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§1. Introduction.

Let f(t)e LXT), T=(—mr, ), be a 2r-periodic function and write, for
a positive integer j,

(L1 40f0 =3, (— 167 f-+ k)
1.2) L9, t; f)=h-IS:A;ﬂf(t)du i

Kinukawa [4] has discussed the problem to characterize the Lipschitz class
of f(t) satisfying

1 . /a\1/
w3 AzsD=({ranf| aprora] ) <, (@ e p>0
0 T
in terms of Fourier coefficients of the functions of the class. He also
discussed a more general class of f(¢f) for which

.t AN =({rar{| Led, 6 Hra}) <o

generalizing a Yadav’s result on absolute convergence of Fourier series.
We are interested in a more general Lipschitz class for a later purpose.
Throughout this paper, ¢(t) is either identically one on [0, 1] or a
nonnegative nondecreasing function such that ¢(0)=0 and ¢7'¢(¢) is non-
increasing on (0, 1].
We introduce, for a nonnegative integer I,

a5 A O=({ (] porew, & ora)”
(a, @, p>0) .

Our main purpose is to study on the class of stochastic processes which
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is similar to the above classes of functions and generalize the author’s
some previous results on almost sure absolute convergence and some sample
properties of stochastic processes.

Let X(t, w), teR', weR, 2 being a given probability space, be a
measurable stochastic process on (R'x 2). Since we are interested in some
local sample properties of X(t, w), we suppose, for simplicity, X(¢, w) is
2r-periodic, namely

E\X(t+2n, w)— XX, w)|=0

for all ¢t € R' and hence X(t+2x, w)=X(t, w) for almost all ¢, with prob-
ability one (almost surely).
Suppose for 1<=7, s

(1.6) X, w)e L*(TxQ),
that is,
(L.7) [ Ix¢t, Oledt< e,

where (| X, |, =[F|X(¢, w)| ]/
We remark that (1.6) implies

(1.8) X(t, w)e LYT), 6 =min(r, 8)
almost surely, that is, X(¢, ), as a function of ¢, belongs to L?(T) almost
surely ([3]).

§2. Lemmas.

We shall begin with the following lemma.

LEMMA 1. Let a>0, — o <b<c and 0<c¢=1l. Letr,20, n=1,2,---,
and P, n=1,2, .-, be such that 0<p,<P,;,, 0<P,,<Kp,. We have

(2.1) 3 (i) 2K S nrepar .

n=1

K’s are constants which are independent of {p,} and {r,}, and may be
different and depend on other parameters in (2.1).

Throughout this paper, we use K for constants which may be different
on each occurrence. The lemma for particular choices of a, b, ¢ and p, is
familiar. We, just for completeness, give the proof of it.

PrOOF. The proof is carried out by Riemann’s condensation method
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as is usually done for the known special cases.
The left hand side of (2.1) is

o gk+1_3 oo ok+21 ]
> 2 n"pn(Zr =2, 20" p ( pY r)

k=0 pn=ok y=n y=2k
ok+2—1

ZZ 2(b+c)kp k Z ,r

v=2k

by the Holder inequality, and the last one, because of the condition on
D, i8
o 2k+2—y

gKZ Z l)b+°p,, ac __ KZ,)JH‘p,

=0 ,=gk+1 V=2

from which (2.1) easily follows.

Now we introduce the following three quantities for any sequence
{r, —oo<m<e} of complex numbers. Let a, a be positive numbers, I
be a nonnegative integer and j be a positive integer.

(2.2) ‘,B;’,ﬁ;({’rn}) — {,,ZZ:'I kpa+l—-1[¢(k—1)]—1(l’”22k|rnla)p/a}llp
(2.8) aczl)’,?',a({rn}) — {i:“ kpa—pi+l—1[¢(k—1)]—1( “,25"|rn|¢lnia!)p/a}1/p

@4 Atrn={{trper

,,t"‘st(l —e'™)idu
0

a]p/adt} 1/p )

These are defined for the case [=0, ¢(t)=1 by Kinukawa [4] who
proved the following lemma for this special case.

n=—00

LEMMA 2. Let {r, —<n<ow} be any sequence of complex numbers,
l be monnegative and a, p, a>0.

