$ ,
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$w_{F}^{(1)}(x)=w_{F}^{(2)}(x)=-x\phi_{v}(x/s_{0}(F))/s_{0}^{2}(F)$ , $\tilde{w}_{F}^{(2)}(x)=-x\cdot\frac{\partial}{\partial s}[\phi_{v}(x/s)/s^{2}]_{0^{(F)}}$ ,

$w_{F}^{(3)}(x)=k_{3}(F)xt_{1,v}^{\prime}(x/s_{0}(F))/s_{0}^{2}(F)$ , $\tilde{w}_{F}^{(3)}(x)=-t_{1,v}(x/s_{0}(F))$ ,

$v_{F}(x)=h_{F}^{*}(x)$ , $v_{F}\sim(x)=v_{F}^{*}(x)$ ,

$q_{F}(x, y)=q^{*}(x, y)$ and $q_{F}\sim(x, y)=h_{F}^{*}(x)h_{F}^{*}(y)$ .
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