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Introduction.

Let I be an odd prime number and put *=(—1)%"?/4, Fermat’s Last
Theorem was proved by Euler for the exponent {=38 ([3]) and by Dirichlet
for the exponent I=5 ([1]). Their proofs, which will be reproduced in
§2 in modern terms (cf. Edwards [2]), are based on the fact that the
implication

a?—1*b* = I-th power = 3u, v; a+bV T*=(w+v1 T%)}

is justified for {=8 or I=5 under some subsidiary conditions. It is often
said that their success is due to the unique factorization property in the
maximal order of the quadratic field Q(v'T%) for =3 or [=5, respectively.
But, this point of view is not exact, as will be seen in §1; for the above
implication is true virtually for any prime ! (Theorem 1, Theorem 2). The
examples in §2 will show that the difficulty lies in finding the step of
“infinite descent”, not in the failure of the unique factorization.

§1. The Diophantine equation 2?—[*y?=2".

Let I be an odd prime number fixed throughout the present paper
and put [*=(—1)%"2. We use roman small letters such as a, b, u, v,- -
to designate rational integers. We say that ¢ and b have the property
(P), if they are relatively prime, of opposite parity, and a*—1*b* is an
l-th power of a rational integer.

We consider here whether the following implication (x) is justified:

(*) P) = 3u, v; a+bV TF=(u+vV %)
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In his Algebra [3], Euler used the fact that the implication (x) is
valid in the case !=38. While his proof was incomplete, we know that
the assertion is true. In 1825 Dirichlet presented a paper ([1]), where
he proved that the implication is valid in the case /=5 under the sub-
sidiary condition that b is divisible by 5, which is obviously a necessary
condition. We generalize their results as follows:

THEOREM 1. The implication (x) 18 always valid in the case l=—1
(mod 4).

COROLLARY. Suppose l=—1 (mod4) and a*+1b® to be a 2I-th power,
where a, b are relativeﬁy_/_ prime and of opposite parity. Then there exist
u, v such that a+b —l=+ww+v" —=1)*.

THEOREM 2. In the case l=1 (mod 4), we suppose that the Bernoulli

number B_,, ts not divisible by l. Then the implication (x) is valid
under the condition that b is divisible by .

COROLLARY. Suppose =1 (mod4) and a*—Ib* to be a 2I-th power,
where a, b are relatively prime and of opposite parity. In addition,

suppose that B_, . E not divisible by l. Then there exist w, v such that
a+bV T =@+ 1)%

The theorems immediately follow from the following four lemmas.

LEMMA 1. Suppose that a and b have the property (P). Then

a+bVT* and a—bV I* are relatively prime im the maximal order of
the quadratic field Q' T%).

PrROOF. Suppose that there is a prime ideal p in the maximal order
which divides both ¢+ 7* and a—b1 1*. The number 2 is not divisible
by p, since a*—1*b* is odd. Hence p divides b1/ 7* as well as a. If p
does not divide 1/ 7%, then p divides both a and b, which is impossible,
since a is supposed to be prime to b. Therefore p divides 1 7%, hence
also I. It follows from this that a is divisible by I[. Thus ! divides
a*—1*b?, which is an I-th power by the assumption. This means that b
is also divisible by I. This contradiction completes the proof of the
lemma.

While the following is a known result, its proof will be given, for
the author cannot find one in the literatures at hand:

LEMMA 2. Let K be the quadratic field with discriminant d. Then
the class number hx of K is smaller than d/4, if d>0, and |d|/3, &©f d<O0.
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PROOF. Let D denote the number 1/d/2, if d>0, and Vd|/8, if
d<0. It is well known that in each ideal class of K there exists an
ideal A whose norm is smaller than D (cf., e.g. Hasse [4], p. 565). Let
n be any positive integer <D, and p, - - p,, the decomposition of n into
prime factors. Then for each n there are at most 2™ ideals whose norms
are n. On the other hand we have

2n=p, s Pa=n<D.

