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§0. Introduction.

Let M be a compact C>-Riemannian manifold, C*(M) the space of
all smooth functions on M, and A the Laplacian on M. Then A is a
self-adjoint elliptic differential operator acting on C*(M), which has an
infinite discrete sequence of eigenvalues:

Spec(M) ={0 =g <A, <Ap <+ + + <Ap< s ++ T o0}

Let V,=V, (M) be the eigenspace of A corresponding* to the k-th eigenvalue
Az. Then V, is finite-dimensional. We define an inner product (,) on
C>(M) by

(f, 9=\ raav,

where dV denotes the volume element on M. Then >2,V, is dense in
C>(M) and the decomposition is orthogonal with respect to the inner
product (, ). Thus we have

C=(M)= é V(M) (in L*-sense) .

Since M is compact, V, is the set of all constant functions which is 1-
dimensional.

Let If be another compact C~-Riemannian manifold, and assume that
M is a submanifold of M which is immersed by an isometric immersion
@. We have the decomposition

C=(IT) = 2:‘3 V.(BI)  (in L*-sense)

with respect to the Laplacian Az of M. We denote by @* the pull-back,
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i.e., »* is an R-linear map of C=(I#f) into C=(M) such that
(p*F)(p)=F((p)) , peM, FeC=(i).

For each integer s, o*V, (i) is a subspace of C=(M). Then we have a
decomposition

P VAIDHCEZW., W.=WM, 1, 9 V.HM)

where each W, is the minimal subspace of V,(M) such that 3.2 ,W, con-
tains @* V,(I).

We say that @ (or M) is of finite-type with respect to V,(M), if
#{t=1|W,#(0)} is finite, and if it is not finite, we say that ¢ (or M) is
of infinite-type with respect to V,(M). If #{t=1|W,#(0)} is equal to Fk,
then we say that @ (or M) is of k-type with respect to V,(M). Further-
more, we say that @ (or M) is mass-symmetric with respect to V,(M) if
W,=(0). N

In this paper, we consider the case where M is an n-sphere S*(1) of
constant curvature 1, and s=1. So we omit the terms “with respect to
V,(S™” in conditions for immersions of M into S~.

These definitions are compatible with those in B. Y. Chen [8, Chap.
6]. In [8], he shows that a mimimal immersion into S™ is mass-symmetric.
By T. Takahashi [14]’s result, a mass-symmetric 1-type immersion into
S*(1) is minimal. Moreover, a 1l-type immersion into S"(1) is either a
minimal immersion into S*(1) or a minimal immersion into a small hy-
persphere of S*(1).

In this sense, it seems that the next simplest condition for immer-
sions into S"(1) is “mass-symmetric 2-type”. We therefore study mass-
symmetric 2-type immersions of compact surfaces into S"(1) in this
paper. First, B.Y. Chen [8, p. 279] shows that the Riemannian product
of two plane circles of suitable different radii is the only mass-symmetric
2-type surface in S°®. M. Barros and O.J. Garay [3] show that this
result holds without the assumption of mass-symmetry. M. Barros and
B.Y. Chen [1] show that there exist no mass-symmetric 2-type surfaces
which lie fully in S%1). Other results and examples are found in [1]
and [8]. ‘

The purpose of this paper is to give the classification of mass-
symmetric 2-type immersions of surfaces of constant curvature into
S~(1).

The author wishes to thank Professors K. Ogiue, N. Ejiri and Y.
Ohnita for many valuable comments and suggestions.
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§1. Statement of results.

Let M be an n-dimensional compact C=-Riemannian manifold, C>(M)
the space of all smooth functions on M, and A the Laplacian on M. In
a natural manner, A can act on R™valued functions on M. We assume
that M is a submanifold of a unit N-sphere S¥(1) centered at the origin,
which is immersed by an isometric immersion f. We denote by ¢ S¥ —
E~* the standard imbedding. If f is of k-type, then the E7*+-valued
function F'=¢of has the decomposition

k
(1.1) F=F+3. F;, AF;=\;F;, F;#0, j=1,---,k,
=1
0<K1<N2<"'<Nk ]

where F, is a constant map. In this case, we note that \; denotes some
positive eigenvalue of A which is not necessarily the j-th eigenvalue. f
is mass-symmetric if and only if F,=0.

Even if M is not compact, we say that f (or M) is of k-type if f
has the decomposition (1.1), and that f (or M) is mass-symmetric if
F,=0 in (1.1).

Let f, and f, be isometric immersions of M into E* and E™ respec-
tively. Then the map f: M— E"™; p—(af.(p), Bf:(P)), a*+ (=1 is an
isometric immersion. We say that f is a diagonal sum of f, and f,. If
S, and f, are minimal immersions of M into S"cC E"*' and S” CE"*! re-
spectively, then a diagonal sum of f, and f, is a mass-symmetric 1mmers1on
of M into S**'*! which is of 1 or 2-type.

We obtain the following main results.

THEOREM A. Let f: M*(K)—S¥(1) be a mass-symmetric 2-type im-
mersion of a surface M*(K) of constant positive curvature K into S¥(1).
Then f ts a diagonal sum of two different standard minimal tmmersions
of M*(K) into spheres.

THEOREM B. There exist no mass-symmetric 2-type immersions of a
surface of constant megative curvature into a sphere.

REMARK. R.L. Bryant [5] shows that there exist no minimal immer-
sions of a surface of constant negative curvature into a sphere.
For the case of K=0, we have the following.

THEOREM C. Let D be a small disk about the origin in the Euclidean

plane E* and f: D—SY(1) be a mass-symmetric 2-type full immersion.
Then
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(1) N is odd,

(2) f extends uniquely to a mass-symmetric 2-type immersion of
E* into SY(Q1),

(8) f can be written in terms of a suitable complex coordinate z
on C=E® in the form

f(z)=l/:4'—lki=l {Pk exp ]/2)"1 (iukz-—pkz)_i_pk exp V;:(—ﬂkz+ﬁk§)}
1 N V N

+1/.71;:§ {Q,- exp (niz—17Z)+ Q; exp (—77,-Z+77,-§)} ,

2 2

where Nty NgeR, A1=(7\:2""'2)/()\12—)\'1)’ A2=(2—7\,1)/()\,2—7\,1), {i#k}z;l ("‘GSP.
{£7,}%) are 2m (resp. 2m') distinct complex mumbers of morm 1, N=
2(m+m')—1, and P,, Q;c (E"*)C are nonzero vectors satisfying

(P, PY=0 for vk, 1, (P, Py=0 for k+l, kij(p,,, Pk>=_;_,

-

(@, Q>=0 for Vi, i, <@y Q@>=0 for j=i, 3<@,@p=1,
<Pk’ QJ’>=<PI:’ Q:]>=0 fo'r Vk, j ’
MAL 3 03Py P A, 35 14Qs @ =0 .

Do

REMARK. This theorem says that f(M) is an orbit of an abelian
subgroup of SO@2(m+m’)). Let G be the abelian group of parallel dis-
placements of R:. Then f is G-equivariant.

COROLLARY. Let f: M K)—S"(1) be a mass-symmetric 2-type im-
mersion. If the immersion is full, then n is odd.

Let M be an n-dimensional submanifold of S¥ and let ¢ and H be
the second fundamental form and the mean curvature vector of M. We
define a normal vector field <#(H) by

B(H)= 3 (oles ¢, Hyole, €) ,

where {e,, : -+, e,} is an orthonormal basis at each point of M. We put
B(H)=aH+ 7 (H) where H1 7 (H) and « is some real number. &7 (H)
is called the allied mean curvature vector. We say that M is a Chen
submanifold if .7 (H) vanishes identically. If f is an isometric immersion
of M into S¥ which is a diagonal sum of two minimal immersions of M
into spheres, then M is a Chen submanifold of S¥. Conversely, for flat
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surfaces, we obtain the following.

THEOREM D. Let M be a flat surface and f be a full mass-symmetric
2-type Chen immersion of M into S¥(1). If N=9, then f is a diagonal
sum of two different minimal immersions into spheres.

REMARK. If N=3, then M is an open subset of the Riemannian
product of two plane circles of different radii (ef. B. Y. Chen [8, p. 279])).
For N=5 or 7, we classify f later. In the case of N=7, there exists
a full mass-symmetric 2-type Chen immersion which is not a diagonal
sum of minimal immersions (See §4.) '

Regard R" as an n-dimensional vector space. Let v, «--, v,€R" be
linearly independent. We put A={3i_, mv;| m, integers}. Then 4 is a
free abelian group generated by v, -+, v,. 4 is called a discrete lattice

of R® and the integer r is called the rank of 4. Acting on R" as
translation, A acts properly discontinuously and freely on R". The quotient
space R"/A with the canonical metric is a flat n-dimensional Riemannian
manifold. If the rank of A4 is equal to », then R*/4 is compact and is
called a flat n-torus.

We obtain a criterion for the existence of mass-symmetric 2-type
immersions of flat 2-tori as follows.

PROPOSITION E. Let ACR? be a discrete lattice of rank 2 and A*
the dual lattice of A, i.e., A*={ue R*|{u, v)=0 mod 2z for all ve 4}.
For r>0, let

c(4, rY={(a+1b)* | a*+b*=7r* and (a, b) € 4*} .
Then a flat torus R/ A admits a mass-symmetric 2-type full immersion
f: R A— S¥(1) with respect to some \, N\ € Spec(R*/4) if and only if there
exist m_ distinct elements {a,}Cec(4, V'N) and m' distinct elements {B;}C
(4, V' \), where N=2(m+m')—1, satisfying ‘

O — 2)51;4 a R, +(2— )\:)% BiR;=0
for some R, and R;>0 with >, R,=1 and >; R;=1.

REMARK. Let H(A, ) be the convex hull of ¢(4, r). R[4 admits_a
minimal immersion into S¥(1) for some N if and only if 0e H(4,1 2)
(cf. Bryant [5]).

Let (S°*(1), J, §) be a nearly Kaehler manifold with a canonical almost
complex structure on S®. The automorphism group is the compact simple
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Lie group G,. For two imbedded submanifolds M, and M, of S° we say
that M,~M, if there exists an element ¢ of G, satisfying @(M,)=M,.
Then the relation ~ is an equivalence relation. We denote by [M,] the
equivalence class of M,.
Let T be a maximal torus of G,. Since G, is of rank 2, any T-orbit
in S° is a flat surface or a circle or a point. We put
B={T-orbit which is totally real mass-symmetric 2-type},
B:={T-orbit which is totally real mass-symmetric 2-type
and imbedded fully into a totally geodesic S*(1)},
Bs={T-orbit which is totally real mass-symmetric 2-type
and imbedded fully into a totally geodesic S*(1)}.
Then we obtain the following.

THEOREM F. (1) If Me$, then M is a Chen surface of S°.

(2) Both F/~ and F/~ form 1l-parameter families. F/~ is a
disjoint union of F/~ and F~.

(8) If Me%,, then M lies fully in a totally real and totally geodesic
sphere S*(1) of S°(1).

(4) Suppose that M eF and denote by H the mean curvature vector
field of M in S°. Then, JH is a normal vector field of M if and only if
MeF, and JH is a tangent vector field of M if and only if M € Hs-

Conversely, we obtain the following.

THEOREM G. Suppose that M is a complete totally real mass-sym-
metric 2-type Chen surface in S® which is imbedded by isometric imbedding
f. We denote by H the mean curvature vector of f.