(i) Suppose 0<p<a. If ,Bii({r.)) is finite, then, for any positive
integer j such that j>a+({+1)/p when ¢t)Z1l, and j>a+l/p when
#(t)=1, we have

(2.5) Ch({r.h = K.Byi({r.))

(ii) Suppose 0<p<a. If ,Cp%.({r.}) is finite for some positive in-
teger j, then

(2.6) Bra({r.) S K.Cr5.({r.))

(iii) If AL % L{Ta}) 18 finite for some positive integer j, then

2.7 Cb (r D= KALS ()
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(iv) If BLi({r.}) and ,Cp%.({r.}) are finite for some positive integer
7, then

(2.8) ALt (r ) S KLBLA(r.D) +.C% (D] -

Here K’s are constants independent of ({r.}), and may depend on
other parameters involved im the above imequalities.

The proof is similarly performed by Riemann’s condensation argument
as in Kinukawa’s paper. The proof will be given here for completeness.
We first note that for any g=1,

(2.9) (t)=g(Bt)=B4(1) .
Proor or (i).

2m—1

LBRArDP =3 3 k=g )] 3 Iralo)"

m=1 =M

2K 3, 20t [p@ ] 3 I

nl22Mm

(2.10) ZK 35 209 2m0e g S (e

em+1x |n| 2™

Since 27*[¢(2™*)]™* is nonincreasing, we have

i 2v(pa—pj+l) [¢(2—-v)]—1

y=m

é2—m[¢(2—m)]—-1 i 2u(pa—pj+l+1)
é [¢(2—m)]—12m(pa—pj+l)

when ¢(t)#1. Note that pa—pj+14+1<0. Therefore, when ¢(f)#1, the
right hand side of (2.10) is

[~}

ZK 3,277 3L [nlt)e 3 20me i ge)]

2m+1>|n)22™ y=m

— K g 2v(pa-—pj+l) [¢(2—v)]-1 MZ:“I 2mjp( Z |,rn|a,)p/a

2m+1>|n|z2m

which, because of Jensen’s inequality, is

gKﬁ; 2u(pa—?i+l)[¢(2—-v)]—1( i“l ) +12|122 I,rnlal,nla:')wa
y= m=1 om+15 |n m

=K 3 krer (kD] S |l lnle)re .
k=1 2k (n|=2

From this (2.5) follows.
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When ¢(t)=1, the proof goes through (actually more simply) with
pa—pj+1<0.
PrOOF oOF (ii).

[C3(r PPz 3, Z Joremp M (RO 2, lrallmel =)

Mm=1 p=gm

which, because of (2.9) with =2, t=2"", is
= K3, 2noeriti[g2-m] (S |r[olnlod)re .
m=1

Inlgem™—

Since ZZ‘=1 2k(pa+l)[¢(2—k)]—1éKZm(pa+l)[¢(2—-m)]—i’
LOs(rDPZK 327 | S, [rfofnfi)ere 3 2Heeb[g@h)]

2M=2L | n|g2m—

=K 20 H] 7 B2 S el

2m=—2< [n|gom1

which, because of Jensen’s inequality, is

=K S 2oevpe (S e S el e

em—2L | g2m—1

=K Z 2rtrerg27R)]™ Z (2 e

m=k gm=2<|n|g2m1
2K 3 v g S o)
This proves (ii).

REMARK. No assumption is seemingly made on j in (ii). However
actually j is restricted as j>a+!/p, which is seen from the finiteness of
Cul({r,)) sinece > kr*~?it1-g(k~)]~* should be finite.

