On the Second Order Efficiency of Bootstrap Estimators of Sampling Distributions

Takeru SUZUKI

Waseda University

§ 1. Introduction.

Let X_1, X_2, \dots, X_n be independent identically distributed random variables with unknown distribution function (d.f.) F contained in a set Θ of d.f.'s on the real line R. Let $g_n(\cdot, F)$ be a d.f. on R parametrized by $F \in \Theta$, which will be considered to be a sampling d.f. of an appropriately normalized statistic based on the sample $X_n = (X_1, X_2, \dots, X_n)$ under F. We consider in this paper the estimation problem of $g_n(\cdot, F)$ based on the sample $X_n = (X_1, \dots, X_n)$. In particular, we discuss some asymptotic properties of the bootstrap estimator $\hat{g}_{n,B} = g_n(\cdot, \hat{F}_n)$ of $g_n(\cdot, F)$ where \hat{F}_n is the empirical (sample) d.f. based on $X_n = (X_1, \dots, X_n)$. Consistency of $\hat{g}_{n,B}$ has been proved by Efron [6] and by Bickel and Freedman [4]. In Bickel and Freedman [3] and in Singh [8] Edgeworth type expansions of $\hat{g}_{n,B}$ for some typical g_n (the sampling d.f. of normalized sample mean and sample quantile) has been discussed. Beran [2] has proved that $\hat{g}_{n,B}$ is locally asymptotically minimax for estimating g_n under some smoothness conditions with respect to F. In this paper we prove the second order asymptotic efficiency of appropriately corrected version of $\hat{g}_{n,B}$ under conditions about $g_n(\cdot, F)$ similar to Assumption 1 or Assumption 1' of Beran [2]. The concept of second order asymptotic efficiency in our case is essentially due to Akahira and Takeuchi [1]. that, in general, locally asymptotically minimax property does not imply second order efficiency as the following example shows: Let each X_i obey the distribution with density

$$f(x, \theta) = 2^{-1} \exp(-|x-\theta|)$$
 $(\theta \in \mathbb{R}, x \in \mathbb{R})$.

In this case $\operatorname{med}_{1 \le i \le n} X_i$ are locally asymptotically minimax, but not second order asymptotically efficient for estimating $\theta \in \Theta$ (cf. Akahira and Takeuchi [1], p. 96).

In Section 2 we shall describe some conditions about g_n which will play an important role in the following sections. In Section 3 we try to get a bound of the second order asymptotic distributions of the second order asymptotically median unbiased estimator \hat{g}_n of $g_n(\cdot, F)$, which is calculated in a similar way to the one developed in Akahira and Takeuchi [1]. In Section 4 it will be proved that the bound obtained in Section 3 is attained by the bootstrap estimator $\hat{g}_{n,B}$ with a correcting term of order n^{-1} , and so it is second order asymptotically efficient in this sense. The final section is devoted to describing a typical example which satisfies the conditions given in Section 2.

§ 2. Notations and assumptions.

Let \mathscr{F} be the set of all d.f.'s on the real line R and Θ be a subset of \mathscr{F} . Let \mathscr{F} be the set of all bounded functions on R. We denote by $\|\cdot\|$ the sup norm in \mathscr{F} . We mean the topology of a subset \mathscr{F}_1 of \mathscr{F} by the relative topology of \mathscr{F}_1 as a subset of the normed space $(\mathscr{F}, \|\cdot\|)$. Let X_1, X_2, \cdots, X_n be independent identically distributed random variables with unknown d.f. F in Θ . Let μ be a σ -finite measure on R, and for $k \in L^1(\mu)$ and $k \in \mathscr{F}$ let $\langle k, k \rangle = \int_R k \cdot h d\mu$ where $L^1(\mu)$ is the set of all μ -integrable functions on R. Let $\{g_n; n \geq 1\}$ be a sequence of maps $g_n(\cdot, F)$ from Θ^* to \mathscr{F} , where Θ^* is an open set in \mathscr{F} containing Θ . For each $F \in \Theta$ and c > 0 define $B_n(F, c)$ as the set of $G \in \Theta^*$ satisfying $\|G - F\| \leq c/n^{1/2}$. We consider the following conditions about $\{g_n\}$ on the second degree asymptotic differentiability of g_n as a function of F.

ASSUMPTION 1. (a) There exist sequences of maps $\{g_{n,i}(\cdot, F); n \ge 1\}$, i=0, 1, 2, from Θ^* to $\mathscr F$ such that for each c>0 and each $F\in\Theta$

$$\sup_{G \in B_n(F,c)} \|g_n(\cdot, G) - g_{n,0}(\cdot, G) - n^{-1/2}g_{n,1}(\cdot, G) - n^{-1}g_{n,2}(\cdot, G)\| = o(n^{-1}).$$

(b) There exist $\{w_F^{(i)}; i=1, 2, 3\} \subset \mathscr{B}, \{\widetilde{w}_F^{(2)}, \widetilde{w}_F^{(3)}\} \subset \mathscr{B}, \{u_F, v_F, \widetilde{v}_F\} \subset L^1(\mu)$ and $\{q_F, \widetilde{q}_F\} \subset L^1(\mu) \times L^1(\mu)$ defined for each $F \in \Theta^*$ such that for each $F \in \Theta$ and each c > 0

$$\begin{array}{ll} (\ {\rm i}\) & \sup_{G \in B_{n}(F,c)} \parallel g_{n,0}(\,\cdot\,,\,G) - g_{n,0}(\,\cdot\,,\,F) - w_{F}^{(1)} \langle u_{F},\,G - F \rangle \\ & - 2^{-1} \{ w_{F}^{(2)} \langle q_{F}(G - F),\,G - F \rangle + \widetilde{w}_{F}^{(2)} \langle \widetilde{q}_{F}(G - F),\,G - F \rangle \} \parallel = o(n^{-1}) \ , \end{array}$$

$$\begin{array}{ll} \text{(ii)} & \sup_{G \in B_n(F,c)} \| \, g_{n,1}(\cdot,\,G) - g_{n,1}(\cdot,\,F) - w_F^{(3)} \langle v_F,\,G - F \rangle \\ & - \widetilde{w}_F^{(3)} \langle \widetilde{v}_F,\,G - F \rangle \, \| = o(n^{-1/2}) \,\,, \end{array}$$

(iii)
$$\sup_{G \in B_n(F, c)} ||g_{n,2}(\cdot, G) - g_{n,2}(\cdot, F)|| = o(1).$$

- (c) For each $F \in \Theta$
- (i) the d.f. of $\langle u_F, y_{F,1} \rangle$ under F is non-lattice,
- (ii) $E_F(\langle u_F, y_{F,1} \rangle^2) > 0$,

where $y_{F,i}(t) = I_{(-\infty,t]}(X) - F(t)$ and $I_{(-\infty,t]}(X)$ denotes the indicator function of the set $(-\infty, t]$.