(1) If JH is a normal vector field of M, then M€, and

(2) of JH is a tangent vector field of M, then M €.

The local versiomn of this result also holds.

REMARK. If Me%, then M is the Riemannian product of two plane
circles of suitable different radii (cf. B. Y. Chen [8, p. 279]). If Me,
then we will show in §5 that M is not stationary in S* and is not the
Riemannian product of circles. This means that M (Me$;) is a new
example (See §5).

§2. A lemma.

Let M be an n-dimensional C~-manifold, and f a mass-symmetric 2-
type immersion of M into an N-sphere S¥(1) of constant curvature 1.
Let ¢: S¥(1)— E¥** be the canonical imbedding and put F=¢of. By de-
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finition, we have
2.1) F=F,+F,, AF;=\F,, F,#0, 1=1,2, 0<\<\,.
We give the following lemma for later use.

LemmaA 2.1.

2.2) (F, Fy=2"" = (F, Fy= ”‘;”; , (F, Fy=0,

1 1
at any point of M, where {, ) denotes the camnonical inner product on
EN+1.

Proor. We denote by H (resp. H’) the mean curvature vector of
M in E¥* (resp. in S¥(1)). Then H=H'—F, AF=—nH. So we have

(2.8) {F, Fy=1, (AF, Fy=n,
at any point of M. Let D be the Riemannian connection of E**!, and
{e,, ++-, e,} an orthonormal frame of M. Then

(2.4) <(A*F, F)=-n{AH, F)=—n{AH', F>+n{AF, F)
=—nA{H', FY>+n{H', AF)Y—2n{DH’', DF') +n{AF, F)
=t [+
=n*||H|*=<AF, AF) ,

where <DH', DF') =37, <{D, H', D, F'). (2.1), (2.3) and (2.4) imply (2.2).
Q.E.D.

§3. A 2-type surface of constant Gaussian curvature.

3.1. In this section, we prove Theorems A, B and C by using Bryant’s
methods. Let (M? g) be an oriented, connected C=-surface with a C~-
metric g, and 7: & — M be the bundle of oriented orthonormal frames.
Thus fe < 1is a triplet f=(x; e, ¢,), where zx is a point of M and
e, ¢, € T,(M) form an oriented orthonormal basis. The canonical 1-forms
', w* on & are the unique l-forms satisfying

dr=e,w'+ ¢,w* .
It is well-known that there exists a unique 1l-form p satisfying
do'=—pANw®?, do*=pNAw',

and we have the formula dp=Kw' A ®? where K is the Gaussian curvature
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of (M, g). From now on, we shall assume that K is constant.
It will be convenient to use a complex form so that we set w =w'+10?
and rewrite the structure equations as

do=10Nw, do=—KwoN® ,

where g=w-®.

Let 7— M be the complex line bundle of 1-forms which are multiples
of w and let z7'—>M be the complex line bundle of 1-forms which are
multiples of @. For m=0, let t™— M (resp. =™ — M) be the m-th tensor
product of = (resp. ') as a complex line bundle. Using the identification
@ ™=(w)™ for all m, we have a canonical pairing ™ xz¢t—7™+* for all m
and k. If o is any section of &, then we may write o=s(w)™ for a
unique function s on z™. One easily compute that ds=—misp+s'w+s"d
for some unique functions s’ and s” on .&#. Moreover, by differentiating
this equation, we deduce that the forms s'(w)™*'=¢’ and s”"(w)" '=¢" are
well-defined sections on z™*' and z™ ' respectively. This allows us to
define operators 9,: C*(z™)— C=(z™*') and d,: C*(z™)—C=(z"") by 3, 0=0"
and 9,,0=0", where we denote by C=(z*) the space of all sections of z*
for any ke Z. Let I, be the identity map of C~(z™). Set I =, C~(z™)
as a Z-graded vector space and define the operators

X=@0,, Y=@0,, H=OmlI,.

So Bryant [5] shows the following.

PropPoOSITION 3.1.

[H, X=X, [HY]=-Y, [X,Y]—:-—%H.
Moreover, A= —2(XY+ YX), where A:.Z — .7 18 the Laplace-Beltrami
operator on each graded piece.

Let V be a real vector space with a Euclidean inner product <, >: Vx
V—R. In a natural way, we may set 7'=V®r.7 and extend the
operators X, Y and H to 7 and extend the given {, ) to a bi-linear
map 7 X7 —.7. If o is a section of the m-th graded piece of %; then
we may write o=s(w)™ for a unique V°valued function on .7, where V¢
denotes the complexification of V. We define conjugation in 7~ by setting

G=3(w) ™. Then we have X6= Yo, Y6=Xo, Ho=—Ho. So we have

PROPOSITION 3.2 (Bryant [56]). Let V be a Euclidean vector space of
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dimenston N+1 and S the unit spherein V. Let F: M—V be a smooth
map. In order that F be an isometric immersion, it 18 necessary and
sufficient that (XF, XF)=0, {XF, XF)=1/2. In addition, F(M)CS" if
and only if (F, F>=1. Finally F(M)CS¥ is minimal if and only if
AF=2F., ‘ S

- LEMMA 3.3. Suppose that F: M —V satisfies AF=\F. Then, for
m>0, L

YX"F=D,X™'F, XY"F=D,Y"'F,

where D,, 18 a constant depending on m and K given by

neiflte-3]

Bryant [5] shows this lemma in the case of A=2. We obtain this
lemma in the same way as Bryant [5].

In order to prove Theorem A, we assume that f: M*K)—S*(1) is a
mass-symmetric 2-type full immersion and K>0. We put V=E"*" and
let ¢: S¥(1)—>V be the canonical imbedding. By definition in §1, we have

B.1)  tof=F=F+F,, AF,=\F,, AF,=\F,, 0<Mm<A,.

We note F, and F, are smooth maps of M into V. We put A,=
(>\'2_2)/(7\'2_7\:1) and A2=(2—7\,1)/()\,2——}\,1) so that <F1: F1> =141 and <F2, F2> =A2
by Lemma 2.1. :

Let g*=pz2g9, p,=V'N/2, be a homothetic change of the metric g.
Then the Laplacian A* and the Gaussian curvature K* of (M, g*) satisfy

A*=p A, K*=p°K

so that A*F,=2F,. On the other hand, by Lemma 2.1, (F,/V'A,
F/vA)>=1. By Theorems 1.5 and 1.6 in Bryant [5], there exists some
p=1 such that K *‘1=<p ;1> and (F./y/A)(M) lies fully in a (2p+1)-dimen-
sional vector space V'c V and the map F,V'A,: (M, g*)—S*A1)c V"’ is a
minimal isometric immersion, i.e., (F,/V A,)(M) is an open subset of the
Boruvka sphere S*K*)—S?*(1). Moreover, we have X*F,=0 for any
k>p, X*F,#0 for 0<k<p, {(X*F,, X‘F)>=0 for 0=k, j<p, k+3>0, and
(X*F, XF)=0 for 0k, j<p, k+].

For 0<k=<p, set X*F,=P,(w)* for some V¢-valued functions P,. Then
V'€c V¢ is spanned by {P,, P,)i_,U{P,}. Furthermore n,=p»(p+1)K and
F,/(0,V/A)) is a minimal isometric immersion of (M*K), g) into S*(o02)cC
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V'cV.

We put 0,=1"\,/2 and X/F,=Q,(w)’ for 0<j<q. Thus, in the same
way, we see that \,=q(¢g+1)K and F,/(0,,/A4,) is a minimal isometric
immersion of (M*K), g) into S*(0)cV”cCV, where V" is a (2¢+1)-
dimensional vector space such that V"’ V' is spanned by {Q;, @;}%-,U{Q,}.

One notes that (F,/(0,V/A)) (M) and (F,/(p,”A,))(M) are open subsets
of the Boruvka spheres S*K)—S*(0,*) and S*K)— S*(0?) respectively.
Then we can see that these maps extend uniquely to the p-th and ¢-th
standard immersions of S*(K) respectively. Note that p<q.

It is easy to see that A,+A,=1 and p24,+p0,*4,=1. Then F is a
diagonal sum of F/(0,) A, and F,/(0,V'A,) if and only if V'L V", i.e.,

(3.2) (P, Q>=(P,, Q;)=0  for any 0=<k=p, 0=<j=q.

To show the following is suﬁicierlt to complete the proof of Theorem A.
To be convenient, we set X *=X"* for integer h.

LEMMA 3.4. (1) For each 0<k=<p,
[kl,: (X*F,, X’F,y=(X*F,, XiF,>=0 for any 0<j<k.
(2) For each 0=sj=gq,
[§l.: <X*F,, XiF,) ={X*F,, X’F,»=0 for any 0<k<min(j, p) .

PrRoor. [0], and [0], is clear by Lemma 2.1. We shall prove (1)
for k=1 by induction on k. To be convenient, we put a,=p,1 A4, and

D, =—§-[("3’)K —-g-‘ , t=1, 2. Since F/a, and F are isometric immersions,

(XF, XF)>=0 and (XF, XF,>=—;—af, i=1,2,
(XF, XF>=0 and (XF, XF>=_;.,

hold by Proposition 8.2 so that we have
(3.3) (XF,, XF,>=0.
Applying X to {F, F,>=0, we get
(XF,, Fp)+<{F,, XFy»=0.
Applying X to (8.3) gives
D, (F,, XF,y+ D, ,(XF,, F,)=0.
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Since A, <\, We have (XF, F,>=0. Applying X to this equation, we
have (XF, XF,>=0. So we obtain [1],.

We assume [m], is true for m=1. Applying X to (X"F,, X"F,)=0
gives (X™"F, X"F,>+D, .(X"F,, X~'F,>=0. By the assumption of in-
duction, we obtain

(X" F, X"F,y=0.
Applying X to this, we get
<X"‘+1F1, Xm+1F2>___.O .

For 0<h<2(m+1), we put g,=<{(X""F, X" *F,) so that o, is a section
of the complex line bundle z* over S*K). We get g,=0 and ¢,=0 and,
for 25h<2(m+1),

(3.4) X0,=D, pi{X"F,, X* 4 FS +(X™HF,, X(X™4F))
On the other hand, we see that

(8.5) <Xm F,, Xm+i-2im+n) Fy= (Xm™ Fn Xm+t F2>
= X< X F,, xXm™ F2> — < X m+1 Fn Xm F,)

= —0O2m+1 *
By the assumption of induction, (8.4) and (3.5), we obtain

On_1 ' if 2sh=m—+1

(3.6) X0,=1{D, 1 ms10h1 if m+2<h<2m+1
(Dymir— Dy m41)0emer  if B=2(m+1) .

Since ¢,=0, we get Xo,=0 so that o, is a holomorphic section of z*. By

Riemann-Roch theorem, ¢, must be the zero section. Similarly, we see
that other sections ¢, are zero by induction, i.e.,

0'():0'1:0-2: e =0.2(m+1)=0 .
This implies [m+1], so that we obtain (1). (2) is proved similarly. Q.E.D.

8.2. To prove Theorem B, we assume K<0. Let g* be a homothetic
change of the given metric g as in §3.1. Then F| is a V-valued C~-
function of M satisfying A*F,=2F, and {F,, F,)=A,. By Theorem 2.3
in Bryant [5], there is no solution to the above equations. Therefore
Theorem B is proved.