PrROOF oOF (iii).
LA (rpP2S | 7 gt S
Now for |n|=Ek, 0<t<(kj)?,
’ %S:(l —e)idu i = '%js:e‘""“”(sinﬁ;i)idu ‘

;—Z—J l Stcos nJw (sm—— dul
t 1o 2

-1

S (l—e‘““)’du! ]”“

[(k+1 ).’I]_

=29t cos 1 S (sin-’"’zﬂ) du
0

=K(n|t) .
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Hence

—1

LA P 2K 57 tremimeg@lan 3 irlsini

[k+14171

which, (2.9) being noted, is seen to be

kd) "1

>KZ [¢(k—1)]"1( Z Irnlalnlaj)p/as k4 t—ra—i-1+vidt

[(k+1)4172

;K,,Z:{ kpa-p:+l—1[¢(k—1)]—1(h%hl,,.nlaln‘a:)p/a .

This proves (iii).

PROOF OF (iv). We first remark that the series > |r,|* should converge,
which is implied by the finiteness of ,Bji({r.}).
We then have

,._Z'J”"I“ S(l e‘"“)’dulj

i £ (2] o a0) T

n=-—0oo0

(2.11) <KL S, Irl(nlf+K( 3, I,

whether p/a is larger than 1, or not.
Now

LC(lrDP 2K 3 k= [p ] S, I llmtles)r
for (k+1)'<t<k™, and this is not less than

k1

(2.12) KS(  r@I S Il

k=1 J(k+1)"1

In a similar way
LBy NP 2K 3 ke sk 3 Iral)
(2.13) 2 K|t g1 3, Irabyedt

Hence, for any »p>0, (2.12), (2.18) and (2.11) give

oBrtUr) +.C% ({ra)
= K{[.Byi({r. DI +LCy5 ({r.D]I?}?

zx{{e- ‘1[¢(t)]“[ 3, ke §(1 —e)dul ] at}’
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Thus the proof is complete.
§$3. Almost sure absolute convergence of the Fourier series of a

stochastic process.

Let X(t, w) be a 2zn-periodic stochastic process belonging to L*"(Tx Q2),
l1=7,s. Then from (1.8), X(t, w) € L%T), 6=min(r, s), almost surely and
we may define the Fourier series of X(¢, w)

3.1) | X, w) ~ _2_‘,000 (co)ei"‘

where

8.2) c,,(w)=i§ X(¢, w)e-*"dt
2 Jr

almost surely
Writing, for a positive integer j and k>0,

3.3) Mo ()= sup[2 |, lae xc, Dzt

the author [3] has shown

THEOREM A. Let ¢(t) be as in Section 1 and let 1<r, s<2. If, for
some positive integer j and some mommegative integer 1,

(3‘4) gnl—1+1/0[¢(n_1)]—1M:£j)(n_l) < oo ,
then
(3:5) 3 InlTgn7Cu@)| <o

almost surely.

We remark that the condition (38.4) is equivalent to
(3.6) | tp 1Mz < oo
0

as is easily seen.

As generalizations of L' and A% . for a function, we define the
followmg quantities, for a, a, >0, a positive integer 7, and a nonnegative
integer I, and for X(t, w)e L*"(Tx R), 1<s, r:
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3.7 LG, ¢, 0; X)==— SA"’X(t w)du

68 At =([ B tswirdh {{ elzow ¢ - DOlIa )T

We agree to call the class of X(¢, w) for which ,A;% . (X)<co the class
oA 55 e

THEOREM 1. Let 1<s=r, 0<p=s=2, 1/s+1/s'=1. If, for some posi-
tive integer j amd some mommegative integer 1 and with a=1/p—1/s¢,
X(t, @) € ,A5% 4., then BrA{IC.()IH<eo, Ciw) being the Fourier coef-
ficients of X(t, w).

