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Introduction.

Let d be a positive integer and d=2 (see Remark in §3 for d=0, 1).
Let us denote by £ (C**') the space of entire funections on C?*'. Suppose
» is an arbitrary complex number and &7,(C**)={f € &7 (C**); A,f = —A\f},
where A,=3%*1(0/02,).

Let us consider the algebraic variety M,={z e C*; 2*=p0%}, where
=322 and peC. If p=0, M, is a complex cone and has a singularity
at z=0. On the other hand if p+#0, M, is a complex manifold and
holomorphically diffeomorphic to the complex sphere S =M, ={ze C%"; 22=1}
by the transformation z— pz. The space & (M,) of holomorphic functions
on the analytic set M, is equal to &(C**)| w, by the Oka-Cartan Theorem B.

Our first main result is as follows:

THEOREM 1. The restriction mapping F— F|, . 18 a linear topological
isomorphism of &, (C**') onto & (M,) if

(=) WO/2)™m AT a1y 2 (MO) # O
holds for m=0,1,2, .-, where J, is the Bessel function of order v.

If 0=0, the condition (x*) holds automatically and Theorem 1 was
proved in [7] and [8]. The case 0+#0 is proved in this paper (Theorem
2.1). Remark that Theorem 1 holds locally at the origin (see [9] for o=0
and Corollary 2.4 for 0#0). We may interpret Theorem 1 as saying that
the set M, is a uniqueness set for the differential operators A,+3\*. We
described in [10] a uniqueness set for more general linear partial differ-
ential operators of the second order with constant coefficients. 5

In [5] the space Exp(S) was defined to be the restriction to S of the
space Exp(C%*') of entire functions of exponential type. But this defini-
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tion is unnatural. The space Exp(§) ought to be the space of holomorphic
functions defined solely on S and satisfying the exponential type growth
condition.

The second main result of this paper is that the above two definitions
are equivalent. More precisely we will prove

THEOREM 2. The restriction magping F— F|; is a linear topological
1somorphism of Exp,(C**) onto Exp(S) if

N2) ™R e (M) 0

holds for m»=0, 1, 2, -+, where Exp,(C**)=,(C**) N Exp(C**") (ef. Theo-
rem 3.1).

In the previous papers [5] and [9] we used the Lie norm to define
the exponential type of holomorphic functions. But by means of the dual
Lie norm we can obtain more detailed informations on the exponential
type as described in Theorem 3.1. Because Exp(S: (4: L))=Exp(S: (24: L*))
our present results can be stated with the Lie norm in special cases
(Corollary 3.5).

The author would like to thank Professor M. Morimoto for his helpful
suggestions.

§1. Preliminaries.

Let d be a positive integer and d=2. S=2S8¢ denotes the unit sphere
in R**': S={x ¢ R**; ||x||=1}, where ||z|*=a2+ i+ - .- +2%,,. ds denotes the

unique O(d+1) invariant measure on S with | 1ds=1, where O(k) is the

orthogonal group of degree k. | |l. is the suéi) norm on S. H,, is the
space of spherical harmonics of degree = in (d+1) dimensions. For spheri-
cal harmonics, see Miiller [6]. For S, e H,, S, denotes the unique homo-
geneous harmonic polynomial of degree n on C?*' such that S, |,=S8S,.

For 2, {eC** we put z-{=3%12,{;, The Lie norm L(z) on C%" ig
defined as follows:

(1.1) L(z)={||z]"+ (l|2[|*— |*])"*}* ,

where z e C**, |z||=(2:Z)"® and 2*=z-2 (see Druzkowski [1]).
We put

B(r)y={z € C**'; L(z)<r} for 0<r=<oo
and

Blrl={z e C***; L(z) <7} for 0Z5r<o .
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Let~us denote by <7 (B(r)) the space of holomorphic functions on B(r).
(B(0))=7(C**") is the space of entire functions on C%*. We define