38.3. Let D be a small disk about 0 DCE? with the canonical
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Euclidean metric g=(dz)*+(dy)’, and f: D—S¥(1) be a mass-symmetrie
2-type full immersion. Then we have the decomposition (3.1). To be
convenient, we consider E*~=C, z=xz+1y e C ((x, ¥) € E?) so that g=dz-dz.
Put o,=V'\/2, 9.*=pzg, i=1, 2. Each g,* is a homothetic change of the
metric g. A,* denotes the Laplacian of (D, g,*). It satisfies A*=p;?A.
So we get A*F,=2F, and (F,, F,)=A,. Then by Theorem 3.1 in Bryant
[6], we obtain the following.

LEMMA 8.5. We assume F(D) is fully contained in a subspace V.
of V. For each i, take a complex coordinate w=p,2/V" 2 so that g*=
pldz-dZ=2dw-dw. Then

(1) the dimension of V, is even so that F(D)c S (1/A,) fully,
where 2m,=dim(V)), '

(2) F, extends uniquely to a map C—S¥(1) satisfying A*F,=2F,
and {F, F)=A,

(8) after rotating w if necessary, F, can be written in the form

—_— M —_— . PR
F(w)= 1/A{ kz;l{Pt,k exp(ft, W — Lo, s w) + P, , exp( _ﬂt.gw + 2w}

where {xXp,.Jn, are 2m, distinct complex numbers of morm 1 and
P,,e V'°C V€ are nonzero constant vectors satisfying
(P 1y P,>=0 for vk, 1, <Pi,k9 Pi,l>=0 Jor k=+#1,

m; _
P <Pt,kr Pi,k> 2}" .
k=1 2

We put m=m,, m'=m,, P,=P,,, Q;=P,;, =1, and 7,=p, ;. Then
after changing a parameter from w to 2z, F can be written in the form

@7  F@)=F.)+Fy2),
F(z)=V4, g: {P, exp r(t42 — t2) + P, exp r(— p2+ 2)}

F(o)=V7, ﬁ: {Q; exp R(;2—772) + @, exp R(— 02 +772)

where r=0,/V"2 and R=p,)/2. By Lemma 2.1, ﬁve have (F, F,>=0
which is equivalent to
(3.8) kE; {Re(<P,, Q;>)cos(2 Im(ry,+ R7;)2) —Im({P,, Q;))sin(2 Im(rp,+ B7;)z)
+Re((P,, @,>)cos(2Im(r ¢, — R7;)z)
—Im({P,, @;))sin(2 Im(rp,— R7;)2)} =0
for all zeC. . ,
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On the other hand, F is isometrie, i.e., {dF, dF)=dz- dz. This is
equ1va]ent to the following

(8.9) kE; Re(,7,){—Re({P;, Q;>)cos(2 Im(ry,+ R7;)2)

+Im({P,, Q;))sin(2 Im(rp,+ Ry;)z)
+Re((Ps, @;))cos(2Im(rp,— R7,)2)
—Im((P,, @,>)sin(2Im(ry,~R2;)2)}=0

and
(8.10)  —plA 3 NPy Py —0,4, 37y Q)
+1V A AN, kZ; 1 i{Re({P,, @;))cos(2Im(ry,+Rn;)z)

—Im(<{P,, Q;7)sin(2 Im(ry, + R7);)z)
—Re({P,, @;>)cos(2Im(rp,—R2;,)z)
+Im({P,, @;>)sin(2 Im(r s, — R79;)2)}=0

for all zeC. : ’ '

Put o ={x(rp+R7;), £(rp,—R9;) | k=1, -+-, m, j=1, -+, m’}. If
a € 57 then a can be written in the form a=+(ryg,+R7;) or *(ry,—Ry;)
for some g, and 7; and hence « has at most two different representations.
Suppose that a€.%” has only one representation. For instance, if
a=rty+R7n; then the independence of exponentials in (8.8) implies
(P Q;>=0. In the next place, we assume that a € . has two different
representations. For instance, if

(3.11) ) 0(=’r}!k+R77,=’rﬂ;+R77,, ’ k#l, j?—e'i ’
then the independence of exponentials in (8.8) and (8.10) implies
(3.12) (P, Q7 +<{P, @>=0, il Py, Q)+ 1Py, Q=0 .

Put #=arg(a) so that (38.11) implies p,=¢'""9, p,=¢"*9, 9,=¢'0+P 5 =
¢!*~¥ for some @ and y. If g,7;— p;7,=0, then we see that =+ (mod 7x),
so that (3.11) implies ¢, =g. This is a contradiction. Thus g,n;— ¢n,#0.
So by (8.12), we have (P, Q;)=(P, Q)>=0. Finally, we get (P, Q,)=
(P, Q;>=0 for any k and j. It means V,LV, so that N=2(m+m')—1.
From (8.10) we have

MAL 3 1K Py Py +0a4, 3 74Qs Q;>=0.

The proof of Theorem C is completed.
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3.4. Let A be a discrete lattice of rank 2 of R?* and A* the dual
lattice of 4, i.e.,

A*={u e R* | {u, v>=0 mod 2%, for all ve 4},

where (, ) denotes the canonical inner product of R2 Denote by 7% a
flat torus R*/4. Then we have

Spec(T*)={[|u|]* | v e 4*}.
Regarding R*~C, we obtain ‘
{z, w) =Re(zw)=Im(O" —12w)

for z, weC. For a complex number z# of norm 1 and a positive real
number )\, we define a function ¢ on R? by

Vo
2

P(z)=exp (pz—pz)=expV —1(V —AE, 2), zeC.
@ is a function on T if and only if V' —AfZ € 4*. In this case, @ is an
eigenfunction with respect to the eigenvalue 2. _

Pg_tting A=Ay N =Ny = —NEE, Bi=—\NT7;#, R,=2(P,, P,y and R;=
2{Qj;, Q;> in Theorem C, we easily obtain Proposition E.

§4. Flat 2-type Chen surfaces in S".

In this section, we study a flat mass-symmetric 2-type Chen surface
in S¥(1) and prove Theorem D.

Let M be a flat mass-symmetric 2-type surface in S¥(1) which is im-
mersed fully by an isometric immersion f and we denote by ¢ and H
the second fundamental form and the mean curvature vector, respectively.
By Theorem C, we can see M~R? and f can be written in the form

(4-1) f(z)=F1(z)+F2(z) )
F(2)=1V"A4, kZ; 2Re {1/ R,u,exp

VN —
> (#kz—ﬂkz)} ’

F@)=VES Re (v Btnsexp L2 trz—72)} ,

§=1

ul=_;—(Ezl_1—l/:iEzl) » =1, -+, m+m' (=(N+1)/2),

where {E,, -+, Ey.,} is an orthonormal basis of E¥*, A, =(\,—2)/(x—\y),
A, =2—N\)/ =Ny, {4}, (resp. {£7;}%,) are 2m (resp. 2m') distinct
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complex numbers of norm 1, N=2(m+m')—1 and R, and R are positive
constants such that >\ R,=> R;=1 and

MA, k% UilR,+0A, ’2;1 7]:'2R;' =

For convenience, we put =3, 'R, and v=> 7/ R; so that
(4.2) MA@+ N A =0 .

Let {e,, ¢,} be an orthonormal basis of M. We can see that e,=d/dx
and e,=d/dy so that §/6z=(1/2){3/dx—1" —16/3y}. Let V, V and D be the
Riemannian connections of M, S¥ and E”*' respectively. We have

D, 1;D.,-f =D¢¢e:i=eo,;ei—<eiy e,->f
=V,.e;t+ale, e;)—<e, e f .
Then
o(e, €;)=D, D, f+ e, e)f .

So we have

_Of o &
o(e, €)= P +2 P +f,
ole, e)=—2L 2 0f _OF 4 p,

02? 020z 07*

ole, e,)=1"— 1( %g‘ ‘2;;2 ) .

Furthermore we obtain after simple computation

1/7»1

(t2— D)}
1/ M

O'(ev 61) =1/—A—: 2 {—x—l(ﬂka"*‘ﬁkz"‘z) +1} 2Re {V—R:u,, exp

2‘. <17"2(77, + 7 —2)+1} 2Re {I/R’ Ut €XP (niz— ﬂ,z)}
A

oe, )=V'A 3, {zl-( =7 —2)+1} 2Re {1 B, exp ‘/M (p2—Fi)}
+VAS (Sa(—97—77—2)+1} 2Re {| Fiunisexp Y o (a7}
(e, ¢)=V'E, z";;ll;-]/‘:‘l(y,;—ﬁ,f) 2Re{1/§;u,, exp ‘/’“1 (p,,z—p,,z)}
VAE 2 T1—77) 2Re{v Fltturs exp ‘/7“2 (2 — n,z)}
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Moreover, we get

(4.3) —V'A, Z 7“1 2Re{1/R,,u,, exp l/>"1 (;z,,z )u,,z)}

—1VA, Z -71'2-5— 2Re{l/R' Uy s €XD 1/7"2 (77,z v,z)}

i=1

So we have
2

(4.4) @(H )= 2, {o(es €), Hyo(es, €)

h,i=1

=V 5 22 2 Re(ypy?) —d | 2Refy Fom, exp ——‘{-Mw,,z-—m@}

+VA, 5, 22l Mda Re(pn,)—d | 2Re {1 Bt exp 1/;., (2 =77}

where

d= (7\‘1;2)2A1+ (7\»2;2)2A2 .

In order to prove Theorem D, we assume that M is a Chen surface
in S¥(1) so that <&(H) is parallel to H. By (4.3) and (4.4), we have
the following.

LEMMA 4.1. A mass-symmetric 2-type immersion f of R? imto S¥
28 @ Chen immersion 1f and only +f

4.5) Re(yr,)) =Re(pn,?) Jor vk=1, «+« . m and j=1, ---, m’.

PrROOF OF THEOREM D. Suppose @0 so that 40 by (4.2). By (4.5),
Re(yp,) =Re(yrpe?). If k=1, then we get yp2=vp7F so that p2=(F/¥)E2
This implies m=2. Similary we get m'=<2 so that N<7.

Finally, if N=9, then we have ¢=+4=0. We put o,=V"\./2, i=1, 2.
By (4.1) and Theorem 3.1 and Corollary 3.2 in Bryant [5] (or by direct
computation), F./(0,V A,) (resp. F,/(0,/A,)) is a minimal immersion of M
into S*™'(p,*) (resp. S*™(0,%)) and f is a diagonal sum of these two
minimal immersions. The proof of Theorem D is completed.

For 0<y,<2<y,, we put c(y,, v,)=w,(2—v))/(v,(»,—2)) (>0). In the
case of 0, we obtain the following.

PROPOSITION 4.2. Let M be a flat surface in S*(1) which 18 tmmersed
Jully by an isometric immersion f. If M is a mass-symmetric 2-type
Chen surface, then we get c(\,, N,)#*1 and we have, in (4.1), either
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(1) R,=R,=1/2, Ri=1 and cos2v=—c(\;, \,) (¢f m=2 and m’'=1),
or '
(2) R,=1, Ri=R;=1/2 and cos 2v=—(c(\y, A))*
(af m=1 and m’'=2),

where v 1s the angle between pt, and 7),.