REMARK 1. The function u_F appeared in Assumption 1 is unique in the following sense: If Assumption 1 is satisfied with $\widetilde{w}_F^{(1)} \in \mathscr{B}$ and $\widetilde{u}_F \in L^1(\mu)$ instead of $w_F^{(1)}$ and u_F respectively, then for every $h \in \mathscr{B}_0$ and $F \in \Theta$

$$w_{\scriptscriptstyle F}^{\scriptscriptstyle (1)}\langle u_{\scriptscriptstyle F},\, h\!-\!c(h)F
angle\!=\!\widetilde{w}_{\scriptscriptstyle F}^{\scriptscriptstyle (1)}\langle \widetilde{u}_{\scriptscriptstyle F},\, h\!-\!c(h)F
angle$$
 ,

where \mathscr{B}_0 is the class of bounded functions on R such that $c(h) = \lim_{t\to\infty} h(t)$ exists and $\lim_{t\to\infty} h(t) = 0$.

We have the following proposition which is an easy consequence of our assumption.

PROPOSITION 1. Suppose that the conditions (a) and (b) in Assumption 1 are satisfied. Then we have for each c>0 and each $F\in\Theta$

$$\sup_{G \in B_n(F, c)} \| \, g_n(\cdot, \, G) - g_n(\cdot, \, F) - w_F^{\text{\tiny (1)}} \langle u_F, \, G - F \rangle \ - 2^{-1} \{ w_F^{\text{\tiny (2)}} \langle q_F(G - F), \, G - F \rangle + \widetilde{w}_F^{\text{\tiny (2)}} \langle \widetilde{q}_F(G - F), \, G - F \rangle \} \ - n^{-1/2} \{ w_F^{\text{\tiny (3)}} \langle v_F, \, G - F \rangle + \widetilde{w}_F^{\text{\tiny (3)}} \langle \widetilde{v}_F, \, G - F \rangle \} \| = o(n^{-1}) \; .$$

We consider the following condition stronger than previous one, which will be used in Section 4 to prove second order asymptotic efficiency of the bootstrap estimators. This condition is almost the same as Assumption 1.

ASSUMPTION 2. (a) There exist sequences of maps $\{g_{n,i}(\cdot, F); n \ge 1\}$, i=0, 1, 2, from Θ^* to $\mathscr F$ such that for every $F \in \Theta$

$$\sup_{G \in B_n(F, \sigma_n)} \|g_n(\cdot, G) - g_{n,0}(\cdot, G) - n^{-1/2} g_{n,1}(\cdot, G) - n^{-1} g_{n,2}(\cdot, G) \| = o(n^{-1}),$$

where $\{c_n\}$ is a sequence of positive numbers satisfying

$$\lim_{n\to\infty} \left\{4c_n^2 - \log n\right\} = \infty.$$

(b) There exist $\{w_F^{(i)};\ i=1,\ 2,\ 3\}\subset \mathscr{B},\ \{\widetilde{w}_F^{(2)},\ \widetilde{w}_F^{(3)}\}\subset \mathscr{B},\ \{u_F,\ v_F,\ \widetilde{v}_F\}\subset L^1(\mu)$ and $\{q_F,\ \widetilde{q}_F\}\subset L^1(\mu)\times L^1(\mu)$ defined for each $F\in \Theta^*$ such that

$$(i) \qquad \sup_{G \in B_n(F,c_n)} \| g_{n,0}(\cdot,G) - g_{n,0}(\cdot,F) - w_F^{(1)} \langle u_F,G - F \rangle$$

$$-2^{-1}\{w_F^{(2)}\langle q_F(G-F), G-F
angle + \widetilde{w}_F^{(2)}\langle \widetilde{q}_F(G-F), G-F
angle\}\| = o(n^{-1})$$
 ,

$$\begin{array}{ll} \text{(ii)} & \sup_{G \in B_n(F,c_n)} \| g_{n,1}(\cdot,\,G) - g_{n,1}(\cdot,\,F) - w_F^{(3)} \langle v_F,\,G - F \rangle \\ & - \widetilde{w}_F^{(3)} \langle \widetilde{v}_F,\,G - F \rangle \| = o(n^{-1/2}) \;, \end{array}$$

(iii)
$$\sup_{G \in B_n(F,c_n)} \|g_{n,2}(\cdot, G) - g_{n,2}(\cdot, F)\| = o(1).$$

- (c) For each $F \in \Theta$
- (i) the d.f. of $\langle u_F, y_{F,1} \rangle$ under F is non-lattice,
- (ii) $E_F(\langle u_F, y_{F,1} \rangle^2) > 0$.

We have the following proposition which can be verified in the same way as Proposition 1.

PROPOSITION 2. Suppose that the conditions (a) and (b) in Assumption 2 are satisfied. Then we have for each $F \in \Theta$

$$\begin{split} \sup_{G \in B_n(F,c_n)} & \| \, g_n(\cdot\,,\,G) - g_n(\cdot\,,\,F) - w_F^{\text{\tiny (1)}} \big\langle u_F,\,G - F \big\rangle \\ & - 2^{-1} \{ w_F^{\text{\tiny (2)}} \big\langle q_F(G - F),\,G - F \big\rangle + \widetilde{w}_F^{\text{\tiny (2)}} \big\langle \widetilde{q}_F(G - F),\,G - F \big\rangle \} \\ & - n^{-1/2} \{ w_F^{\text{\tiny (3)}} \big\langle v_F,\,G - F \big\rangle + \widetilde{w}_F^{\text{\tiny (3)}} \big\langle \widetilde{v}_F,\,G - F \big\rangle \} \| = o(n^{-1}) \;. \end{split}$$

REMARK 2. The smoothed d.f. g_n of a second degree U-statistic satisfies Assumption 2 with any sequence $\{c_n\}$ of positive numbers satisfying

$$\lim_{n\to\infty} \{\log n - 6\log c_n\} = \infty.$$

We discuss this example more precisely in Section 5.

§ 3. A bound of second order asymptotic distributions.

We mean by the estimator of g_n the measurable map \widehat{g}_n from \mathscr{X}_n to \mathscr{F} , where \mathscr{X}_n is the sample space of random vector $X_n = (X_1, \cdots, X_n)$ equipped with the Borel σ -field. For each $F \in \Theta$ we denote by $P_{F,n}$ the probability distribution of X_n provided that each X_i obeys the d.f. F. Let K be the set of all $k \in L^1(\mu)$ satisfying $\int_R |k| d\mu = 1$. We denote by $B_n^*(F, c)$ the intersection of $B_n(F, c)$ and $\mathscr{C}(F) := \{G \in \mathscr{F}; F \text{ is absolutely continuous with respect to } G\}$. Let \mathscr{C} be the class of sequences $\{\widehat{g}_n\}$ of estimators of $\{g_n\}$ such that for each $k \in K$, each $F \in \Theta$, each c > 0 and each sequence $\{\varepsilon_n\}$ of real numbers satisfying $\varepsilon_n = o(n^{-1/2})$ we have