2 (B[r) =inq>lim o(B)) .
Let N be a norm on C¢*, For A>0 we put
Xy v={f e 2(C**); sup |f(2)] exp(—AN(2)) < o}

zeC

and we define
Exp(C?*': (A: N))=projlim X, for 0£A< o,
LA'>4
Exp(C%**: [A: N])=ind lim X, » for 0<AZ .
A’<A

Exp(Cét)=Exp(C?**:[~: N]) is called the space of entire functions of
expogential type. _
S is the complex sphere: S={zecC*"*; 2*=1}. We put for 1<r=<oco
Sry=B@>)nS
and for 1=5r<e
S[r1=B[r1nS.
Let us denote by <°(S(r)) the space of holomorphic functions on S(r)

equipped with the topology of uniform convergence on every compact
subset of S(r). We put

& (S[r)=ind lim 2(8(x)) .
For these spaces, see [3] [4] [5].

If f is a function on S, we denote by S,(f; ) the n-th spherical
harmonic component of f:

1.2) S.(f; &)= N(n, d)ssf(s)Pn,d(a-s)ds for aeS,
where

s _ (@n+d—1)n+d—2)!
(1.3) N(n, d)=dim H, ;= T A=D1

and P, ,; is the Legendre polynomial of degree n and of dimension d+1.
For Legendre polynomials, see for example [6]. We see that S,(f; )
belongs to H,, for n=0,1, ---.

2 (8(r)) and <(S[r]) can be characterized by the behavior of the
spherical harmonic development as follows:
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LEMMA 1.1 (Morimoto [5] Theorems 5.1 and 5.2). If S, 18 the n-th
spherical harmonic component of f, then

(1.4) fe28(r) = limsup|S,[¥<1/r (A<r=sec),
(1.5) feo ) = lim sup||S,[l¥"<1/r  (I1=r<e).

Put 4,={(n, k) € Z°;; n=Fk (mod 2) and n=k}, where Z,={0, 1,2, ---}.
For any F' e #(B(r)) we can determine uniquely S, .(F; )€ H,, for every
(n, k)e A4, in such a way that

(1.6) F(z)= m’k)zm V)8, (F; 2) .

The right hand side of (1.6) converges uniformly on every compact subset
of B(r). The S,.F; ) is called the (n, k)-component of F (see [3]).

For A € C we put 2 (B(r))={fec 2(Br); A.f(z)=—N\f(2)} and & B[r])
=ind lim,.», 2(B(")), where A,=(5/02,)*+(8/02,)*+ + + + +(8/024..)".

~

§ 2. Holomorphic functions on S.

We recall the definition of the Bessel function of order vy (v —1,—2,---):

r0-r

Our first main theorem in this paper is the following:
THEOREM 2.1. Let v €C and
()1/2)—7‘—(d_l)/z']n+(d—1)/2(x') 7& 0

for any neZ,.. Then the restriction mapping F— F'|z defines the follow-
wng linear topological isomorphism:

2.2) a;: (€Y — 2(S) .
In order to prove the theorem we need the following

LEMMA 2.2 (cf. [3]1[4][9]). Let F e 2y B(r)) (resp. F e & (B[r]) and
S,.. be the (n, k)-component of F. Then we have

(2.3) S .= (N2 *T(k+(d+1)/2)
" T(n—RR2+ DM (n+k+d+1)2)

Jor (n,k)ed,. and
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(2.4) lim sup||S, .| =1/r
(resp.
(2.4") lim sup||S, .|[[Y"<1/r) .

Conversely if we are given a sequence of spherical harmonics {S, }u.u e N
satisfyingN(Z.S) and (2.4) (resp. (2.8) and (2.4")) and if we put for z e B(r)
(resp. z € B[r])

(2.5) : Fz)y= >, 0 Z)*S,. .,

ey edy
then the right hand side of (2.5) converges uniformly and absolutely on
every compact subset of B(r) (resp. the right hand side of (2.5) converges

in the topology of Zy(Blr]) and F belongs to &y B(r)) (resp. F belongs
to & B[r]). Furthermore we have

S,2)=8,(F;2) for (n, k)ed, .