PROOF. We assume that m=2 and m'=1. We have Ri=1, =17}
and p'=n} M HE . By (4.1) and (4.2), we get

(4.6) | (%)RIJr(J;—;T)Rz:*%, R+R,=1.
1 1 14+1

If (/) —(l/n*)=0, then we have p*=an,* for some real number « so
that p*=p* This is a contradiction. Since R, and R, are real, we get
R,=R,=1/2 by (4.6). Moreover we get Re(t,?/n,%) = — (\A.)/(MAD) = —c(\yy Np)
and Im(g?/n,>)#0. This implies cos 2v= —c(\;, \,)# —1 where v is the angle
between g, and 7,. Therefore we get (1). (2) is proved similarly. Q.E.D.

PROPOSITION 4.3. For any two constants A\, and \, such that 0 <\, <
2N, and AN —N—N,#0, there exists only one mass-symmetric 2-type
Jull Chen immersion f of R® into S*(1) with respect to eigenvalues )\,
and N, m=2 and m'=1 (resp. m=1 and m'=2) in (4.1) if and only
if ey M) <1 (resp. ¢y No)>1). Moreover f is doubly periodic if and
only if either

2(%%%)1/2 is rational (Gf ¢y, M)<1),

or

@ =(2P=B V" 45 rational Gf et M)>1) -
P Pl Pend P

PROOF. A\,—N,—A,#0 implies c¢(\;, Ap)#*1. We prove the case of
e\, M)<1. We put cos 2v=—c(\, Ny, =1, pt,=6¢*, 9,=¢", R,=R,=1/2
and R;=1. By Lemma 4.1, the map f in (4.1) is a mass-symmetric 2-
type full Chen immersion of R? into S°(1) with respect to eigenvalues A,
and »,. By Proposition 4.2, this immersion is unique up to the action
of the isometries of the domain and range. We define

d;={ze R* | f(2)=s(0)}
={z | GV Ny, 20 =0V Nfly, 2> =0V T, 2> =0 mod 27} .

Clearly 4,CR® is a discrete lattice. After rotating R? if necessary, we
may put ift, =1, iff,=e*, 17,=¢"* and 0<v<m/2. Set
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= aemn) =)

Then we obtain

LV N, e, +ma,) =21, GV Ny N +M,Yy =27TM
and {3V N7, M, +ma,) =27c—-€2L(n +m) .

So we get

A,={nx1+mw2 %(n+m)ez for =, meZ} .
If f is doubly periodic, then there exists an element « of A, such that
r=nx,+mz,, n+m+*0. Therefore we see that f is doubly periodic if
and only if @ is rational.

The case of ¢(\, A\,)>1 is proved similarly. In this case, we have

cos 2v=—c(\;, N\p)"* and

A,={ze R*| f(2)=f(0)}

={nw{+mw£ —2-—(n+m) e Z for n, m eZ}
where
2 — 27 cos 2y ' 27
1= = == d = O, —_— ). E.D.
o < VN V A\, 8in2v ) ancé & ( V' A\, 8in 2v ) Q

REMARK. (1) If Q and Q' are not rational, then A, is of rank 1.
In this case, f induces a mass-symmetric 2-type full Chen imbedding of
a cylinder R*/4, into S*(1).

(2) If A s—2—N,=0, then there exist no mass-symmetric 2-type
full Chen immersions of R? into S°(1) with respect to )\, and A,. But
such an immersion into S*1) always satisfies A ,—N,—A,=0.

Let n\, and , be two constants such that 0<)\, <2<, and c¢(\,, A\;)#1.
We define a discrete lattice 4A(\, A\.) as follows.

In the case of c(\,, \)<1, we put Q/2=q’/q, where ¢ and ¢’ are rel-
atively prime, and ¢>0 if @ is rational. We put

U=V=0,—X, (if Q is irrational),

u=2, and v=u, (f ¢9q=1),

u=x,+x, and v=x,—x, (if ¢=2),
u=(q—1)x,+x, and v=(q—2)x,+2z, (if ¢=3).
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In the case of c(\, N\;)>1, we put Q'/2=¢'/q, where q and ¢’ are relatively
prime, and ¢>0 if Q' is rational. We put

U=V=0,—2%, (if @ is irrational) ,

u=2;, and v=ux; (if ¢=1),

u=x;+x, and v=ux,—2x; (if ¢=2),
u=(@—1x;+x; and v=(¢—2)x;+2x; (if ¢=3).

We define a discrete lattice A(\, )\,) in R? by
Ay M) ={ku+lv | k, le Z}.
Ay in Proposition 4.8 is congruent to A(\, \,).

COROLLARY 4.4. Let A be a discrete lattice of rank 2 in R* and
T*=R’/A a flat torus generated by A. Let \, and A, be any eigenvalues
such that )\, <2<,

Then T* admits a mass-symmetric 2-type full Chen immersion into
S*(1) with respect to \, and N\, if and only if c(\, \)*1 and A is an
abelian subgroup of A\, A\.).

In particular, T* admits such an imbedding if and only if c(h, \y)#1
and A is congruent to A\, N\,).

PrOOF. Let f, be a mass-symmetric 2-type full Chen immersion of
T? into S*(1) with respect to A, and \,. Then f, can be extended uniquely
to such an immersion f of the universal covering R? of T?. By Proposition
4.2, we have c(\, N\,)#*1, and by the definition, we obtain

A, N)={z € R*| f(2)=r(0)} .

Since f is the extension of f,, we see that 4 is an abelian subgroup of
Ay N)-

Conversely, we assume that c(\, \,)#1 and 4 is an abelian sub-
group of A=A\, \,) so that 4 is of rank 2. By Proposition 4.3, we
get a mass-symmetric 2-type full Chen imbedding f of a flat torus
R}/A into S*1) with respect to N and n,. Let 7 T:=R*A— R*/4 be a
Riemannian covering map and put f,=fox. Then f, is a mass-symmetric
2-type full Chen immersion of 7 into S*1) with respect to )\, and X\,.

Q.E.D.

‘For the case N=7, we obtain the following.

PROPOSITION 4.5. Let M be a flat surface in S'(1) which 18 1mmersed
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Sully by an tisometric immersion f. If M is a mass-symmetric 2-type
Chen surface, then we have m=m'=2 and R,=R,=R,=R:=1/2 in (4.1)
and either

(1) f is a diagonal sum of two minimal immersions of M into S°,
or

(2) cosa=—c(\, \;)cOS B, where a (resp. B) is the angle between /°
(resp. 7.®) and o.

PrOOF. Put N=7 in (4.1). If =0 in (4.1), then we get (1) in a
way similar to the proof of Theorem D. Since F, and F, are immersions
and since 2(m+m’)—1=7, we get m=m'=2. By (4.1) and (4.2), we
have

p!R,+p2R,=0, R, +R,=1.

Since p,# +p,, we obtain R,=R,=1/2 and p,*=—p? Similarly, we obtain
R;=R;=1/2 and 7= —7n,%. ’

Assume »#0. Then in the proof of Theorem D, we get m=m'=2
and

7.

R
I
< l’%-l
R
S
I
9 [

By (4.1) and (4.2), we get

4.7 ( )R +(L)R—— ;'ZA ,  R+R,=1.

1 1

If (p/¥)—(@2/3)=0, then we have p?=ay for some real number a so
that p?=p2 This is a contradiction. Since R, and R, are real, we get
R,=R,=1/2 by (4.7). Similarly, we get

(”l)R'( ) ::—‘}, R+Ri=1,
2

and R,=R,=1/2. After rotating R® and changing an orthonormal basis
of E°® if necessary, we assume that ¢ is real, p*=e** and 7 =e*. Then,
by (4.2), we see that cos a= —c(\,;, \.)cos G. Q.E.D.

REMARK. After rotating R? and changing an orthonormal basas of
E® we may assume 0<a<m/2<B<T.

For any three constants )\, A, and ¢t such that 0<)\, <2<\, and
0<t=z/4, we define two mass-symmetric 2-type Chen immersions of R*
into S7(1) with respect to eigenvalues ), and A, as follows.
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Put R,=R,=R.=R,=1/2, p.=1, p,=e"?, n,=¢"* and 7,=¢'“*?, Then
for maps F, and F, defined in (4.1), we see that F,/(0,V A, and F,/(0,V A,)
are minimal immersions of R? into S%0,?) and S°(0,?) respectively, where
0,=1V"N/2, i=1,2. We put

f1=f1(7\:1y Ny t)=F1+F2 .

f, is a diagonal sum of these two minimal immersions so that f; is a
mass-symmetric 2-type full Chen immersion into S’(1) with respect to
eigenvalues )\, and M\,

Put c=c(\;, \,). We define two constants a and 8 0=as=r/2=B=n)
as follows.

If ¢<1, then we put aa=cos *(c-cos(2t)) and B=n—2t.
If ¢=1, then we put =2t and B=xr—cos *((1/c)cos(2t)).

Put R,=R,=R,=R;=1/2, p,=e"", n,=e*"?, p,=¢, and 7,=7%, and denote
by £fil, My t) (Or f,) a map defined in (4.1). By Lemma 4.1, f, is a mass-
symmetric 2-type Chen immersion of R? into S7(1) with respect to eigen-
values ), and »,. Moreover, f, is a full immersion into S*(1) if and only
if c=1 and ¢t=0, f, is a full immersion into S*1) if and only if ¢#1 and
t=0, f, is a full immersion into S'(1) if and only if ¢>0 and f, is a
diagonal sum of two minimal immersions of R? into S® if and only if
t=n/4, i.e., f,(Ay, Ny, 7/4) is congruent to f.(h, Ay, 0) up to the action of
the isometries of the domain and range. Finally, if ¢£0 or x/4, then f,
is a mass-symmetric 2-type full Chen immersion of R? into S'(1) which
is not a diagonal sum of two minimal immersions of R? into S°.

Let f be a mass-symmetric 2-type full Chen immersion of R* into
S7(1) with respect to eigenvalues ), and »,, and assume f is not a
diagonal sum of two minimal immersions of R? into S°. In the proof of
Proposition 4.5, put t=(x—pB)/2 (if ¢<1) or t=a/2 (if ¢=1). Thus, we
see 0<t<m/4. (See last Remark.) By Proposition 4.5 and the definition
of f,, f is congruent to f,(A, M, ) up to the action of the isometries of
the domain and range.

Combining the above with Proposition 4.3, we obtain the following.

THEOREM H. For any constants A, N, such that 0<a,<2<\,, there
exists a ome-to-one correspondence between mass-symmetric 2-type Chen
tmmersions of R* into S’(1) with respect to eigenvalues \, and , and a
family '

{filuy A D 0=t=m/4}U {0y Ny, B) [0S E<m/4}
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up to the action of isometries of the domain and range.

§5. Totally real 2-type surfaces in S°.

In this section, we apply our results to some surfaces in S® and
prove Theorems F and G.

5.0. Totally real submanifolds of S°. We realize an 8-dimensional
Euclidean space E® as the underlying vector space of Cayley division
algebra €={e,=1, e,(1<1<7)}. The automorphism group of € is the
compact simple Lie group G,. Let €, be the subspace of € consisting
of all pure imaginary Cayley numbers. Then €, is identified with a 7-
dimensional Euclidean space E’ and stable under the action of G,. A
vector cross product for vectors in €, =FE" is defined by

XY=z, Yyye,+x-y ,

where - denotes the multiplication as Cayley algebra and (,) is the
canonical Euclidean inner product. The multiplication table is as follows:

(5.1) N 1 2 38 4 5 6 7
1 0 e, —e, e —e, e —e,
2 —e 0 e —e, e, e —e;
e;xXe,= 3 e, —e, 0 e, e, —e, —e,
4 — e e —e, 0 e, —e, e,
5 e, —e, —e, —e, 0 e, e,
6 —e, —e, e, e, —e, 0 e,
7 e, e, e, —e, —e, —e, 0

Regarding S%(1) as {x e €, | {x, 2) =1}, we may define an almost complex
structure J on S°® by

JX=2xx X,

where z € S® and X e T,(S® (the tangent space of S°® at ). Let § be the
metric on S°® induced from E7 so that § is a Hermitian metric of the
almost complex manifold (S% J). We have

(5.2) (Ve NY=XXY+§(X, JY)x
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for xeS® and X, Ye T,(S%, where V is the Riemannian connection of
(S% §). Thus the almost Hermitian manifold (S¢, J, §) is a nearly Kaehlerian
manifold, i.e., (GXJ)X=O for any tangent vector X of S°. We note
that the Lie group G, is the group of all automorphisms of the nearly
Kaehlerian manifold (S, J, §).