Therefore there are at most D ideals whose norms are a given number
<D. This implies that h; is smaller than D2

LEMMA 3. Suppose that a and b have the property (P) and, in case
=1 (mod 4), that b 1s divisible by | and that the Bernoulli number Bg_,
is nmot divisible by 1. Then there exist x and y such that a+b/ T*=
(x+yw)', where @ denotes (1+177%)/2.

PROOF. By Lemma 1, a+b1/ 7% and a—by I* are relatively prime.
So there is an ideal A of the quadratic field K=Q(1 ' 1*) such that

a+by TF=A".

By Lemma 2, the class number %, of the field K is smaller than [, hence
prime to . Therefore A is a principal ideal. Hence there are an algebraic
integer x+y®w and a unit ¢ of the maximal order of the field K such that

a+bV T*=elx+yw) .

If I=—1 (mod4) and l%3, then the units of the maximal order of

K are +1; hence the assertion is clear in this case. Suppose l=1 (mod 4)
and write

2+ Yy = c-!—dzl/l*

and

(c—i—dl/T’T‘ ‘)‘= e, +dV T* .
2 2
Then it must hold that ¢,#0 (modl), whereas d,=0 (modl). Write e=
(s+t1%)/2. Then we have
a+b TF= s+t T* ) e, +d Vv T*
2 2
_ (es+dtl*) +(ct+d s T* .
4




88 NORIO ADACHI

Since d, is divisible by ! and ¢, is not, we have c¢,t+d,s=0 (modl),
if and only if ¢=0 (modl). Now it holds that ¢,t+d,s=0 (modl), since
it is assumed that b is divisible by !; hence ¢ must be divisible by I.

Let E=(u+vV"1%)/2 be a fundamental unit of the maximal order of
the field K. Then we may assume that there is a positive integer m
such that e=+FE™. It remains to show that m is divisible by I. The
following congruence is known (cf., e.g. Washington [5], p. 81);

hx.—;’—zBu_m (mod 1) .

|

| By Lemma 2 and the assumption of our lemma, neither hx nor B,_,, is
| divisible by . Hence v is not divisible by I. Therefore, it follows from
| the binomial expansion of (u+v1 1*)™ that m is divisible by I, since ¢ is
| divisible by .

} Finally, we treat the case [=8. Note that (x+ya>)8=((¢:‘i dv =3)/2)¢ e
| Z[Vv' —38] and that it is prime to 2. Therefore, e=(a+b" —3)/(x+yw)® is
| an element of Z[1'—3]. If we write ¢ as +((1+1 —3)/2)/, where j=0,
; 1 or 2, then 7 must be 0. Hence the proof of the lemma is complete.
|

|

|

|

|

|

LEMMA 4. Put o=A+V'1%)/2. If a+b/T* is an l-th power in the
field K=Q('T%), say (x+yw), then y is divisible by 2.

PrRoOOF. Let { be a primitive l-th root of unity and @ the conjugate
of w. Then we have

a:%{(a+b1/'l_*)+(a~bl/—l—*)}

{(x+yw) + (@ +yo)'}

I

1

2
_é_{( o+d21/7_* )‘+( c—cg/F )'}
—c-l

2 (c+dVT* | ,ce—dV TF
25=1( 2 +e 2 )

Let p be a prime divisor of 2 in the cyclotomic field (&), and suppose
that p divides some factor of the above product, say (c+dv 1*)/2+
Z(c—dV 1%)/2. Then we have

A+ +d1A -V T*=0 (mod2p),
c1+0)=d(C—1IW'T* (mod2p) .

Squaring both sides, we obtain
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cA+0=d*—1)1* (mod 4p) .

What we have to show is that ¢ is even. Suppose the contrary; then
c=d=1 (mod2). If we take m so that [*=4m+1, we obtain the con-
gruence

mi+{+m=0 (modyp),

since ¢*=d*=1 (mod 8). It follows from this that {=0 (mod p) or *+{+
1=0 (mod p), according as m is even or not. But both { and *+{+1
are units, unless [=8. This is a contradiction. Therefore ¢ must be
even; so is ¥.