PROOF OF THEOREM 2.1. It is clear that «2,(C**)|sC & (C)|5=(S).
Let Fe 2,(C*"). From (1.6) and (2.8) we have for z e C**

26)  F@)=3, 00/ F /27 I, n0/ TN+ @+ 1)/2)50(2)

where S, , is the (k, k)-component of F. If a;(F)=0 we have

@7 FE=3 M2 OO (bt (d+1)/2)S, () =0

for any s€S. Since (\/2)*~“ V2], 4y (W (k+(d+1)/2)%0 for any ke Z,,
S;..=0 on S by the orthogonality of spherical harmonics. So §,,,,,=O on
C’** and F'=0 on C’"* by (2.6). Therefore a; is injective.

Next for fe «(S) we determine the function F as follows:

2.8) F@)= 5 0/2r*8.,
where
(2.9) 5. .(2)= (A[2)r =D 1)z (F; 2)

I'(n—k)24+1)I(n+k+d+1)/2) 4t gneV)
As fe (S), we get
(2.10) lirfcl_iuPHSk(f; k=0

by (1.4). For sufficiently large k¥ we have
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(2.11) [Tk +(d+1)/2)(M2) ™y g-nn(W) > 172
(2.9), (2.10) and (2.11) imply

1/k

| J2PFHRS ()
T (ke +(d+1)/2)J 4+ -0

=lim sup(|S,(f; DIZ*=0.

(2.12) lin% supllS,,,,,lIié"=lirkn sup

<0

By Lemma 2.2, (2.9) and (2.12), we see Fe 2,(C**'). When zeS, we
have by (2.8) and (2.9)

(2.13) F@&)=3 8 9)=1(2) .

Therefore a; is bijective. 5
It is clear that q; is continuous. As &,(C**') and £7(S) are FS spaces,
a;! is also continuous by the closed graph theorem. Q.E.D.

When (A/2)""%12J, ,;_.,(\)=0 for some n € Z,, it is known that »
is real and that (\/2) * " V2J,, u-1,.(\)#0 for any ke Z, with k#n. So
we have

COROLLARY 2.3. Suppose (\/2)"* V2] . anrA)=0 for some neZ,.
F e &,(C**") belongs to the kernel of a; if and only if F is expressed in
the form of

F2)=0WZ (2" 42T 4OV 7)8,(2)

where S, eH,,.
fe (8) belongs to the images of a, tf and only if the n-th spherical
component S,(f; ) vanishes.

For peC we put
M,={ze C**; 2*=p?% .
It is clear that S=M,. We put for 0<|p|<r=< o
M,(r)=M,N B(r)
and for 0=Z|o|=r<eo
Mrl=M,N B[r] .

& (M,(r)) denotes the space of the holomorphic functions on M,(r) equipped
with the topology of uniform convergence on every compact subset of
M, r). We define &#(M,[r])=ind lim,.., &’(M,,('r'))‘.
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COROLLARY 2.4. Let \, 0€C and (\o/2)™" V2], a_100)#0 for any
neZ,.. Then the following restriction mappings are linear topological
1somorphisms:

(2.14) Qo: OB P(M(r))  for 0S|p|<r<o,
(2.15) ot OABlr) = 2(M,[r])  for 0=s|p|Sr<es.

We can prove Corollary 2.4 in the same way as in the proof of
Theorem 2.1 if we use Lemmas 1.1 and 2.2.

REMARK. The case =0 and 0=1 is known (see [4][5]). The case
©0=0 is proved in [9].