(3.1)
$$\sup_{G \in B_n^*(F, \sigma_n)} |P_{G,n}\{n^{1/2}\langle k, \widehat{g}_n - g_n(\cdot, G)\rangle \leq \varepsilon_n\} - 2^{-1}| = o(n^{-1/2}).$$

We note that if (3.1) holds with $\varepsilon_n=0$, $n=1, 2, \cdots$, and $n^{1/2}\langle k, \widehat{g}_n-g_n(\cdot, G)\rangle$ admits Edgeworth expansion uniformly in G over $B_n^*(F,c)$ up to order $n^{-1/2}$ for each $k\in K$ and each $F\in \Theta$, then $\{\widehat{g}_n\}$ is an element of $\mathscr E$. Following Akahira and Takeuchi [1] we call in this paper the sequence $\{\widehat{g}_n\}$ of estimators in $\mathscr E$ second order asymptotically median unbiased (or second order AMU). This definition is a modification of the concept of AMU estimator defined in Akahira and Takeuchi [1] to our situation. Before describing the theorem we define some notations here. Let $y_{F,i}(t)=I_{(-\infty,t]}(X_i)-F(t)$, i=1, 2. Define

$$\begin{split} c_i(F,\,k) &= \langle w_F^{(i)},\,k\rangle \;, \quad i = 1,\,2,\,3 \;, \qquad \widetilde{c}_i(F,\,k) = \langle \widetilde{w}_F^{(i)},\,k\rangle \;, \quad i = 2,\,3 \;, \\ \alpha(F) &= E_F(\langle u_F,\,y_{F,1}\rangle\langle v_F,\,y_{F,1}\rangle) \;, \qquad \widetilde{\alpha}(F) = E_F(\langle u_F,\,y_{F,1}\rangle\langle \widetilde{v}_F,\,y_{F,1}\rangle) \;, \\ \beta(F) &= E_F(\langle u_F,\,y_{F,1}\rangle^3) \;, \\ \gamma(F) &= E_F(\langle q_F,\,y_{F,1}\rangle) \;, \qquad \widetilde{\gamma}(F) = E_F(\langle \widetilde{q}_F y_{F,1},\,y_{F,1}\rangle) \;, \\ \delta(F) &= E_F(\langle u_F,\,y_{F,1}\rangle\langle u_F,\,y_{F,2}\rangle\langle q_F y_{F,1},\,y_{F,2}\rangle) \;, \\ \widetilde{\delta}(F) &= E_F(\langle u_F,\,y_{F,1}\rangle\langle u_F,\,y_{F,2}\rangle\langle \widetilde{q}_F y_{F,1},\,y_{F,2}\rangle) \;. \end{split}$$

We state a theorem which gives a second order bound of asymptotic distributions of the estimators $\{\hat{g}_n\}$ in \mathscr{C} . In the following Φ denotes the standard normal distribution function and ϕ the density function of Φ .

THEOREM 1. Suppose that Assumption 1 is satisfied. Then for any sequence $\{\hat{g}_n\}$ of estimators of $\{g_n\}$ in \mathscr{C} , for every $F \in \Theta$ and for every $k \in K$, we have

$$(3.2) P_{F,n}\{n^{1/2}\langle k, \hat{g}_n - g_n(\cdot, F)\rangle \leq t\} \\ \leq \Phi(t/J^{1/2}(F, k)) - n^{-1/2}\phi(t/J^{1/2}(F, k))\Psi(t, F, k) + o(n^{-1/2}) \\ (\geq)$$

for every t>0 (t<0, respectively), where

$$egin{aligned} \varPsi(t,\,F,\,k) = & tc_1(F,\,k)(c_3(F,\,k)lpha(F) + \widetilde{c}_3(F,\,k)\widetilde{lpha}(F))/J^{8/2}(F,\,k) \ & + t^2(c_1^3(F,\,k)eta(F)) + 3c_1^2(F,\,k)(c_2(F,\,k)\delta(F) + \widetilde{c}_2(F,\,k)\widetilde{\delta}(F))/(6J^{5/2}(F,\,k)) \;. \end{aligned}$$

PROOF. We can prove this in a similar way to the one in Akahira and Takeuchi [1]. We face, however, some difficulties because parametric model is infinite dimensional. Take t>0, $F\in\Theta$ and $k\in K$ arbitrarily and then fix them. We define functions $a_{F,1}$, $a_{F,2}$, b_F in $\mathscr B$ as follows:

$$\begin{split} a_{F,1}(X_1) &= c_1(F,\,k) \langle u_F,\,y_{F,1} \rangle / J(F,\,k) \;, \\ a_{F,2}(X_1) &= -\{c_3(F,\,k) \langle v_F,\,y_{F,1} \rangle + \widetilde{c}_3(F,\,k) \langle \widetilde{v}_F,\,y_{F,1} \rangle \} / J(F,\,k) \;, \\ b_F(X_1) &= -c_1(F,\,k) \Big\{ \int_R (c_2(F,\,k) \langle u_F,\,y_{F,2} \rangle \langle q_F y_{F,1},\,y_{F,2} \rangle \\ &\qquad \qquad + \widetilde{c}_2(F,\,k) \langle u_F,\,y_{F,2} \rangle \langle \widetilde{q}_F y_{F,1},\,y_{F,2} \rangle) dF(X_2) \Big\} / (2J^2(F,\,k)) \;. \end{split}$$

Using these functions we can construct a sequence $\{g_{t,n}; n \ge n_0\}$ of probability density functions on R with respect to dF as follows:

$$g_{t,n}(x) = 1 + n^{-1/2}t(a_{F,1}(x) + a_{F,2}(x)/n^{1/2}) + n^{-1}t^2b_F(x)$$
 ,

where the integer n_0 depends only on t.

Let $G_{t,n}$ be the d.f. on R corresponding to the density $g_{t,n}$. Let $\phi_n^* = \phi_n^*(X_n)$ be the most powerful test with asymptotic level $2^{-1} + o(n^{-1/2})$ for the problem of testing the hypothesis H_0 : "true distribution is $G_{t,n}$ " versus the alternative H_1 : "true distribution is F". Define the random variables $Z_{tn} = \log((dG_{t,n}/dF)(X_t)) = \log g_{t,n}(X_t)$ and let $T_n = \sum_{t=1}^n Z_{tn}$. We note that the test $\phi_n^*(X_n)$ mentioned above has the following form: $\phi_n^*(X_n) = 1$ if $T_n < d_n$, =0 otherwise for appropriately chosen number d_n . By Taylor expansion we have the following results:

$$\begin{split} E_F(Z_{in}) &= -(2n)^{-1}t^2J_0(F,\,k) + n^{-3/2}t^3\{-E_F(a_{F,1}b_F) + 3^{-1}E_F(a_{F,1}^3) \\ &- t^{-1}E_F(a_{F,1}a_{F,2})\} + o(n^{-3/2}) \ , \qquad (J_0(F,\,k) = J^{-1}(F,\,k)) \ , \\ E_F(Z_{in}^2) &= n^{-1}t^2J_0(F,\,k) + 2n^{-3/2}t^3\{E_F(a_{F,1}b_F) - 2^{-1}E_F(a_{F,1}^3) \\ &+ t^{-1}E_F(a_{F,1}a_{F,2})\} + o(n^{-3/2}) \ , \\ E_F(Z_{in}^3) &= n^{-3/2}t^3E_F(a_{F,1}^3) + o(n^{-3/2}) \ , \\ E_{G_{t,n}}(Z_{in}) &= (2n)^{-1}t^2J_0(F,\,k) + n^{-3/2}t^3\{t^{-1}E_F(a_{F,1},\,a_{F,2}) \\ &+ E_F(a_{F,1}b_F) - 6^{-1}E_F(a_{F,1}^3)\} + o(n^{-3/2}) \ , \\ E_{G_{t,n}}(Z_{in}^2) &= n^{-1}t^2J_0(F,\,k) + 2n^{-3/2}t^3\{t^{-1}E_F(a_{F,1}a_{F,2}) + E_F(a_{F,1}b_F)\} + o(n^{-3/2}) \ , \\ E_{G_{t,n}}(Z_{in}^3) &= n^{-3/2}t^3E_F(a_{F,1}^3) + o(n^{-3/2}) \ . \end{split}$$

From these we have

$$\begin{split} E_{\scriptscriptstyle F}(T_{\scriptscriptstyle n}) &= -2^{\scriptscriptstyle -1} t^{\scriptscriptstyle 2} J_{\scriptscriptstyle 0}(F,\,k) + n^{\scriptscriptstyle -1/2} t^{\scriptscriptstyle 3} \{ -E_{\scriptscriptstyle F}(a_{\scriptscriptstyle F,1}b_{\scriptscriptstyle F}) + 3^{\scriptscriptstyle -1} E_{\scriptscriptstyle F}(a_{\scriptscriptstyle F,1}^{\scriptscriptstyle 3}) \\ &- t^{\scriptscriptstyle -1} E_{\scriptscriptstyle F}(a_{\scriptscriptstyle F,1}a_{\scriptscriptstyle F,2}) \} + o(n^{\scriptscriptstyle -1/2}) \ , \\ V_{\scriptscriptstyle F}(T_{\scriptscriptstyle n}) &= E_{\scriptscriptstyle F}((T_{\scriptscriptstyle n} - E_{\scriptscriptstyle F}(T_{\scriptscriptstyle n}))^{\scriptscriptstyle 2}) = t^{\scriptscriptstyle 2} J_{\scriptscriptstyle 0}(F,\,k) + 2n^{\scriptscriptstyle -1/2} t^{\scriptscriptstyle 3} \{ E_{\scriptscriptstyle F}(a_{\scriptscriptstyle F,1}b_{\scriptscriptstyle F}) + 2n^{\scriptscriptstyle -1/2} t^{\scriptscriptstyle 3} \} \} . \end{split}$$

$$-2^{-1}E_{\scriptscriptstyle F}(a_{\scriptscriptstyle F,1}^3)\!+\!t^{-1}E_{\scriptscriptstyle F}(a_{\scriptscriptstyle F,1}a_{\scriptscriptstyle F,2})\!\}\!+\!o(n^{-1/2})$$
 , $E_{\scriptscriptstyle F}((T_n\!-\!E_{\scriptscriptstyle F}(T_n))^3)\!=\!n^{-1/2}t^3E_{\scriptscriptstyle F}(a_{\scriptscriptstyle F,1}^3)\!+\!o(n^{-1/2})$.

We also have

$$egin{aligned} E_{G_{t,\,m n}}(T_n) = & 2^{-1}t^2J_0(F,\,k) + n^{-1/2}t^3\{t^{-1}E_F(a_{F,1}a_{F,2}) + E_F(a_{F,1}b_F) \\ & -6^{-1}E_F(a_{F,1}^3)\} + o(n^{-1/2}) \;\;, \ V_{G_{t,\,m n}}(T_n) = & t^2J_0(F,\,k) + 2n^{-1/2}t^3\{t^{-1}E_F(a_{F,1}a_{F,2}) + E_F(a_{F,1}b_F)\} + o(n^{-1/2}) \;\;, \ E_{G_{t,\,m n}}((T_n - E_{G_{t,\,m n}}(T_n))^3) = & n^{-1/2}t^3E_F(a_{F,1}^3) + o(n^{-1/2}) \;\;. \end{aligned}$$

Thus, according to the Gram-Charlier (Edgeworth) expansion, we have

$$\begin{split} (3.3) \qquad P_{G_{t,n},n} &\{ T_n \leqq d_n \} = P_{G_{t,n},n} \{ (T_n - 2^{-1} t^2 J_0(F,\,k)) / (t J_0^{1/2}(F,\,k)) \leqq \widetilde{d}_n \} \\ &= \varPhi(\widetilde{d}_n) - n^{-1/2} \phi(\widetilde{d}_n) \{ t^2 J_0^{-1/2}(F,\,k) (t^{-1} E_F(a_{F,1} a_{F,2}) + E_F(a_{F,1} b_F) \\ &- 6^{-1} E_F(a_{F,1}^3)) + t J_0^{-1}(F,\,k) (t^{-1} E_F(a_{F,1} a_{F,2}) + E_F(a_{F,1} b_F)) \widetilde{d}_n \\ &+ (E_F(a_{F,1}^3)) / (6 J_0^{3/2}(F,\,k)) (\widetilde{d}_n^2 - 1) \} + o(n^{-1/2}) \end{split}$$

where $\tilde{d}_n = (d_n - 2^{-1}t^2J_0(F, k))/(tJ_0^{1/2}(F, k))$.

In fact, the validity of the expansion (3.3) can be verified by a similar method used in the proof of Theorem 1 in Feller [7], XVI. 4, page 512. We need the condition (c) in Assumption 1 to prove this. The proof is relatively easy but long, so it will be omitted here.

From (3.3) it follows that if we take $\tilde{d}_n = c_0(t, F)/n^{1/2}$ then we have

$$P_{G_{t,n},n} \{ T_n \leq d_n \} = 2^{-1} + o(n^{-1/2})$$

where

$$\begin{split} c_{\scriptscriptstyle 0}(t,\ F) = & t^2 \{ t^{\scriptscriptstyle -1} E_{\scriptscriptstyle F}(a_{\scriptscriptstyle F,1} a_{\scriptscriptstyle F,2}) + E_{\scriptscriptstyle F}(a_{\scriptscriptstyle F,1} b_{\scriptscriptstyle F}) - 6^{\scriptscriptstyle -1} E_{\scriptscriptstyle F}(a_{\scriptscriptstyle F,1}^{\scriptscriptstyle 3}) \} / J_{\scriptscriptstyle 0}^{\scriptscriptstyle 1/2}(F,\ k) \\ & - E_{\scriptscriptstyle F}(a_{\scriptscriptstyle F}^{\scriptscriptstyle 3}_{\scriptscriptstyle -1}) / (6J_{\scriptscriptstyle 0}^{\scriptscriptstyle 3/2}(F,\ k)) \ . \end{split}$$