For any vector fields X and Y of S° we put G(X, Y)=(€7XJ )Y so that
G is a skew-symmetric tensor field of type (1, 2) on S°. We have the
following. See Gray [11] and [12].

LEMMA 5.1.

(1) (X, JY)=GJX,Y)=—-JFX,Y),

(2) (ViG)Y, 2)=9(Y, JZ)X+§(X, Z)JTY—§(X, Y)JIZ,

(3) IGX,DIP=IXI* Y3 X, Y)—9(X, JY),
for any X, Y and Ze%(S®) (the wvector space of all wector fields on
S*).

Let (M, g) be a submanifold of (S% J, §), and T+(M) the normal space
of M at a point x of M. From now on, we assume that M is a totally
real submanifold of S° i.e., JX e T}(M) for any « € M and any X e T (M).
Note that the dimension of M is 2 or 3.

Denote by V the Riemannian connection of M, and by %, A and V!

the second fundamental form, the Weingarten map and the normal con-
nection of M in S°® respectively. We have the Gauss’ formula and the

Weingarten’s formula:
VoY=V, Y+h(X,Y), Vze=—AX+Vie,

where X, Y and Z are tangent vector fields and £ is a normal vector
field. Moreover, we see

9(AX, V)=F(h(X,Y), &) .
LemMA 5.2. G(X,Y)e TH(M) for any X,Y e T,(M).

Ejiri [9] shows this lemma in the case of dim(M)=8. But the
proof in [9] is also true in the case of dim(M)=2. We obtain the
following.

LEMMA 5.8. If X and Y (e T,(M)) are linearly independent, then
JG(X,Y) is perpendicular to both X and Y in T,(S®.

ProorF. By Lemma 5.1 (1), we have
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(Ve OJIY, JZ)=Y - GJY, JZ)—G(V - JY, JZ)—GJ Y, V- JZ)
=V, XY, 2)—GG(X,Y), JZ)—GJ-V,Y, JZ)
—GUY, GX, 2)-GUJY, J-VZ)
=—V, Y, 2)+JIGGX,Y), Z)+G(V:Y, Z)
+JIG(Y, G(X, 2))+G(Y, V. Z).

Thus, we obtain
(Y, G(Z, X)+G(Z, G(X, Y)=J(V:G)JY, JZ)+J(%XG)(Y, Z)
for any X,Y and Ze¥%(S%. It follows from Lemma 5.1 (2) that

(6.8) G(Y, G(Z, X)+G(Z, G(X,Y))
=20(Y, JZ2)JX—§(X, JZ)JY—§(X, Z)Y+3(X, JY)JZ+3§(X,Y)Z ,

(5.4) G(Z X, Y)+G&X, G(Y, 2))
=2§(Z, JX)JY—g(Y, JX)JZ—g(Y, X)Z+9(Y, JZ)JX+g(Y, Z)X,

(6.5) G(X, GY, 2)+G(Y, G(Z, X))
=20(X, JY)Z—9(Z, JY)J X—§(Z,Y)X+9(Z, JX)JY+§(Z, X)Y .

Computing (—(5.3)+(5.4)+(5.5)), we have
(5.6) G(X, GY, 2)=§(X, Z)Y—-§(X,Y)Z+9(X, JY)Z—-§(X, JZ)JY ,
or

G(Z GX, Y)=§(Z,Y)X—-§(Z X)Y+§(Z, JX)JY—§(Z, JY)J X,

for any X, Y and Zec%(S%. Hence we assume that X, Ye T,(M) and
Z=JG(X,Y). This equation, together with Lemma 5.1 (1) and 5.2, implies
b6.7 0=JG(Z, Z)=G(Z, G(X,Y))
=§(Z,Y)X—-§(Z, X)Y+9(G(X, YV), X)JY—-9(G(X,Y), Y)JX
=9(Z,Y)X—-9(Z, X)Y .

Now, we assume that X and Y are linearly independent. Then (5.7)
implies §(Z, X)=¢(Z,Y)=0. Q.E.D.

REMARK. This lemma in the case of dim(M)=3 is shown by Ejiri

[91.

5.1. Proof of Theorem F. Let T be a maximal torus of G,. Then,
for 0 € G,, 0To™" is also a maximal torus. Therefore we may put
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1 0 0 0 0 0 0
0 cosa sina 0 0 o o0
0 —sina cosa 0 0 0 0 ‘
58 T=(0 0 0 cosb smb 0 0 ||BHoCR
0 0 0 —sindb cosb 0 0 '
0 0 0 0 0 cosc sine
{0 0 0 0 0 —sin¢ cosc)

with respect to the basis {e, ---, e,}. A B

Let x=3]_, x%e, be a point of S® so that 3., (z")*=1. We assume
that an orbit 7% is a flat surface of S°. We have |2'|1 for any ¢, and
Tx lies in a hypersphere S°=S%1/(1—(x')?). After changing parameters
a and b if necessary, we may assume 2*=x°=0. Thus, we have

Te={p(u', w’) | u', w* € R},
P(u', u?)=u'e, + (x* cos u')e,— (x* sin u')e, + (x* cos u?)e, — (x* sin u?)e,
+ («® cos(u' 4 u*) — " sin(u' +u?))e, + («° sin(u' +u?) + 27 cos(u' +u?))e, .
Note that (0, 0)=2«. For i=1, 2, denote (3p/ou’)(0, 0) by @,. Then we
get '
P, = —ux’e;—x"e,+ 2%, , P,= —x'e;—x"e,+x’e, .

Since Tx is a surface, we see
(6.9) @)+ @)+0, @)P’+@)+(@)’+0, and (@*)+ ")+ (x")*+~0 .
Put g,,={p, @;» so that

gu= (@) + (@°)*+ (27)* ,

9= (2*)"+ (2°)* + (27) ,

912=921=(x8)2+(x7)2 )
and put g=>3,., 9,;du’‘@du’. Then @ can be considered as an isometric
immersion of R*={(u', u®) |u', 4’ € R} with metric tensor g into S°.

Let A be the Laplacian of (R? g), and let (¢")=(g,;)"*. Then we get
A=-=->1,, g% ou'ou’). It is easy to show the following.

LEMMA 5.4. A T-orbit Tx whose dimension is 2 is mass-symmetric
wn S° and at most of 8-type.
In particular, Tx ts mass-symmetric in S° if and only 1f 2'=0, and
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Tx is of 2-type if and only if Tx is not minimal in S°® and x satisfies
one of the following:

(1) 2*=0 or x2*=0 or 2*=2"=0,

(2) (@)=(="?

(3) (@)=(")+(2")"

(4) @)=+ (")

By the definition, we have

Jo,=9(0, 0) X p,
=(— (22 + (2°)*+ (x")%)e, + (x'x* + ' )e,
+ xtxle, —2x*x"e, — 2x*x’e; — x'x’e + (x'xt — x'a)e, .

Hence we obtain
g Jp,, p,)=38xx'x? .
This implies the following.
LEMMA 5.5. T« is totally real if and only tf x*x*x*=0.

Denote by 2 and H the second fundamental form and the mean
curvature vector of Tx in S° After long but simple computation, we
have, at the base point «,

__ 09
ko, cp,-)—a—(O, 0) +9.49(0, 0)

utou?
or
k@, @,)=—x%e,—x’e,—x"e;+ 9, ,
h(p,, @)= — x'e,—x°e,—x'e;+ g,
hp,, @,)=— x’e,—x’e;+ g, ,
and

2 'y
H=—;— S ¢l P;)
£, 5=1

= —2}5(2Dxle1 +(@2D—g,,)x%e,+ (2D —g,,)x'e,
+@D—g,,—9-t 2g,,)x%e,+ (2D —g,,— 9o+ 2¢9,,)7"e;)

and
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(6.10) JH=2x H

= 2% (922 —29,5)x' 0%, + ((— oo + 29,,) 2% — gouit'a?)e,

+(—9u+29,)7°7°e, + ((9,, — 29..)2°0" — g, x'2")e,
+ (9, — go)x’x* + (g + 9. —29,,)x'x")e,
+ ( — 0179, + 2912)“’193697) ’

where D=det(g,;).

From now on, we assume that T« is a totally real mass-symmetric
2-type surface in S°. From Lemmas 5.4 and 5.5, we see that z'=0 and
a*2*2°=0. Hence one of the following four cases occurs:

(case A) x*=0,

(case B) «*=0, ‘,

(case C) 2°+£0, 2*#0, x*=2"=0,

(case D) 230, 2*+#0, 2°=0, 27£0.

LEMMA 5.6. Suppose that Tx is totally real and mass-symmetric in
S, t.e., x*=0 and x*c*2°=0. Then
(1) JH is normal to Tx if and only if
=0 or #*=0 or z*=a=0
or (*=0 and (¥*)’=(x*)*=(x")*=1/8) .

In the last case, Tx is minimal in S°.
(2) JH 1is tangent to Tx if and only if

(6.11) (@®P=(x*)* or (®)=(x®)2+(27)? or (x')?=(x®)®+(x")?.
Proor. (1) From (5.10), we easily see that

2D§(JH; @1) = (2922 —0u— 2912)5”2“74“;7
— (2(934)2 _ (xz)z _ (we)z _ (w'r)z)xzx4x7
and
2D§(JH; ¢2) = (2911 — 0o 2912)mzx4w7
—_ (2(&)2)2 . (w4)2 _ (xe)z _ (937)2)13227‘2)7 .

If JH is normal to T%, then §(JH, ¢,)=g(JH, ,)=0. If x*x*2'#£0, we
have 2*=0 and («%)?=(2*)*=(2")?. Since (***+(2*)*+(z")*=1, we have
(@*)=(2*)*=(2"*=1/8 so that Tx is minimal in S°. It is easy to see the
converse.
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(2) Suppose that JH is tangent to Tx. Assume xz*=0 so that (56.9)
and (5.10) imply

JH=-2—‘-1D—.x‘((ac‘)2—(x°)2—(x’)z)(a:°e,—ac7e3) and %0 .

On the other hand, Lemma 5.6 (1) implies that JH is normal so that
JH=0. If (x)?+(«%*+(x")?, then we have x*=a*=a"=0. This contradicts
(5.9). Therefore we have (x*)*=(2°)*+(2")". Similarly, z*=0 implies (*)*=
(x6)2+(m7)2.