It remains to take care of the case [=38. It is easily seen that

(1) @+yw)=@w+yo)=(—y+@—y)o)
and
(2) @+yw)=(@o*'+y)P=(y—cr—aw)’.

If y is even, we have nothing to do. Suppose that y is odd. If z is odd,
the equalities (1) show that we have only to substitute —y or x—y for
x or y, respectively; if x is even, the equalities (2) show that we have
only to substitute y—x or —x for x or y, respectively. Thus the proof
of the lemma is complete.

PROOF OF COROLL{&E_Y TO THEOREM 1. The class number of the
quadratic field K=Q(1 —1) is not divisible by 2, since the discriminant
of K has no prime divisor other than I. Hence we can write

a+b == (@+yw)*
. {(xz_iz_l_yz) + (2my+y2)w}l

where w=(14+1v"—10)/2. By Lemma 4, 2xy-+%*=0 (mod2); hence y=0
(mod 2).

The proof of Corollary to Theorem 2 is almost the same as above.
In fact, substitute I for —1I, and +¢ for F, where ¢ is a suitable positive
unit in the maximal order of the field K=Q(1 7). It is clear that e
has positive norm. Hence ¢ is a square of another unit, since any of
the fundamental units have negative norm, provided =1 (mod 4). The
corollary follows from this and Theorem 2.
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§2. Connection with Fermat’s Last Theorem.

Let I be an odd prime number fixed as in the preceding section, and
consider the Fermat equation

(3) 2 +y+2'=0.

Suppose that the equation (3) has a non-trivial solution (z, ¥, z) such
that x, ¥ and z are relatively prime and one of them is divisible by I,
say we suppose 2=0 (modl). Moreover, we suppose, for simplicity, that
z is also even (if this is not the case, we must use a slight variant of
our theorems in §1; cf. Edwards [2], pp. 70-73);

(4) 2=0 (mod?2l).

This is the case which Dirichlet first treated in his paper [1] in 1825.
Since # and y are odd, we can set x+y=2u, x—y=2v. Then we
have x=u+v, y=u—o.

LEMMA 5. Let the notations be as above. Then w and v are of opposite
parity and relatively prime. Moreover, u s divisible by 2.

PrRoOOF. The first part is clear, since x and y are relatively prime.
And also it is clear that « is divisible by [, since z is divisible by [. As
2 and ¥y are odd, '+« y+---+y"! is also odd. Hence z+y=2u is
divisible by 2!, for 2! is divisible by 2'. This completes the proof of the
lemma.

Let ¢ be a primitive I-th root of unity. Denote by L the cyclotomic
field Q(), and by N, the norm map from the field L to the rational
number field @. We can set u=Ilw by Lemma 5. Then we have

2 +yt=w+v) +u—v)
=2uN_ (u+v)+L(u—v))

= — 1+
—=2lwN,(1 C)NL('v+ TEe zw)

ol 1+¢

=2[ 'wNL('v+ it lw) ,
since N,(1—{)=1. It follows from Lemma 5 and N, (v+((1+Q)/A—-{)lw)=
v (mod 1—C) that 22w and N,(v+((A+8)/A—-0)lw) are relatively prime.
By (8), #'+%' is an I-th power. Hence we have
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(5)

2w = l-th power ,
{NL(v—I- i"_g lw) = [-th power .

LEMMA 6. The number N, (v+((1+&)/A1—E)w) can be written in the
SJorm p*—1*q* where p and q are rational integers which have opposite
parity and relatively prime.

- PROOF. As is well known, v I*e L. Let K be the quadratic field
Q(/'T%) which is contained in the field L. Then we have

NL('U+ it g lw>=NKNL,K('v+ ij g lw)
=N+ T%)
=pr—I*¢* .

Indeed » and ¢ are rational integers, since u and hence w is even by
Lemma 5. And it is also clear that they are of opposite parity, since

p*—1*q* is odd. They are relatively prime, because p+1” 1*q and p—1" T*q
must be relatively prime.

Applying Lemma 6 to the second equation of (5), we have

2w = l-th power ,
(6) {

p*—1*q¢* = l-th power ,
where p and ¢ are polynomials of v and w.