~

§ 3. Holomorphic functions of exponential type on S.
We put for a norm N(z) on C¢** and A>0
Y, x={f € Z(8); sup|f(z)lexp(—AN(z))<oo} .

ze S

Y, » is a Banach space with respect to the norm
1flav=sup|f(2)lexp(— AN()) .
We define
Exp(S: (4: N))=proj lim You for 0A<oo,
Exp(S: [A: N])=in§;lii;n Y n for 0<A= < .
The dual Lie norm L*(z) on C*" is defined as follows:

3.1) L*(z)=sup{lz-C]; L) =1}
—(lzlP+ 127\
(=)
(see [1]).
The second main theorem in this paper is the following:
THEOREM 3.1. Suppose ne€C and
(N2)F 0T gy n(M) #0

Jor any keZ,. Then the following restriction mappings are linear
topological tsomorphisms:

3.2) a; : Bxp,(C*: (A: L*)) =~=, Exp(S: (4: L*)) (ANSA< ),
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(8.83)  a;: Exp(C**: [A: L*) ==, Exp(S: [4: L*]) (M\<AZ ),
where

Exp;(C**: (A: N))=(C**™)NExp(C¢*: (A: N))
and

Exp,(C**: [A: N])=2(C**) N Exp(C?**: [A: N]) .

We put S[rl={ze8; L*@)=r}={z+iy; ||lz|=7, |ly||=(*—~1)" and x-y=
0} for 1<r, where z, y € R**. Remark that O(d+1) acts on S[r] by
matrix multiplications and we have S[r]=0(d+1)/0(d—1). In order to
prove the theorem we need the following lemmas.

LEMMA 3.2. For any «, s€S we have

(3.4) N(n, d)SS[ PP, (25
=C,(r)P,,f(@-8)0,, »

where

(3.5) C.(r) =P, (2r*—1)

and dz denotes a unique O(d+1)-invariant measure on S[r] with
g ldz=1.
Slr

PROOF. We put for s, €S

(3.6) F(s, &)= N, d)S PP, o)z -

SC

Then for any orthogonal matrix A
F(As, Aa)=N(n, d)gs[ P,z A5)P, (o Aa)dz
— N(n, d)Ss[r]P,,,d(A‘lzos)___P,,,,,(A' Za)dz .

Since dz is O(d+1)-invariant we obtain
8.7 F(As, Aa)=F(s, )

for any AeO(d+1). As a function of s, F(s, a) belongs to H,, and as
a function of «a, F(s, ) belongs to H,; because P, (z2-s)e H,, and
P, (z-a)=P,(Z-a)e H,, if zeS.

Suppose n=#k. There exists an A € O(d+1) such that Aa=s and As=a.
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Then (3.7) implies

(3.8) Fla, 8)=F<(s, a) .
If we fix a, (8.8) gives that F(s, a)e H, ;N H, ,={0}. So we have
(8.9) F(s, a)=0 if k#n.

Next we assume n=k. For any AecO(d+1) such that Aa=a we
have from (8.7) F(4s, a)=F(As, Aa)=F(s, ). Hence we get

(3.10) ‘ F(s, a)=C,(r)P, (s -a) ,
where
(8.11) C.(r)=F(a, a)=N(n, d)Ss[ P,z )lidz

(see Miiller [6]). Remark that C,(r) does not depend on a because F(a, a)=
F(Aa, Aa) for any AeO(d+1) by (3.7). So it is valid that

(3.12) C.(r)= SSC,,('r)ds

= N(n, d)s ]§S|Pn,,,(z.s)12dsdz .

Slr

As P, -2)eH,, for any ze S we have

N, d) P, uG-5)Py,z-8)ds =P, ¢ 2)
for any {eC?*. If (eSS, P, (-8)=P, (('s). So we obtain for any ze S
(3.13) Nn, D) P, o(z8)ds=P, @ 2)= P,z .