COROLLARY 1. Under the conditions of Theorem 1, we have

(3.9) 3% [l Tg(nl ] Cu @) <0

almost surely.
Theorem A with 1<s<r is a consequence of Corollary 1, since
/8 h ‘ 8 s
@10 [L] 109 o s olkae]" s (L] [ 2] 14 xe, lldu [ar}”
2z Jr 27 JrL h Jo
which, by the Minkowski inequality, is not greater than
h . /8 .
LT LA jawxc, it | dus Mz .
h JoL 27 Jr
PROOF OF THEOREM 1. We first mention
(8.11) 49X, w) ~ Z C,,(a))(l —etrh)igint |

n=-—oco

We now have, with a=1/p—1/s’,
L-ALs HUIC(HILDI
Sh—w—'ﬂw(h)] ldh[ 5 IOl | Pa—emyiu|” [

r]s'/r}p/a'

C,,(a))-’TSO(l—e‘"“)fdu

which, by the Minkowski inequality, is not greater thah

{hore- e an{E| 3 (@)L H 1— e*n-)idu"']"' 1
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This, by the Hausdorff-Young inequality, is not greater than

p/r

KS:h"*’“"‘l[¢(h)]“dh{E’UTIL""(}L, t, w; X)rdt]"'} :

Using the Minkowski inequality again, we see that the last one is not
greater than

(3.12) K\ he =t | 119G, ¢, -5 Dldt |
0 T
which is finite by assumption. Thus ,.A%%.({[|C.(+)],}) is finite.

On the other hand, from Lemma 2 (iii) and (ii) with a=1/p—1/s’, we
have

(3'13) s’zzl",?',a({”Cn(')”’r})ng’CIl':?,a({”Cn(')”r})
2 K, ByL{IC()HIILD -
This proves the theorem.

PrROOF OoF COROLLARY 1. By Theorem 1,
8.14) - I S G <o

Noting pa+1l—1=—p/s'+1 and p/s'’<1, we can, by Lemma 1, easily see
that (3.14) implies

(3.15) S n (il Gl < oo

where > means that the term for n=0 is dropped out.
Now because of the Minkowski inequality, we have

/7

{B( S IngnH1Cula)P) )
< 3 {B(nlTg(n ™)1 ICu( @)}
= 3V Inllp(nl ™I ICL(ll2

which is finite by (3.14). Therefore

,,:2”_;lnl’[¢(|nl‘1)]“|0n(w)l"< o0

almost surely.
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REMARK. We remark that the assumption of Theorem 1 necessarily
implies 7>({+1)/p—1/s’.

This is immediate. Because from the proof of Theorem 1, ,.C}:% ({|[C.()II.})
is finite which implies in turn 3 kP* 7" g(k™")] <. From this pa—
k7 +1 should be negative.

§4. Contraction and shrivel.

For two functions f(¢) and g(¢) defined on a domain D in R!, Beurling
[1] introduced the idea of contraction: If |g(t,)—g(t,)|=|f(t,)—f(t,)| holds
for all ¢, t,c D, he said that g(¢) is a contraction of f(?).

We now suppose D=R' and f(t) and g(t) are 2rz-periodic. Yadav [6]
generalized the condition of contraction, saying that g() is a shrivel of
f(t) of order j, j being a positive integer, if

(4.1) |42 g(t)| = K|4:2 f(1)]

for all 0<h<1, te R, where K is a constant independent of ¢ and k.
As a matter of fact, he used the more general condition

(4.2) |0, & pratsk| |Low, t frdt

for all 0<h<1, K being a constant independent of h.
We define the similar contraction condition for a stochastic process.
We shall say that a 2z-periodic stochastic process X(f, @) is a shrivel

of f(t) in mean of order j(=1) if
(4.3) 142 X(t, Il = K41

for all te T, 0<h=1, K being a constant independent of & and t. More
generally as a generalization of (4.2), we, in what follows, are interested
in the shrivel condition