Assume z%c*#0 so that 2°=0. From (5.10), we have

TH=2 (@) - @ aset+ (@)~ @ ade+ (@) ~@)aae)

Define a tangent vector <« by
A — ((x7)2 —_ (x4)2)w4w7 _ ((x2)2 — (x7)z)wzw1
x? ! x*
= ((&")— (x*)*)aw'x"e; + ((2%)° — (x"))x’x" ey

+-E (@ — @ H@+ @~ @ e,

P Py

Since JH is tangent to Tz, we have JH=(1/(2D))£ so that
{(@?)?— () H(&*)* — (@) H (") — (#°)*} =0 .

Conversely, we assume (5.11). If #*=0, then, from (5.9) and (5.11),
we see JH=0. Similarly, if #*=0, then we see JH=0. If 2’s*+#0, then
we see JH=2D« so that JH is tangent to Tx. Q.E.D.

Immediately, Lemmas 5.4 and 5.6 imply the following.

LEMMA 5.7. Suppose that Tx is totally real and mass-symmetric and
is not minimal in S°. Then Tx is of 2-type if and only if JH 1is either
a normal vector or a tangent vector of S°. If JH is mormal, then Tx
is of (case A) or (case B) or (case C). If JH is tangent, then Tx 1is of
(case D).

We assume that T is of (case A) and put
_ ' S
@ TG

so that @(—0, 0)=ua'e,+((«°?+(2"))"%e, and @(—0—m, )= —a‘e,+ ((&°)+

cos f=
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(z")*)?e,, Thus we may put 2*=a, 2°=1A-a*)"* and '=0 for 0<a<l.
Put z,=ae,+(1—a?)e,. v
Define an isometry o, of S°® by -

oe)=e , o(e)=—e,, o(e)=—e,, o,(e)=¢;,
0'1(95) =é€;, 0'1(96) =€, 0'1(97) =€ .

From table (5.1), ¢, is an element of G, Therefore, for 0<a<1/12,
Tz, and Tx; B=(1—a%"?, are congruent to each other under the action
of o,, Note that Tw,, a=1/1"2, is a minimal surface of S

It is easy to see that Tx, lies in a totally geodesic S*(1)=
{y e S’1) | (v, ey =0, i1=1, 2, 8}. From table (5.1), $’(1) is totally real in
S¢(1). In particular, JH is a normal vector field of Tw, in S° Since
Tz, is a hypersurface of S*(1), T, is a Chen -surface of S*® (also of S°).

Define o, € G, by

oe)=e , ofe)=e,, ofe)=e, ole)=e,
ole)=€;, oe)=—¢€, ole)=—e .

It is clear that ¢7'To,=T, i=1,2. o,(x) is of (case B) if « is of (case C),
and o,(x) is of (case A) if x is of (case B). Therefore, (case B) and (case
C) reduce to (case A).

Let Tx be an orbit of (case D). From Lemma 5.4, we have

@y=@y or (@F=@) or (@) =@).
Define o,€ G, by

ole)=e,, ofe)=e, ole)=—6, ofe)=—¢,
0-3(e5) - - e5 9 0'3(96) = — ea ’ 0'3(e7) = e2 .

Using o, and o;, we can assume (x°)*=(x*)’. Since

®(0, 0)=x=2x'e,+x'e,+2'e, , o(w, 0)= —2’e,+x'e,—x'e, ,
»(0, 7)=2’e,—x‘e,—x"e,, and o(rm, )= —a’e,—x'e,+x’e,,

we may assume x*=zx'>0. Moreover, applying o,, we can assume z'>0.
Finally, it is sufficient to study the case where

r=1y,=pe,+Be,+ve,, 0<B<IN 2, 7=1-28)".

Note that Ty, is minimal if 8=1/18. By Lemma 5.6, JH is tangent
to Ty;. h and H are given by S '
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e, p,)=—p%+(1 —B)BRe,—Bve,
h(p,, #,)=(1 —BYBe,—B'e,— e, ,
o, @,)=8Y 2ez+ﬁ7ze4_2/92797 ’

and

~_1-88"
28%(2—384")

By direct computation, we see

B7e,—B37e,+26e,) .

BH)=_ 3, 9“0 TP, 9, H)-hips, @)
_ 7(2—6£'+93Y
Fe—3a

Therefore, Ty, is a Chen surface of Se.
Now, we see that

o/ ~={Tx, | 0<a<1/y'2} and
Bl ~={Tys |1 0<B<IN'2Z, B#1/V'3}.

Theorem F is proved completely.

5.2. Proof of Theorem G. Let M be a totally real surface of a

nearly Kaehler manifold (S°1), J, §). Let V, V, h, A, V* ete. be as in
§5.0.
Let {e,, e,} be a (local) orthonormal frame field of M. Put

(5-12) $3=J61 ’ €4=Jez ’ £5=JG(317 e.) , §e= —G(eu e .

By Lemmas 5.1, 5.2 and 5.8, {&, -+, &} is a normal orthonormal frame
field.

Throughout this section, we use the following convention on the
range of indices:

A,B,C,"'=1,"",6; i,j’ky"'=1,2; T,S,t,"‘=3,"',6-
Let {®', @’} be a dual frame of {e, ¢,}. Define 1-forms w*, by

%¢=§. e+ 0E.,  Ve=3 o' +3 o', .
r j s

It is well-known that the structure equations of M are given by
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do'=—-3 0 Ao,
J

(5.13) do';=—3 o' Aok+ o' Ao,

(5.14) dCO'j= —‘; CO'.A/\COA,' ’

(5.15) d(l)r,’-: "‘% er/\wA. )
w*s+@®,=0,

(5.16) w',=Zj. hijw? , hij=hj: .

By the definition, we get |
hi;=g(h(e, e5), &) .
First, we obtain the following_ lemma.
LEMMA 5.8. A frame {e, e, &, ---, &} defined by (5.12) satisfies

(5.17) 0 =0, 0h=04, Oh=—%, %= +tae’,
. 0)54=—(!)62 , C!)64=C052""(l)1 , w°5=—a>“1—co‘2 ]
PrOOF. From G(e, ¢,)=0, we see

0=G(e, €)= 60168 - Jeq%
= Aésel +Vié— J V.6é— Jh(e, e,)
= ( - h!1’2 + htl)ez + 2 a)rs(e1)5r - w21(61)$4 - h?l&s + hgl& .

Thus we have
(5.18) L=ht, wle)=w'(e), @’(e)=—h}, o’(e)=hi.
Similarly, from G(e,, ¢,)=0, we get
(5.19) L=ht, whle)=w%(e), @'le)=—hl, @(e)=h%.
Moreover, from

—&,=Gl(e, €,)= 5,154 —J 6-162
and

8.=Gle, €)=V, 8—JV, e, ,

we have

187




188 YOICHIRO MIYATA

(054(91) = —h, , a)64(e1) =hk—1,
@’s(e)=—h3, - @e)=h%L+1.

Using Lemma 5.1(1), (2) and (5.6), we obtain

V. &=V, (JGe, e,))
=(V,J)Gle, &) +J(V, G e, ¢,)
+JG(V, e, &) +IGle,, V,e,)
=Gley, Gley, €))+J(V, G)e,, ¢,)
+JG(V, e, e)+JG(h(e, ¢,), ¢,)
+JG(e, V,e,)+JG(e, hie, e,))
= —hhe,—hje,+ hgfa +his,+ (—h}— hizes .

(5.20)

So we have
(5.21) @)= —hi— R, .
Similarly, computing 6.265, we have

(6.22) @’s(e;)= —h}%—ht; .

From (5.18), (5.19), (5.20), (5.21) and (5.22), we havev (5.17).

For convenience, we put

a=h}, b=hLh=hi,, c=hi =ht,, d=hi ,

and
A=A,
so that, with respect to {e, ¢,}, we have
(5.23) A3=(Z i’) , AFC ;) and A,=( 2: h“) r=5,6.
Let H be the mean curvature vector of M in S°® and put
H =zr‘, PAI R
so that
£P= “;’c , a=bFd .14 4’=——-——hﬁ;’h5= , r=5,6,

and

Q.E.D.
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b= —242w'— 2440 .
Define functions B, and B3, by
w0’ =60 + B0 .
From (5.18), (5.14) and (5.17), we have
(5.24) e,(B) —e(B)=1+ g det A, +B. 4257,

(56.25) —ey(a)+e,(b)=(—a+2c)3,—3b8,+ 2h} ki —2hhi — Ry
(5.26) —ey(b) +e,(c) =(—2b+d)B, +(a—2¢)B; +hih:,— h3:h%—h3: ,
5.27) —e,(¢) +e,(d)= —8cB,+ (2b—d)B, +2h}:h — 2h5he — h.
(5.28) —e,(h}y) +-e,(hi) = — (Bl —h3) B, —2hi:B, + b(hi— h32)
- (CL - C)hgz - 243}&32 + 244}&31 ’
(5.29) —e,(hl) +e,(h) = —2h%R, + (A, — hi) B, + c(hi — h2»)
- (b - d)hgz —24° gz + 244]7}132 ’
(5.30) —e,(h3y) +e,(hi) = — (h — h&) B, — 2h38, — b(hiy — h’y)
+(a—c)h’+2£%hd+1)—2£%h}, ,
(5.31) —ey(h}s) +e,(h) = —2h%B, + (h — k) By —c(hiy— ki)

+(b~—d)h%+24°h3—24£(hi.—1) .

From now on, we assume that M is a complete totally real mass-symmetric
2-type Chen surface which is imbedded by an isometric imbedding f.
Suppose that f is of 2-type with respect to eigenvalues \, and X\,
0<\, <\ B.Y.Chen shows the following. See Chen [8, p.274] and [7].

LEMMA 5.9. The mean curvature o of M in S® is comstant and
girven by

(5.32) a’'=2—nN.—2)/4,

and the mean curvature vector H satisfies

(5.33) tr(Av;H)=; (AvjiH)ei-——-O ,

(5.34) AtH+ o7 (H)+ (AP +2)H=0n+ M) H

where A*H=3,,{Vs,,H—ViVLH}, & (H) is the allied mean curvature
vector in S® and &= Hla.
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Barros and Chen [1] show the following.
LEMMA 5.10. H satisfies
(5.35) IVHH = a*{nm 40— |4l -2},
where ¢=H|a, and for an orthonormal normal frame {&, ---, &} such
that &,=¢&, we have
(5.36) o (H)=a 35 {tr(Var) — V4, VN, ,

where (V1&, Ve > =371, (V& Vie).

On the other hand, by the definition of the allied mean curvature,
we obtain

(5.87) S (H) =3 tr(AzA,)%,

where {£,} is an orthonormal normal frame such that &= H/a.

5.2.1. The case that JH is normal. Assume that JH is a normal
vector field of M in S°. Choosing a frame defined by (5.12), we easily
see that £*=4*=0, ¢=—a, d=—b and 0%=0. By Lemma 5.8, we see

ViH=(£'0",— £(@", + @0M))& + (£°0° — £5(0°, — 0")g,+d £°- &+ d 40 &, .
Combining this with (5.88), we have
(5.38) e,(£°)h3, +e,(£°)h3, + e, (£°)hiz + e, (£°)h,
+a(£%(h3, — h2) — £°(hi — h3,)) + 2b(£°hS, — £°h3,) =0
and
(5.39) e,(£°)hiy + e,(£°)his + e(£°)h3, + e(£°)h3,
+b(£°(hiy— hi2) — £°(h3, — b)) — 2a(£°hi. — £°h3,) =0 .