If zeS[r], L*()*=(||z|*+1)/2=7* from (3.1). Therefore we see that ||z||*=
2r°—1 and we obtain (3.5) from (8.12) and (3.18). (8.4) follows from (8.6),
(3.9) and (3.10). Q.E.D.

LEMMA 8.8. Suppose fe (S). Then the n-th spherical harmonic
component S,(f; ) is represented as follows:

(3.14) S.(f; a):MS f@)P, (z-a)dz for a€S.
Cn(’)") Slrl

PrROOF. Since the series >, §k(f; z) converges to f uniformly and
absolutely on S[r], we have
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(3.15) Ssm ()P Az a)dz
=3 | 8 P e

It is known that there exists a system of N(k, d) points a,, a, *--,
Oxw.ay €S such that P, a;c ), 7=1,2, .-+, N(k, d), is a basis of H,,.
Therefore Lemma 8.2 and (3.15) imply (3.14). Q.E.D.

LEMMA 8.4. Let Fe Z,(C") and S, be the (k, k)-component of F.
If we have

(3.16) lim sup(k! S ll)* <4 (M=A<),
(resp.
(3.16") lim sup(%! (IS, bll)* <A (M<A=e0)),

then F belongs to Exp,(C**:(A: L*)) (resp. Exp,(C**:[A:L*)), where
9]z« =sup{|g(2)|; L*(2)=1}.

ProoF. If =0 Lemma 8.4 can be proved easily by Lemma 4.2 in [5].
Suppose A #0, F'e &,(C**") and (S, ;}i.z, satisfies (3.16). Then by (3.16)
for any A’>A there is some C,. >0 such that

(3.17) 18, (IS Cuke) A"  if L*@)<1.
From (1.6) and (8.17) we have for z€ M,

(3.18) F@ISS, 184S 00 5 AL @)

=C4 exp(A’'L*(2)) .

It is known that for any f € £7(C**") such that sup,.,,|f(2)lexp(—A'L*(2)) <
for any A’ > A (resp. some A’ < A), there exists a unique g € Exp,(C%**: (A4: L™))
(resp. g € Exp,(C**:[A: L*])) such that f=g on M, if \|S<A<o (resp.
N <A ) (ef. [8] Corollary 3.4). Therefore we can see F' belongs to
Exp,(C%*: (A: L*)) by (8.18). The rest of the proof is a routine argument.
Q.E.D.
ProOOF OF THEOREM 3.1. It is clear that a,(Exp,(C**':(A:L*))C
Exp(S: (A: L*)) and a, is injective by Theorem 2.1.
Suppose feExp(S: (A: L*)). Then for any A’>A there is some
C,.>0 such that

(3.19) | f(2)|=C. exp(A’L*(2))
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on S. By Theorem 2.1 there exists a unique F'e &, (C**") such that
o,(F)=f and by (2.6)

~ N (N 2)k+ @12 S fa)
(8-20) Sl &) = T+ DT oran) )

It is known

— F(d/Z) ' 2 14\ (1 — m2)(d~8)/2
P, 0) =) l/?g_l(H—l/t Tor)n(1 — ) =972

for t=1. Therefore we have for t=1

P, 2 ﬁiﬁ’f)ig/g)ll/).;c_ [ a+ara—ayera

_ 2@/ Mn+(d—1)/2)
I'n+d—10W"1 )
=>2°Cyn+d)4t—1)",

t2 — 1)n/2

where C, is a constant which depends on d. Hence we get for any r>1

(3.21) Co(r)=P, [2r*—1)22"Cy(n+d)~*(2r'—2)"
> om0, (n+d)4(r—1)" .