Choosing such a sequence $\{\tilde{d}_n\}$ we can calculate the power function corresponding to the test sequence $\{I_{\{T_n \leq d_n\}}(X_n)\}$. In a similar way to (3.3) we have

$$\begin{split} (3.4) \qquad P_{F,n} \{ T_n \leq d_n \} \\ = & \varPhi(tJ^{-1/2}(F, k)) - n^{-1/2} \phi(tJ^{-1/2}(F, k)) [-tJ^{1/2}(F, k) E_F(a_{F,1}a_{F,2}) \\ & + t^2 J^{1/2}(F, k) (E_F(a_{F,1}^3)/6 - E_F(a_{F,1}b_F))] + o(n^{-1/2}) \; . \end{split}$$

We can check easily that

$$E_{\scriptscriptstyle F}(a_{\scriptscriptstyle F,1}^{\scriptscriptstyle 3})\!=\!c_{\scriptscriptstyle 1}^{\scriptscriptstyle 3}\!(F,\,k)eta(F)/J^{\scriptscriptstyle 3}(F,\,k)$$
 ,

$$\begin{split} E_F(a_{F,1}a_{F,2}) &= -c_1(F,\,k)(c_3(F,\,k)\alpha(F) + \widetilde{c}_3(F,\,k)\widetilde{\alpha}(F))/J^2(F,\,k) \;, \\ E_F(a_{F,1}b_F) &= -c_1^2(F,\,k)(c_2(F,\,k)\delta(F) + \widetilde{c}_2(F,\,k)\widetilde{\delta}(F))/(2J^3(F,\,k)) \;. \end{split}$$

Hence the right hand side (R.H.S.) of the inequality (3.2) equals the R.H.S. of (3.4) up to the order $n^{-1/2}$.

Let $\{\hat{g}_n\}$ be any element of \mathscr{C} . We have by Proposition 1

$$(3.5) P_{F,n}\{n^{1/2}\langle k, \ \hat{g}_n - g_n(\cdot, F)\rangle \leq t\} = P_{F,n}\{n^{1/2}\langle k, \ \hat{g}_n - g_n(\cdot, G_{t,n})\rangle \leq \varepsilon_n\},$$

where $\{\varepsilon_n\}$ is a sequence of real numbers satisfying $\varepsilon_n = o(n^{-1/2})$. As $\{\hat{g}_n\}$ is a second order AMU estimator, we have

$$P_{G_{t,n},n}\{n^{1/2}\langle k, \ \hat{g}_n - g_n(\cdot, \ G_{t,n})\rangle \leq \varepsilon_n\} = 2^{-1} + o(n^{-1/2})$$
.

Since the test sequence $\{I_{T_n \leq d_n}\}$ is asymptotically most powerful with level $2^{-1} + o(n^{-1/2})$, it holds that

$$(3.6) P_{F,n}\{n^{1/2}\langle k, \hat{g}_n - g_n(\cdot, G_{t,n})\rangle \leq \varepsilon_n\} \leq P_{F,n}\{T_n \leq d_n\} + o(n^{-1/2}).$$

From (3.4), (3.5) and (3.6) we have the inequality (3.2) for t>0. Substituting -k for k in the inequality (3.2) for t>0 we have another inequality for t<0.

REMARK 3. Theorem 1 remains valid for \mathcal{E}_0 instead of \mathcal{E} , where \mathcal{E}_0 is the class of $\{\widehat{g}_n\}$ satisfying the same conditions as imposed for \mathcal{E} except for $B_n^*(F,c)$ being replaced by $B_n^{**}(F,c)$ in (3.1). Here $B_n^{**}(F,c)$ means the intersection of $B_n(F,c)$ and $\mathcal{E}_0(F) := \{G \in \mathcal{F}; dG = (1+k_n(x))dF, \sup\{|k_n(x)|; x \in R\} = O(n^{-1/2})\}.$

The following definition of second order asymptotic efficiency owes essentially to Akahira and Takeuchi [1]. If a sequence $\{\hat{g}_n\}$ in \mathscr{E} attains the bounds (3.2) for every $F \in \Theta$ for every $t \in \mathbb{R}$, and for every $k \in K$, then we call them second order asymptotically efficient AMU estimators.

§ 4. Second order asymptotic efficiency of bootstrap estimator.

Let \widehat{F}_n be the empirical (sample) d.f. based on the sample X_1, X_2, \dots, X_n . In this section we study some second order asymptotic properties of bootstrap estimator $\widehat{g}_{n,B}(\cdot) = g_n(\cdot, \widehat{F}_n)$. We have the following result about the second order asymptotic distribution of $\{\widehat{g}_{n,B}\}$.

THEOREM 2. Suppose that Assumption 2 is satisfied. Then, for every $F \in \Theta$, every $t \in R$ and every $k \in K$ we have

$$(4.1) P_{F,n}\{n^{1/2}\langle k, \hat{g}_{n,B} - g_n(\cdot, F)\rangle \leq t\}$$

$$= \Phi(tJ^{-1/2}(F, k)) - n^{-1/2}\phi(tJ^{-1/2}(F, k))\Psi^*(t, F, k) + o(n^{-1/2}),$$

where.

$$egin{aligned} & \Psi^*(t,\,F,\,k) \!=\! (c_{\scriptscriptstyle 2}(F,\,k)\gamma(F) \!+\! \widetilde{c}_{\scriptscriptstyle 2}(F,\,k)\widetilde{\gamma}(F))/(2J^{\scriptscriptstyle 1/2}(F,\,k)) \ & -(c_{\scriptscriptstyle 1}^{\scriptscriptstyle 3}(F,\,k)eta(F) \!+\! 3c_{\scriptscriptstyle 1}^{\scriptscriptstyle 2}(F,\,k)(c_{\scriptscriptstyle 2}(F,\,k)\delta(F) \!+\! \widetilde{c}_{\scriptscriptstyle 2}(F,\,k)\widetilde{\delta}(F)))/(6J^{\scriptscriptstyle 3/2}(F,\,k)) \ & + \Psi(t,\,F,\,k) \;. \end{aligned}$$