Put 9,=H/a and n,=(—£°+ £°%)/a so that {&, &, 7, 7} is an ortho-
normal normal frame. From (5.87), we see that

(5.40) a(£°%(ht, — h3;) + £%(h3 —h32)) +2b(£°hi, + £°h3,) =0
and
(5.41) b(£°(h%,— his) + £°(hi, — h32)) —2a(£°hi+ £°h3) =0 .

From (56.25) and (5.27), we get
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(5.42) (i — h3)ht— (B — i)kl = £° .
Assume a*+b*#0. From (5.40) and (5.41), we have

5 5 5 [ 8 [+ J g
(5.43) {4 (hii—h3,) + £%(hY —hy) =0,
% 5h?2 + £ ehgz =
Combining (£°)*+(£°*=a?#0 with (5.42) and (5.48), we see £°=0. Hence
we can choose ¢, and e, in such a way that «*=q@. From (5.43), we have
hii=h:=a and h},=0. So, from (5.38) and (5.39), we get h®,=h%=h%=0.
Therefore we have VH=0. From (5.32) and (5.835), we obtain a’=
(2—A)(\.—2)/4 and N\, +r,—20°—2=0 so that A )\,=0. This is a contra-
diction. So we obtain a=b=0.
Assume «£°#0. From (5.25), (5.26) and (5.27), we have

(5.44) 2h%h3 —2h%hS =hG, ,
(5~45) 2h!152h 2hgzh1z= 22 9
(5.46) hiihos— hishi =h,

From (5.44) and (5.45), we see
(5.47) (hti—hi)his— (h},— h)h}, = £°
(5-48) 44 '—‘446}?/12: 11""’7/22 .

Since <%, (£%)+ 4%, (4% =0 (i=1, 2), we get from (5.88), (5.39), (5.46) and
(5.48),

— he(4%) +—;-<hsl—hgz>ez<4e>=0 ,
(5.49) |
-%—(hsl )ey(£%) + hiye (49 =0 .

Up to sign, a normal vector field &= —G(e, ¢, is independent of the
choice of e, and e¢,, So we can choose ¢, and e, in such a way that
h:=0 and A, is diagonal, i.e., h%=0. From (5.47) and (5.49), we see
that A, —h%+0 and «° is non-zero constant. Thus, from (5.47) and (5.48),
we get 4(h})’£°=4°® so that h%,=1/2. Therefore, using (5.44) and (5.46),
we obtain

h}=h%=0, hiH=24%=constant, hi=24°=constant,

5.50
( ) 12—1/2 i‘z':
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Combining this with (5.30) and (5.31), we have
(5.51) Bi=pR.=0

(5.50) and (5.51) contradict (5.24). Therefore we obtain £°=0.
We can choose ¢, and ¢, in such a way that

A=A4,=0 A—(hfl 0) A—<31 g2>
T T hzz’ "\Re —hy) ]

nt+hh=
From (5.25), (5.26) and (5.27), we have
2h%h3— R =0, 2h%h%—hi =0, 2ahi+ h%:=0.

These imply A%, =h%=0. Therefore the first normal space N is spanned
by &. By Lemma 5.8, N is parallel with respect to the normal connec-
tion V. By Erbacher [10], M lies in a totally geodesic S*1). By Chen
[8, p. 279], M is flat.

Let pe M so that S*=S°NSpan{p, e, e, &}. From (5.2), Lemma 5.1
and (5.6), we get

pXe =&, pXe,=§,, PXE&E=—€ , DXE=—€,
PXE&E=E PXE=—8& , e Xe=—8, € X&E=D,
e, X§= "'55 s € X&=&4» e, X&=¢6,, €, X&s=&s »

(5.52)
e, X&,=D, €, X&=—8, €X&=—€ , &X&E=E,
ésxfs—ezr EsX&=—8 s &X&G=—€, &X&=&,
§EsX&=D ,

so that pXxe, PXe,, DXE&, €, X6, e,X& and e,X &, are contained in Span{s,,
&, &}. This implies that S*® is totally real in S°.

By Theorem C, f can be extended to a map of R* into S°® and is
given by

(@, ¥)=V"Tx, cos(V' N 0)E,+1V 1/x, sin(V N\, %) Es
+V IR eos(V M NE,+VINsin(V N E,, (w, y)e R,
7‘:17\'2_7\'1_>\'2=0 ’

where {E, ---, E;} is an orthonormal basis of E’. Since M is complete
and f is an imbedding of M, M is a flat torus R?/4, where

A={(=, ») | f(x, ¥)=S(0, 0)} .
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We may assume that f(0, 0)=p, (e,),=(d/0x), and (e,),=(3/dy),. By direct
computation, we have
=]/i—/—)\'-1-?]2+1/mE4 ’ (el)p E,, (ez)p ’
H/a—;l/ﬂ)—\—eEz_l/m 4
Since &, is parallel to H, after changing the sign of E,; or E;, we may
assume (‘Ss)p = 1/1_/7\—-21’72 + ‘/T/_X—lElz
Define vectors f, ---, f, in E" as follows;
f1= —VT/_—M(Es)p—Vm(54)p ’
f2=1/1—/x1p—1/m(§5)p ’

fs=_(61)p ’

f4=|’ I/sz"i‘" 1/7\'1(55)1; ’ |
——(62)1; ’

f6=—(56)p ’

f'l = Vm(és)p - l/m.(&l)p .

Using (5.52), we see that {f,, ---, f,} satisfies Table (5.1). Moreover, we
have E,=f,, E,=—f, E,=f,, E;=—f, so that

Fx, ¥)=1"1]x, cos(V N, ), —V I]N, sin(V '\, 2)F;
+1/I/n, cos(V e )F,—V I]N, sin(V n, 9)Fs -

This implies that M (= f(M )) is an orbit of a maximal torus of G, in
S¢. Therefore we see that M e ..

5.2.2. The case that JH is tangent. Assume that JH is a tangent
vector field of M in S®. We may choose a frame {e, e, &, ***, &} satis-

fying

61='—:]—H/a )
& ;Je1 , &=Je,, —JG(en ), &=—G(e, €),

S0 that H=q8&, a+c=2a, d=—b, hH=—h% (r=5,6). From (5.37), we
easily see that b=d=0 and '

(5.58) | (a—c)ht,=0, r=5,6.
By Lemma 5.8,

‘ V+H= a(w"’l& - C06155 + (@51 + w2)56) .
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Combining this with (5.33), we have

(5.54) e=—cB; ,

(5.55) 2h%,h3, —2h5h% = —cB,+hi,; .
From (5.36), we have

(5.56) e(B) +eB)=—2h;, ,
(5.57) e,(h)) +e,(hi) =2ahi, ,
(5.58) e,(h}) +e(h)=28,—2ah}; .

From (5.25), (5.27) and (5.55), we get
e(a)=(a—c)B, , e(c)=4cB,—2h3, .
Combining this with a+c¢=2a, we have
(5.59) hh=(a+3c)B,/2 .
From (5.25), (5.26) and (5.54), we have

{31((1') = (a' - 0)182 ’ 61(0) = (a/ - C)Bz ’
e(a)=(@—c)B;, elc)=—(a—c)B,.

From (5.81), (5.57), (5.54) and (5.59), we have

(5.60)

(5.61) chl,=(a+5¢)B,B./2 .
From (5.29), (5.58) and (5.59), we obtain
(5.62) Bihi= B, + B.hi +c(a+8¢)B./2 «

Let 4 be a C~-function on M defined by
v(@)=(|An.li—2det(Ar.).) », zeM.
Using the above frame, we see that v is given by y=(a—c).

LEMMA 5.11. M,={xe M|4(x)=0} does mot contain any interior
points.

PrROOF. Assume that there exists an open neighborhood U on which
=0, From (5.54), (5.59), (5.61) and (5.62), we obtain

{a=c=a ’ hg1=2aﬁ1 ’ hgz': —aB, ,

(5.63)
h21=331,82 y B 22=61(1+31822+2a2) .



2-TYPE SURFACES 195

Multiplying (5.55) by B, and using (5.63), we obtain B,=0 so that A} =
h%=0. From (5.24), we get

e,(By) =(a*—1)B =1+ (hi)* .
On the other hand, from (5.30) and (5.63), we have
e1(62>= —2622—2}&?2'—2 .

These two equations imply (a®+1)B,°+ (h},+1)*=0 so that 8,=0, hl,=—1
and h%=0. Therefore we get VIH=0. From (5.32) and (5.35), we ob-
tain

a2=(2'—'7\11)(>\:2—2)/4 ’ >\,1+7\,2—2a2—-2=0
so that a,=0. This is a contradiction. Q.E.D.
LeMMA 5.12. Choose a frame {e, e, &, -+ -, &} satisfying (5.12) with

e, parallel to JH. Then a=g(A.e, e) is constant and a+0, +1V'2.
Moreover, we obtain

_{2(a*+1)2a*+1) 4(a®*+1)
(5.64) B 7“2}'{ 4a’+1 ' 4a+1 }
_ | aa®*—1)
a—’ 4a°+1

A—-(a 0) A__(O c) A—(O h) A0
(5.65) < - O P ’ 4 ¢ O ’ 5 h O ’ 8 ’

w21=w43=w53?w54=0 )

W%=(h+Dw*, @\=(h—Do', of=—20201)

’

4a°+1
where
3a 2a>—1
= — d h=-— .
a1 " i1

PrROOF. Let U be an open neighborhood such that +(y)%0 for any
y of U. Choose a frame {e, ¢, &, ---, &} on U satisfying (5.12) and e,=
—JH/ax. ++#0 implies a*c on U. From (5.53) and (5.59), we see that
hi=h;;,=0 and (a+3¢)3,=0 on U.

Assume that 3,0 at some point  of U. There exists an open
neighborhood V (cU) of x such that 8,#0 on V. We get a+8¢=0 so
that a=8a and ¢c=—a on V. By (5.60), we have 8,=0. This is a con-
tradiction. Therefore 8,=0 identically on U.
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From (6.24), (56.28), (5.30) and (5.54), we get

el(ﬁz) = (,82)2 —1l—ac+c*+ (hgz)2 + 02622 ’ '
(5.66) e,(h%) =(~—2h%+2ac)B, ,
e,(hd;)=2¢B.2+2ahl,+2cx .

On the other hand, from (5.35), we have

(5.67) MFA—2=a’+ 6+ B2+ (hd)* +(hi.+1)% .

Differentiating (5.67) by e, and combining (5.60) and (5.66), we have
Bofl@a—ce)+ B+ (bl +1) 428, =0 .

This implies 3,=0 on U.
(5.60) implies that a is constant on U. From (5.54), we see that
=0 on U. The third of (5.66) implies a0 and hl,= —a/a. The first
of (5.66) implies 1+ac—c*—(h},)*=0. Therefore we get

(4a’+1)c*—2a(2a*—1)c—3a*=0 .
Since a#c¢, we have

3a a+t+c _ al2a’*—1) 5 2a°—1
5.68) c=——5% g= = . m,=—20—1
(5.68) i+l ' YT 2 4P +1 Y P |

Therefore (5.65) is shown for the frame {e, e, &, *-+, &} on U.
Combining (5.67) and (5.32), we have

8

m(az + 1)2(20,2 + 1) .

M=

2 2 2 —
yPn] (a*4+1)(2a*+3) , Mg =
These imply (5.64).

(5.68) implies —1/12 <a<0 or 1/ 2 <a. Choose a frame {e, ¢, &,
.+, &)} satisfying (5.12) and e;=JH/a. Clearly, we see that e;=e, or —e,.
It is easy to show (5.64) and (5.65) for {e;, &} on U. In this case, we
get a0, £1/4/ 2. Therefore (5.64) and (5.65) are shown for any frame
on M\ M, satisfying (5.12) with e, parallel to JH.