By (3.11), (8.14) and Schwarz’ inequality, we have

<N D : opdel”
@22 80 =P ir@rde] P e 9rde)

<(N(n, &)/C,(r)" sup | (@) -

From (3.19), (3.21) and (3.22) we have

(3.28) ISUF llasCrer LN DUe+d) uirs
2F(pr—1)*

for any »>1, where C} is a constant. If we put r=k/A’+1, (8.23) gives that

(3.24) 18fi M-S Ciet(S2) VN, D+ay -

By Stirling’s formula we have

k!ek )I/k_

lim sup( o

k~rc0

So (3.24) implies
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(3.25) lim sup(®! [Su(f; ll=)"*=A"/2

for any A’>A. From (8.20), (3.25) and (2.11) we get
(3.26) lil}‘l sup(k! ||S,,«(F; )ll-)"*=<A/2.

From Remark 2.2 and (2.21) in [9] it is valid that
(3.27) lim sup(k! |, u(F; ][z
=2 lim sup(k![|S, o (F5 )llw)

Therefore we have by (8.26) and (3.27)
(3.28) lim sup(k! 1S, o(F; "< A4 .

Lemma 8.4 and (3.28) imply that F e Exp,(C**':(A: L*)). Hence a; is
surjective.

Since a, is continuous and Exp,(C**': (4: L*)) and Exp(S: (A: L*)) are
FS spaces, a;! is also continuous by the closed graph theorem. So we
get (3.2). (3.3) can be proved similarly. Q.E.D.

COROLLARY 38.5. The following restriction mappings are linear to-
pological isomorphisms:

(8.29)  a,: Exp,(C**: (A: L)) =~ Exp(S: (A: L)) (0<A<o),
(8.30)  a,: Exp,(C?*:[A: L)) =~ Exp(S:[A: L]) (0<A<).

PrOOF. 1t is easy to show that

(3.31) L*(z)<L(z)<2L*(z)
for any z e C?* and
(8.32) L*(z)=L1() +21/L(z) éL(z; +1

for ze S. Hence we get Exp(S: (A: L))=Exp(S: (24: L*)) and Exp,(Cé*:
(A: L))CExp,(Cé+: (24: L*)).
Suppose F' € Exp,(C**': (2A: L*)). By Lemma 4.2 in [5] we have

lim sup(k! IS, .(F; )||)E<2A .

Hence by (3.27)
(3.33) lirgsup(k!llsk,k(F; M)*=A .
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(8.33) and Lemmas 4.2 and 5.5 in [5] give that F € Exp,(C°*': (4: L)). So
we get Exp,(C**': (24: L*))=Exp,(C**': (A: L)). Therefore we obtain (38.29)
from (8.2). We can prove (3.30) similarly. Q.E.D.

REMARK. If d=0 and F'e ~,(C) we have
F(z)=a, cos xz+a,\"'sin \z (ay, a,€C) .

So if A 'sin 2000 for any C, C’ € C there exists a unique F' € ¢,(C) such
that F(0)=C and F(—p)=C" (0cC).

When d=1, for z=(z, z,) we put u=(12,+2,)/2 and v=(i2,—%,)/2. Then
we have M,={(u, v) € C* uv=—p*4}. If p+0 we identify M, with C*=
C\ {0} and & (M,) with ~(C*) by the mapping (u, v)—u. It is known
that L(z)=max{|2u|, |2v|} and L*(z)=|u|+|v|. Hence we see that My(r)=
{ueC;o@r)<|ul<r/2} (r>|o]>0) and M[r]={ueC; |of/2r)=|u|=r/2}
(r=|p]>0).

Fe 7,(C? is expressed as follows:

F(u, v)=a, Jo(2001 uv)
S (@, 07 4 o, 57D (VWD) T,(2NV W)
p=1
where a, ;€ C (cf. [2] Proposition 3.1). Thereforg it is easy to show that
Theorem 2.1 and Corollary 2.4 are valid for the case d=1 (for the case

©=0 in Corollary 2.4, see [2] Theorem 3.1).
Furthermore, we have

Yim={f €2 suplfulexp=(j2ul+ur) <oo)

and we also see that Theorem 3.1 is valid for the case d=1.
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