PROOF. For $k \in K$ and $F \in \Theta$ let $S_n = n^{1/2} \langle k, \hat{g}_{n,B} - g_n(\cdot, F) \rangle$, $W_n = n^{1/2}(\hat{F}_n - F)$ and $A_n = \{x_n \in X_n; \hat{F}_n \in B_n(F, c_n)\}$. By Proposition 2 and by the property $P_{F,n}\{A_n^c\} = o(n^{-1/2})$ we can verify

$$S_n = c_1(F, k) U_n + (c_2(F, k)Q_n + \tilde{c}_2(F, k)\tilde{Q}_n)/(2n^{1/2}) + (c_3(F, k) V_n + \tilde{c}_3(F, k) \tilde{V}_n)/n^{1/2} + \tilde{\varepsilon}_n,$$

where $U_n = \langle u_F, W_n \rangle$, $Q_n = \langle q_F W_n, W_n \rangle$, $\widetilde{Q}_n = \langle \widetilde{q}_F W_n, W_n \rangle$, $V_n = \langle v_F, W_n \rangle$ and $\widetilde{V}_n = \langle \widetilde{v}_F, W_n \rangle$. Here $\{\widetilde{\varepsilon}_n\}$ is a sequence of random variables such that $\sup\{|\widetilde{\varepsilon}_n|; x_n \in A_n\} = o(n^{-1/2})$. We put

$$S_n^* = c_1(F, k) U_n + (c_2(F, k)Q_n + \tilde{c}_2(F, k)\tilde{Q}_n)/(2n^{1/2}) + (c_3(F, k) V_n + \tilde{c}_3(F, k) \tilde{V}_n)/n^{1/2}$$
,

then we have

$$egin{aligned} E_F(S_n^*) &= (c_2(F,\,k)\gamma(F) + \widetilde{c}_{_2}(F,\,k)\widetilde{\gamma}(F))/(2n^{1/2}) \;, \ V_F(S_n^*) &= J(F,\,k) + 2c_1(F,\,k)(c_3(F,\,k)lpha(F) + \widetilde{c}_{_3}(F,\,k)\widetilde{lpha}(F))/n^{1/2} \;, \ E_F((S_n^* - E_F(S_n^*))^3) &= [c_1^3(F,\,k)eta(F) + 3c_1^2(F,\,k)(c_2(F,\,k)\delta(F)) \\ &+ \widetilde{c}_{_2}(F,\,k)\widetilde{\delta}(F))]/n^{1/2} + o(n^{-1/2}) \;. \end{aligned}$$

To prove this we use the fact that

$$egin{aligned} E_F(U_n^2) = c_1^{-2}(F,\,k)J(F,\,k)\;, & E_F(Q_n) = \gamma(F)\;, \ E_F(U_n^2Q_n) = 2\delta(F) + c_1^{-2}(F,\,k)J(F,\,k)\gamma(F) + O(n^{-1})\;, \ E_F(U_n^2\widetilde{Q}_n) = 2\widetilde{\delta}(F) + c_1^{-2}(F,\,k)J(F,\,k)\widetilde{\gamma}(F) + O(n^{-1})\;, \ E_F(U_n^2V_n) = O(n^{-1/2})\;, & E_F(U_n^2\widetilde{V}_n) = O(n^{-1/2})\;, & E_F(U_n^3) = eta(F)/n^{1/2}\;, \ E_F(U_nQ_n) = O(n^{-1/2})\;, & E_F(U_n\widetilde{Q}_n) = O(n^{-1/2})\;, & E_F(V_nQ_n) = O(n^{-1/2})\;, \ E_F(V_n\widetilde{Q}_n) = O(n^{-1/2})\;, & E_F(\widetilde{V}_nQ_n) = O(n^{-1/2})\;. \end{aligned}$$

Hence according to the Gram-Charlier (Edgeworth) expansion, we have

$$(4.3) P_{F,n}\{S_n^* \leq t\} = \Phi(tJ^{-1/2}(F,k)) - n^{-1/2}\phi(tJ^{-1/2}(F,k))\Psi^*(t,F,k) + o(n^{-1/2}).$$

In fact, this can be shown by Esseen's smoothing lemma as follows (cf. Feller [7], XVI. 3, Lemma 2). Let $\widetilde{S}_n = (S_n^* - \mu_n^*)/\sigma_n^*$, $\mu_n^* = E_F(S_n^*)$, $\sigma_n^{*2} = V_F(S_n^*)$ and $\kappa_{3,n} = E_F(\widetilde{S}_n^3)$. Define $\widetilde{F}_n(x) = P_{F,n}\{\widetilde{S}_n \leq x\}$ and $K_n(x) = \Phi(x) - \phi(x)(x^2-1)\kappa_{3,n}/6$, and denote by $\rho_n(u)$, $\psi_n(u)$ the Fourier transforms of \widetilde{F}_n , K_n respectively. We note that $\psi_n(u) = e^{-u^2/2}(1 + \kappa_{3,n}(iu)^3/6)$. By Esseen's lemma, for any M>0

$$(4.4) \qquad \sup_{x \in R} |\widetilde{F}_n(x) - K_n(x)| \leq \pi^{-1} \int_{-Mn^{1/2}}^{Mn^{1/2}} (|\rho_n(u) - \psi_n(u)|/|u|) du + K_0/(n^{1/2}M),$$

where K_0 is a constant not depending on n and M. For $\delta > 0$ ($\delta < M$) let

$$\begin{split} J_{1,n} &= \int_{|u| \le \delta n^{1/2}} (|\rho_n(u) - \psi_n(u)|/|u|) du \ , \\ J_{2,n} &= \int_{\delta n^{1/2} \le |u| \le |W|^{1/2}} (|\rho_n(u) - \psi_n(u)|/|u|) du \ . \end{split}$$

We note that S_n^* can be rewritten as follows:

$$S_n^* = n^{-1/2} \sum_{i=1}^n U_{i,n}^* + n^{-1} \sum_{i=1}^n V_{i,n}^* + 2^{-1} n^{-3/2} \sum_{i=1}^n \sum_{j=1}^n Q_{ij,n}^*$$
 ,

where

$$egin{aligned} U_{i,n}^* &= \langle c_1(F,\,k) u_F,\, y_{F,i}
angle / \sigma_n^* \;, \ V_{i,n}^* &= \langle c_1(F,\,k) \, V_F + c_2(F,\,k) \, \widetilde{V}_F,\, y_{F,i}
angle / \sigma_n^* \;, \ Q_{i,n}^* &= (\langle (c_2(F,\,k) q_F + \widetilde{c}_2(F,\,k) \widetilde{q}_F) y_{F,i},\, y_{F,j}
angle - \mu_{ij}) / \sigma_n^* \end{aligned}$$

and

$$\mu_{ij} = E_F(\langle (c_2(F, k)q_F + \widetilde{c}_2(F, k)\widetilde{q}_F)y_{F,i}, y_{F,j} \rangle)$$
 .

Taking account of the condition (c) of Assumption 2, since the random variables $\{U_{i,n}^*, V_{i,n}^*, Q_{ij,n}^*\}$ are bounded, we can verify $J_{1,n} = o(n^{-1/2})$ with argument similar to Callaert et al. [5], Section 3.

Let

$$J'_{2,n} = \int_{\delta n^{1/2} < |u| < M n^{1/2}} (|\rho_n(u)|/|u|) du ,$$

$$J''_{2,n} = \int_{\delta n^{1/2} < |u| < M n^{1/2}} (|\psi_n(u)|/|u|) du .$$

It is clear that $J_{2,n}^{"}=o(n^{-1/2})$. By a similar method to the one used in Callaert et al. [5], Section 4, we can evaluate $J_{2,n}^{"}$ as follows. Let

$$\widetilde{g}_{in} = U_{i,n}^* + n^{-1/2} V_{i,n}^* + 2^{-1} n^{-1} Q_{ii,n}^*$$
 , $A_{m,n} = \sum_{i=1}^m \widetilde{g}_{in}$ and $B_{r,s,n} = \sum_{k=1}^r \sum_{l=k+1}^s Q_{k,l,n}^*$.