By the continuity of 4 and Lemma 5.11, we get Lemma 5.12 on
M. - Q.E.D.

REMARK. ¢ is determined as
la|=max{|g(h(X, X), JX)| ; Xe T(M), || X||=1}.

Lemma 5.12 says that M is flat. Moreover, we obtain the following.
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LEMMA 5.13. M lies fully in a totally geodesic 5-sphere of S°.

ProoF. Choose a frame {e, &,} satisfying (5.12) and ¢,= —JH/a. Put
r=(c"+h")", 9,=1/r)(c&+h&) and P,=(1/r)(—hé,+c&). Then {g, Ner Do &o}
is an orthonormal normal frame of M, and we see 4,0, A,#0 and
A,,=A,=0. Therefore the first normal space N, is spanned by & and
7, By Lemma 5.12, we see

Vig,=(h+1Dw’ (#0),
Vln4=%(c(h—1)—2ah)w1§e (#0) .

Then the second normal space N, is spanned by & and

Vig,=— (h+1)w2£3—-117(c(h—1)—2ah)w17)4 .

Therefore N,@N, is parallel with respect to the normal connection V:.
By Erbacher [10], M lies fully in a totally geodesic

S*(1)={x e S°Q) | {x, 1,y =0} . Q.E.D.

From now on, we fix a point »p of M and a frame {e, &} around p
satisfying (5.12) and e,= —JH/a so that we can assume —1/12 <a <0
or 1/V'2<a in (5.64) and (5.65). Define vectors f, ---,f, in E" as
follows:

f1=1/(-176-{—h$4+055} ’
f,= {Vm(p —ag;)— 1/&71_0(054 + hs:s)}/l/—z— ’
fi={—e,—V'1/g(e;—2a8,)}/V 2 ,

(5.69) fo=01[k(p—as)+V q/k(cg,+he)}V 2,
fi={e,— 1/I/—q"(ez — 2“56)}/‘/_2— ’
fe={—2a62——55}/l/—6— ’
f.={lap+&IV'Ek ,

where k=a*+1 and g=4a*+1. Using (5.52), we see that {f, ---, f)
satisfies Table (5.1).

We put
_ 2@+ 1)2a%+1) _ 4a*+1)
ST e 0 M T e
—2 1 2—\ at
Ay=20"2 > gnd A,= w =92
. Ny — Ny k “ A2y — My k
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If —1/1/7<a<0, then M =Ny M:Nm, 0(7\,1’ )\'2)=2a,2/(2a,2+1)<1 and
Q= (Mala— D M — )= 2
If a>1/V"2, then M\ =\ey M=Aus Ay M) =(20°+1)/(2¢")>1 and Q' =

(7\'1()\:1 2)/ (7\'17\'2 AN — )\'2))1/2'—2
' By Theorem C, Proposition 4.2 and Lemma 5.13, f can be extended
to a map of R? into S°%(1) and is given by

@)=V A 3 2Refu, exp L0 (uz— 5}

Vx

+174,, 2Re {us exp ——2—"‘L(7yz——7]_z)} ,

u,-=%{E2,-—1/T1‘E2.,-+1} . j=1,238,

where {E, .-, E;} is some orthonormal basis of E" and g, g, 7 are
complex numbers satisfying

2a’

— pib — pilatp) — pil—a+p) —_
nN=e*, p=e , M.=e , €OS2x 5t 1

By Proposition 4.3, f: R*— S® is doubly periodic.' Moreover, since M is
complete and since f is an imbedding of M, M is a flat torus R*/4, A=
{z]| f(2)=/(0)}. We may assume that f(0)=p, (e,),=(0/0%),, (e.),=(0/0Y),,
wld<a<rw/2 and —n/2<B=7/2. So we get

sin 9 = 4@*+ DY 4a’+1 )1/2

1/2 .
, cosa=\—m—mm— , siha={ ———————
22 +1 « (2(2a,2+1))- ma (2(2a2+1)
First, we see

p=VA,2 E,+VAL2EA+V Ay, E

1 1 lal
—F, E,+-—=—F, .
~ %%k + V2 +V k

By direct computation, we obtain

e)y=2L0)=(2L+2L)o)

- I/A(I)A'(l)/z Sln(a + ﬁ)E +1 A(l)h(l,/z Sln( —Qa +B)E
+1V A ghg @M@ s1n(ﬁ?)E7 , (
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€, =L o=v=1(EL -2 )0

= 1/‘4(1)7\1(1)/2 cos(a+ Q) E;+ ]/Au))v(n/z cos(—a -+ B)E;
+V A N COS(B)E, .

From (4.3), we have

~VE B2 3 9Refu, exp LR (ue— 7))

—V'A, >‘"2’2— 2Re{ua exp —1/—27\-’—‘?-’—(77z—%)} ,

(5.70) &=Hla=2H/V(Z—\u)he —2)

- 2 .. —
=~ VA3 S, 2Re fu, exp L 20 (2~ 7))
a >

Y v V& (55
+ al VA, 2Re{u3 exp —72—-(77z 7]2)}.. .

In particular, we get

(5.71) E)y=—2VALRE,~2 VA, RE+2VA,E
la] | a
a @ A
—* g% E —E
1V 2k 12k ot V&
From Lemma 5.12, we have
(6.72) o(e,, €,),=a(), -

On the other hand, we have in §4

(B o ¥ | FF |
ote, )y =(EL+2-TL + 2L 17 )0)

=14, /2{ W (u+ 7 —~2)+1} B,

+1/A(1,/2{ Ny (g2 i —2)+1}

VA R+ -2+ B,

Combining this with (56.71) and (6.72), we get
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1/A( ){ My (P +7* 2)+1} —TT]/Au)

so that we have (*+7%)/2=1, cos(28)=1, 8=0 and np=1. Therefore we
obtain

1 g+ L g+2dp .

(31)p - ““=E3 1/2 1/—

V' 2 1/2

By direct computation, we get

ale, €,),=V — 1(3{ g_‘_c )()

=V A, 2w ’“m V(- BOE,+1V A2l ’“m V' =1(p—EN)E,

—=Ey, (€)= %4

=—1V A,/ 2 )““’ sin(2a) E, +1/Au,/2 él’ sin(2a) E,
—v'Eq 1_.__E 1 g
/e { V2 +1/ 2 ‘}
From Lemma 5.12, we obtain
By =V Telct,+hey), =-Lu &s_
llo(e,, el
1
7 E
Ve vt

From (5.70), we get
(Vig0r=(6:) + (e
=[=I(E -2 )a0+ee,

/2 cos(a){ '—ml’ Ay +C]/:4_(1;}Es

VRGP cos(@)| -V Aoy +ov A |

+1/x;;,{T“_ll/A—m +c1/z;,}E,

2k 2a 2a a
== - F,———E+—_F,) .
g\ V2 " V2q¢ ' ja g )

On the other hand, from Lemma 5.12, we see
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(Vig),= (h+1>(se>,,=3§<ee>,.

So we have

2a 2a a
8)p= — =Ly — E+ E,
(&) 1 2q 1 2q lalv" q

From the proof of Lemma 5.13, we may assume
E,=0,=V"q[k{—h&,+c&} .
From (5.69), we obtain
f.=E,, f,=E,, f,=—E,, f,=E,,

f,=—FE,, f,=—-2E,, f=-2E,.
ol |al

Define functions on M as follows:

(5.73)

Pi(2)= <]/ — Xl z)= —'[/:_]t_l{_;"_‘——L-L(#’z —KZ) i=1,2,
PR) =V = Ay 27 ==V :_i—l/—;"—‘—;-:(z—'z‘) :

Then f is given by

f (z) =1"4,/2{cos(p,(2))E,+sin(p,(2)) E,
+ cos(p,(2)) E, +sin(p,(2)) Ey}
+ VA, (2){COS(¢73(Z))E6 +sin(@y(2))E7} .

Using the frame (5.73), we have

f=-VlT{MS(?l)fz—sin(%)fs+COS(¢z)f4—sin(%)fn}
a

]/ { —sin(@y)f; +cos(p:)fy} ,

so that we have

Put, for any zeC,

201




202 YOICHIRO MIYATA

1 0 0 0 0 0 0 \
0 cos @, ‘sin P, 0 0 0 0
0 —sing, coso, 0 0 0 0

Tz)=! 0 0 0 cosp, sing, 0 0
0 0 0 —sing, cos @, 0 0
0 0 0 0 0 cos(—@,) sin(—o;)
0 0 0 0 0 —sin(—p,) cos(—p,) /

with respect to the basis {f, ---, f;}. Hence we easily see that

1/;\'_:) (ﬁ1 + ﬁz) = 21/_7\-.-(1_) cos(a) = 1/-7\72)
so that
P1+P— =0 .

This implies that T={T(z)|2z<€C} is a maximal torus of G,. Since f is
given by f(2)=T(2)p, f(M) is a T-orbit. Since f is an imbedding of M,
M=Tp so that Meg;.

The proof of Theorem G is completed.

5.3. Some remarks. Suppose that M is a flat surface such that
Me%F;.. By Theorem F, M is a Chen surface in S°. Denote by f an
isometric imbedding of M into S%1).

In §5.2.2, we see that @=2 (if c(\, N\2)<1) and Q' =2 (if ¢\, Np)>1).
By Theorem C, f can be extended to an isometric immersion of R? into
S¢(1). By Proposition 4.3, we see that f: R*— S° is doubly periodic. Put
A={z| f(z)=f(0)} so that M is a flat torus R*/4. Since f is an imbedding
of M into S°® we obtain by Corollary 4.4

A=A(7\m 7\-2) ’

where A(\,, \,) is a lattice of rank 2 defined in §4.
In the case of c(\, \) <1, A(\, )\,) is generated by z, and z, as
follows:

A()\q’ 7\,2)={kx1+lx2 l k, lGZ} ’

’xz( 27 —27rc032u> x=<0 2 )
NV, Vg sin2y /7 : "V nsin2v /7
cos 2y = —c(\yy Ao) -
It is easy to see that (x, x.>+#0 so that a flat torus R*/4 is not a
Riemannian product of two circles.



2-TYPE SURFACES 203

We apply similar argument to the case of ¢(n, A;)>1. Therefore we
have the following.

PROPOSITION 5.14. If M e, then M is not a Riemannian product
of two circles.

A surface M in S*(1) is called stationary if the mean curvature «
of M in S™ satisfies

S(SM(a2+1)dV>=O

for any 6, where § is a normal variation. In Barros and Chen [1], we
can see many results for stationary 2-type surfaces in S*. Weiner [15]
shows that M is stationary if and only if

G.74) A‘H=—20°H+ || A, H+ o7 (H) .
(44

(See also Barros and Chen [1].) We obtain the following.
PROPOSITION 5.15. If M€, then M is mot stationary.

PROOF. Assume that M (e€g,) is stationary. By Theorem F, M is

a Chen surface of S¢ i.e., % (H)=0. Therefore we obtain from (5.74)
and Lemma 5.12,

Arg=80@ 1)
a1y

On the other hand, by Lemma 5.12, we get

L ____2 L _UlvuL :4(a2+1)2
ALH=3,(V, H-ViViH)=Z 0ot 1

Therefore we have a==+1/1"2. This is a contradiction. Q.E.D.
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