EXAMPLE 1 (the case [=3; [*=—383). In this case, we have p=v and
g=w. The relations (6) are

(7) 2.3*w = cube
and
v*+3w® = cube .
By Theorem 1 there are s and t such that
v+1 =3w=(s+1 —=38t).
Then we have

v=8(s+38t)(s—3t)

and
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w=3t(s+t)(s—1).

It follows that s is odd and ¢ is divisible by 2-8, since » is odd and w
is divisible by 2:8. Substituting 3t(s+t)(s—%) for w in (7), we have

2t(s+t)(s—t) = cube .

As 2t, s+t and s—¢ are pairwise relatively prime, we can conclude that
all of them are cubic numbers;

s—t=a®, s+t=0b and 2t=c°.
a*+(—b)P+c*=0.

Furthermore, ¢ is divisible by 2-8. It is easily seen that le|] is smaller
than |z| in (8). This supplies the step of infinite descent.

EXAMPLE 2 (the case I=5; [*=5). In this case, we have =24 5?
and ¢=2-5w?* for the caleculation, see Example 8 below. The relations
(6) are written as follows in this case:

{2-53q = fifth power ,

8
(8) p*—b5q* = fifth power .

Since ¢=0 (mod 5), applying Theorem 2 to the second relation of (8), we
have

p+1V 5 g=(a+1"5 by
for some a and b. Put
a=a+1vV'5b.

Then we have

— 1 BEAS _ (g1 K A\
q_21/'5_{(a+1/5b) (a—V"5 b))

=b [ (a—c@) -

=bN (a—Lx) (. 5=1 (mod 4) and a € K)
_ 1+8. &

—5bNL(a+ el b)

=5b(u?—5v% ,

where u=a*+5b% v=2b% Substituting 5b(u?—5v*) for ¢q in the first re-
lation of (8), we have
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2:5'%b(u*—5v*) = fifth power .
Therefore
{2-5‘b = fifth power,
u2—5v2’= fifth power .
Since v=2b%, we have |

{2-5% = fifth power ,
u*—5v* = fifth power .

Thus 4 and v satisfy the same conditions satisfied by p and ¢ in (8),

and |g|>[v|>0. Therefore the argument can be repeated indefinitely and
this leads to an impossible infinite descent.

EXAMPLE 3 (the case l=T; I*=—T). Let K be the quadratic field
Q1 —1), and w=(1+1"=7)/2. In order to determine p and ¢ in Lemma 6,
we need the minimal polynomial of ¢ over the field K:

LEMMA 7. Let { be the normalized T-th root of unity; £=e*". Then
the minimal polynomial of ¢, or (1+8)/A—C) over K is

P+1—w)rt—wr—1,

or

2 —1 Tt —x+ 1/1_7 ,

respectively.
PrROOF. By the well known theorem of Gaussian sum we have
C+E—0+ == =1"=T.
On the other hand, { satisfies the equation
(9) C+C+C+C+HE+C+1=0.
Therefore we have
E+8+L+1—w=0.

From this and (9) we obtain the assertion for ¢. Calculation of the
minimal equation for (1+)/(1—{) is straightforward from the one for C.

By Lemma 7 we obtain
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N,_,x('u+ iJ_f g 7w)=(v3—72vw2)+(7v”w+72w3)1/_:'7 ;

hence

{p=v(®+7w)(v—-7w) ,
q=Tw*+Tw? .

The same method would be applied to the case {>7; for example, if

1=18, then for (6) we obtain

{2»13%0 = 13-th power,
p*—13¢* = 13-th power ,

where

{p =9°+11-18%*w*+15-18*v*w*+5-18%w° ,
q=2-132w*{(v*+18*w?)*—13(2-13w*?} .

However, there seems to be no easy way of finding the step of

infinite descent for 1>5. Though we could also give the modern version
of Dirichlet’s proof for the case for which the exponent is 14, using
Corollary to Theorem 1 (cf. Edwards [2], pp. 7T4-75), the trial to gener-
alize it to a larger even exponent 2! is confronted with analogous dif-
ficulties.
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