We have by Taylor expansion

$$(4.5) \gamma_n(u) := E_F(\exp(iuS_n^*))$$

$$= E_F[\alpha \{1 + i(2u)n^{-3/2}B_{m,n} + 2^{-1}(2iun^{-3/2}B_{m,n})^2 \exp(2i\theta un^{-3/2}B_{m,n})\}].$$

where $\alpha = \exp(iun^{-1/2}A_n)\exp(2iun^{-3/2}(B_{n-1,n}-B_{m,n}))$ and $0 < \theta < 1$. We put

$$I_1\!=\!E_F(lpha)$$
 ,
$$I_2\!=\!E_F(2ilpha un^{-3/2}B_{m,n})\,,$$
 $I_3\!=\!E_F[2^{-1}(2iun^{-3/2}B_{m,n})^2\exp(2i heta un^{-3/2}B_{m,n})]$.

From Lemma 4 in Feller [7], XV. 1, we have

$$\begin{split} |I_1| & \leq |E_F(\exp(iun^{-1/2}A_m))| \leq (1-\eta_0)^m \\ & \text{for some constant } \eta_0, \ 0 < \eta_0 < 1, \ \text{and also} \\ & |I_2| \leq 2|u| n^{-3/2} \sum_{j=1}^m \sum_{k=j+1}^n \{|E_F(\exp(iun^{-1/2}\widetilde{g}_{1,n}(X_1))|^{m-2} \cdot E_F(|Q_{j,,k,n}^*|)\} \\ & \leq K_1|u| n^{-1/2} m (1-\eta_0)^{m-2} \\ & (K_1 \text{ is a constant not depending on } m, \ n \text{ and } u) \; . \end{split}$$

From the martingale property of $\{B_{m,n}\}$ (cf. Lemma 1 in Callaert et al. [5]) we have

(4.7)
$$|I_3| \leq u^2 n^{-3} E_F(|B_{m,n}|^2) \leq K_2 n^{-2} m u^2$$
 (K₂ is a constant independent of u , n , m).

Taking m to be $m=n^{1/4}$ it follows from (4.5), (4.6) and (4.7) that

(4.8)
$$\sup\{|\gamma_n(u)|; n^{1/2}\delta < |u| < n^{1/2}M\} = o(n^{-1/2}).$$

Thus we have $J_{2,n}=o(n^{-1/2})$. Hence it follows from (4.4) that

(4.9)
$$\sup_{x \in R} |\widetilde{F}_n(x) - K_n(x)| = o(n^{-1/2}).$$

We note that from (4.2) it follows

$$(4.10) P_{F,n}\{S_n \leq t\} = P_{F,n}\{S_n^* \leq t\} + o(n^{-1/2}).$$

From (4.9) and (4.10) we have the desired expansion (4.1).

For $F \in \Theta^*$ let $\tau(F) = E_F(\langle u_F, y_{F,1} \rangle^2)$, and define

$$\begin{split} h(x,\,F) &= w_F^{(2)}(x) \{ -(\gamma(F)/2) + \delta(F)/(2\tau(F)) \} \\ &+ \widetilde{w}_F^{(2)}(x) \{ -(\widetilde{\gamma}(F)/2) + \widetilde{\delta}(F)/(2\tau(F)) \} + w_F^{(1)}(x)\beta(F)/(6\tau(F)) \; . \end{split}$$

We define $g_{n,B}^*(x) = \hat{g}_{n,B}(x) + n^{-1}h(x, \hat{F}_n)$. From Theorems 1 and 2 we have the following result which asserts that the corrected bootstrap estimator $\{g_{n,B}^*\}$ is a second order asymptotic efficient estimator of $\{g_n\}$.

THEOREM 3. Suppose that Assumption 2 is satisfied. We assume that β , γ , $\tilde{\gamma}$, δ , $\tilde{\delta}$ and τ are continuous with respect to F on Θ^* and that $w_F^{(1)}(x)$, $w_F^{(2)}(x)$, $\tilde{w}_F^{(2)}(x)$ are continuous with respect to F as functions from Θ^* to \mathscr{B} . Then we have

- (a) $\{g_{n,B}^*\}$ is a second order AMU estimator of $\{g_n\}$.
- (b) $\{g_{n,B}^*\}$ is a second order asymptotically efficient AMU estimator of $\{g_n\}$.

PROOF. Take any $k \in K$, any $F \in \Theta$ and any sequence $\{G_n\}$, $G_n \in B_n^*(F, c_n)$ and let $\hat{S}_n = n^{1/2} \langle k, g_{n,B}^* - g_n(\cdot, G_n) \rangle$. By a similar argument to that developed for $\{S_n\}$ in the proof of Theorem 2 we have the following expansion for $\{\hat{S}_n\}$:

$$(4.11) P_{G_n,n}\{\widehat{S}_n \leq t\} \\ = \Phi(tJ^{-1/2}(G_n, k)) - n^{-1/2}\phi(tJ^{-1/2}(G_n, k))\Psi(t, G_n, k) + o(n^{-1/2}).$$

From this we have $\{g_{n,B}^*\} \in \mathscr{C}$. In particular if we take G_n to be F in (4.11) then the R.H.S. of (4.11) equals the R.H.S. of (3.2) up to the order $o(n^{-1/2})$. Therefore $\{g_{n,B}^*\}$ is a second order efficient AMU estimator of $\{g_n\}$.

§ 5. An example satisfying Assumption 2.

In this section we give a typical example satisfying Assumption 2. Following Beran [2], Section 3, let $\hat{T}_n = 2n^{-1}(n-1)^{-1} \sum_{1 \le i < j \le n} t(X_i, X_j)$ be the second degree U-statistic where t is symmetric in its arguments. We assume that, as in Beran [2], t is absolutely continuous, vanishes outside a square [-B, B] and has essentially bounded derivative. Let μ be the Lebesgue measure on [-B, B]. Let $m(G) = E_G(t(X_i, X_2))$, $g_G(X_i) = E_G(h_G(X_i, X_j) \mid X_i)$, $h_G(X_i, X_j) = t(X_i, X_j) - m(G)$, $d_G(X_i, X_j) = h_G(X_i, X_j) - d_G(X_i, X_j) = d_G(X_i, X_j) = d_G(X_i, X_j) - d_G(X_i, X_j) - d_G(X_i, X_j) - d_G(X_i, X_j) = d_G(X_i, X_j) - d_G(X_i, X_$