1/8’

o (Lo, b, 5 Dlkae" sk {| |1Lo@, 4 N}

for 1<s, r, 1/s+1/s’=1. When this is the case, X({, w)e L*"(T'x2) may
be said an integrated mean shrivel of f(¢) of order j.
We now claim

THEOREM 2. Let 0<p<s=<2, 1<s=<r. Suppose X(t, w)ec L*"(Tx Q)
and f(t)e L*(T). 'If the shrivel condition (4.8) or more gemerally the
integrated mean shrivel condition (4.4) holds for a positive integer J such
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that j>a+l/p for ¢@t)=1 and j>a+l+1)/p for &)£1l, for some
nonnegative integer I, with a=1/p—1/s’, then ,Bit({c.}))<oo implies
eBA{IC.(DID <o, where ¢, and C,(w) are Fourier coefficients of f(t)
and X(t, @) respectively.

COROLLARY 2. Under the conditions of Theorem 2, of Bii({e.) <o,
then (3.9) holds almost surely.

PROOF OF THEOREM 2. From (3.13) and (3.12),
BEEAIC(H D= K AxS {IC()LD
1 . v/8) 1/p
<k {| poemtpmran] | 1296, & 0l [}

By the condition (4.4), the last one is
<k {{ wrpmran] | Lo, ¢, ]}

which, because of the Hausdorff-Young theorem, is
:lp/t}l/p

gK{Slh—pa—l—l[¢(h)]—l[ i lc"l,_}_’ Sh(l _emu):'du

0 n=—co h i1Jo
<KAL% (e} ,

which, from Lemma 2 (i) and (ii), is not greater than K,By%({e.) < oo.

This proves the theorem.

The proof of Corollary 2 has been given in the course of the proof
of Corollary 1.

§$5. Sample properties of stochastic processes.

Let us denote by A, the Lipschitz class of 2z-periodic funections J@®)
such that

tﬁ}‘.‘;.,'f (t+h)—Sf(O)|=Kp(5)

if ¢(t) is not identically one. We agree that A4 means the class of con-
tinuous functions, if ¢(¢t)=1.

Let X(¢, w) be a 2r-periodic stochastic process which is stochastically
continuous, namely P(|X(t+h, w)—X(t, w)|>¢)—0 (as h—0) for every ¢>0
and every t. P is the probability measure on 2. We know [2, Lemma
6.1] that in this case, the defining limit relation holds uniformly and the
(C, 1) means o0,(t, ) of the Fourier series of X(t, w) converges uniformly
in probability to X(¢, w). :
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Now we take p=1 in Corollary 1 or 2. Then under the conditions
of Theorems 1 and 2 with p=1,

6.1 3 Inl's(n )] Cu(@)] < o

almost surely. (5.1) of course implies X7 .. |C.(w)| << almost surely.
Define

(5.2) X(t, @)= 3 Cu@)e™™ .

Then keeping the above facts in mind, we have that X ({, w)=X(t, w)
almost surely for each #, namely X (¢, w) is a modification of X(¢, w).
We see from (5.1) that X (t, @) has the I-th derivative which belongs to
As. Therefore we can claim the following theorems.

THEOREM 8. Let 1<s8<2, s=r. If X, w)e, A}} ..., for some positive
integer j such that j>1/s+1 for ¢(t)=1 and j>1/s+1+1 for #(t)#1,
being some monmegative integer. Then there is a modification X, w)
of X(t, @), which has the l-th derivative belonging to A,.

THEOREM 4. Let 1<s<2, s<r and let a 2n-periodic process X(t, ) €
L*(Tx2). If there is a 2n-periodic function € L*(T) such that the
mean shrivel condition (4.4) is satisfied for some positive integer j>1/3+1
for ¢(t)=1and j>1/s+1+1 for ¢(t)#1, then there is a modification X (¢, ®),
which has the l-th derivative belonging to A,.

For details of arguments proving these theorems, see [2, Section 6].
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