 $g_{G}(X_{i})-g_{G}(X_{j}), \ s_{G}^{2}=E_{G}(g_{G}^{2}(X_{1})), \ s_{n}^{2}(G)=V_{G}(n^{1/2}\hat{T}_{n}) \ \text{and} \ s_{0}(G)=2s_{G}.$ Let \mathscr{V}_{0} be the class of functions v on R such that $v(t)=a^{-1}(1-a^{-1}|t|)^{+}$ for some a>0. Define

$$\begin{split} k_{\scriptscriptstyle 3}(G) = & s_{\scriptscriptstyle G}^{\scriptscriptstyle -3}[E_{\scriptscriptstyle G}g_{\scriptscriptstyle G}^{\scriptscriptstyle 3}(X_{\scriptscriptstyle 1}) + 3E_{\scriptscriptstyle G}\{g_{\scriptscriptstyle G}(X_{\scriptscriptstyle 1})g_{\scriptscriptstyle G}(X_{\scriptscriptstyle 2})d_{\scriptscriptstyle G}(X_{\scriptscriptstyle 1},\;X_{\scriptscriptstyle 2})\}] \;, \\ k_{\scriptscriptstyle 4}(G) = & s_{\scriptscriptstyle G}^{\scriptscriptstyle -4}[E_{\scriptscriptstyle G}g_{\scriptscriptstyle G}^{\scriptscriptstyle 4}(X_{\scriptscriptstyle 1}) - 3s_{\scriptscriptstyle G}^{\scriptscriptstyle 4} + 12E_{\scriptscriptstyle G}\{g_{\scriptscriptstyle G}^{\scriptscriptstyle 2}(X_{\scriptscriptstyle 1})g_{\scriptscriptstyle G}(X_{\scriptscriptstyle 2})d_{\scriptscriptstyle G}(X_{\scriptscriptstyle 1},\;X_{\scriptscriptstyle 2})\} \\ & + 12E_{\scriptscriptstyle G}\{g_{\scriptscriptstyle G}(X_{\scriptscriptstyle 2})g_{\scriptscriptstyle G}(X_{\scriptscriptstyle 3})d_{\scriptscriptstyle G}(X_{\scriptscriptstyle 1},\;X_{\scriptscriptstyle 2})d_{\scriptscriptstyle G}(X_{\scriptscriptstyle 1},\;X_{\scriptscriptstyle 3})\}] \;, \\ & t_{\scriptscriptstyle 1}(x) = \phi(x)(x^2 - 1)/6 \;, \\ & t_{\scriptscriptstyle 2}(x) = \phi(x)(x^3 - 3x)/24 \end{split}$$

and

$$t_3(x) = \phi(x)(x^5 - 10x^3 + 15x)/72$$
.

Let Θ^* be the set of d.f. F on R such that $s_0(F) \neq 0$. Let $J_n(x, G) = P_{G,n}\{n^{1/2}(\hat{T}_n - m(G))/s_n(G) \leq x\}$ and define for $v \in \mathscr{V}_0$ $J_{n,v}(\cdot, G) = J_n(\cdot, G) * v$, which means the convolution of J_n and v. Let $\{c_n\}$ be any sequence of positive numbers satisfying $n^{-1/2}c_n^3$ tending to 0 as $n \to \infty$. Using essentially the same argument as in Beran [2], Section 3, we have

$$(5.1) \qquad \sup_{G \in B_n(F,c_n)} |s_n(G) - s_n(F) - \langle h_F^*, G - F \rangle - 2^{-1} \langle q_F(G - F), G - F \rangle| = o(n^{-1})$$

and

$$(5.2) \qquad \sup_{G \in B_n(F,\sigma_n)} |k_8(G) - k_8(F) - \langle v_F^*, G - F \rangle| = o(n^{-1/2}) ,$$

where $h_F^*(x) = 4(g_F(x) + 2m(F))e_F(x)/s_0(F)$, $e_F(x) = \int_R F(y)t_{11}(x, y)dy$ ($t_{11}(x, y)$ denotes the derivative of t(x, y)), and q_F^* , v_F^* are some functions contained in $L^1(\mu) \times L^1(\mu)$ and $L^1(\mu)$ respectively. We can also verify

(5.3)
$$\sup_{G \in B_n(F, c_n)} || J_{n,v}(\cdot, G) - \Phi_v(\cdot) + n^{-1/2} k_3(G) t_{1,v}(\cdot) + n^{-1}(k_4(G) t_{2,v}(\cdot) + k_3^2(G) t_{3,v}(\cdot)) || = o(n^{-1}) .$$

Here Φ_v , $t_{i,v}$ (i=1, 2, 3) mean the convolutions of Φ , t_i (i=1, 2, 3) and v respectively.

Define $g_n(x, G) = J_{n,v}(x/s_n(G), G)$ for some $v \in \mathcal{V}_0$ and let Θ be the set of all $F \in \Theta^*$ such that the d.f. of $\langle h_F^*, y_{F,1} \rangle$ is non-lattice. From (5.1), (5.2) and (5.3) we can verify that $\{g_n\}$ satisfies Assumption 2 with

$$\begin{split} g_{n,0}(x,\,G) = & \varPhi_v(x/s_n(G)) \ , \qquad g_{n,1}(x,\,G) = -k_3(G)t_{1,v}(x/s_n(G)) \ , \\ g_{n,2}(x,\,G) = & -k_4(G)t_{2,v}(x/s_n(G)) - k_3^2(G)t_{3,v}(x/s_n(G)) \ , \qquad u_F(x) = h_F^*(x) \ , \end{split}$$

ACKNOWLEDGEMENTS. Most part of this work has been done during my stay as a visiting scholar in the Department of Statistics, University of California, Berkeley. I would like to express my thanks to all people of the department, especially the late Professor E. Barankin and Professor L. LeCam for their kind hospitality and encouragements. Also I wish to thank Professor P. Bickel for his kindness to give me the literature [3] and Mr. R. Liu for helpful discussions.

References

- [1] M. AKAHIRA and K. TAKEUCHI, Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency, Lecture Notes in Statistics, Springer-Verlag, 1981.
- [2] R. Beran, Estimated sampling distributions: the bootstrap and competitors, Ann. Statist., 10 (1982), 212-225.
- [3] P.J. BICKEL and D.A. FREEDMAN, On Edgeworth expansions for the bootstrap, unpublished report, 1980.
- [4] P.J. BICKEL and D.A. FREEDMAN, Some asymptotic theory for the bootstrap, Ann. Statist., 9 (1981), 1196-1217.
- [5] H. CALLAERT, P. JANSSEN and N. VERAVERBEKE, An Edgeworth expansion for U-statistics, Ann. Statist., 8 (1980), 299-312.
- [6] B. Efron, Bootstrap methods: another look at the jackknife, Ann. Statist., 7 (1979), 1-26.
- [7] W. Feller, An Introduction to Probability Theory and Its Applications 2, Wiley, New York, 1966.
- [8] K. Singh, On asymptotic accuracy of Efron's bootstrap, Ann. Statist., 9 (1981), 1187-1195.

Present Address:

DEPARTMENT OF MATHEMATICS
SCHOOL OF SCIENCE AND ENGINEERING, WASEDA UNIVERSITY
OKUBO, SHINJUKU-KU, TOKYO 160, JAPAN