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Introduction.

Pitman’s theorem ([2]) for a one-dimensional Brownian motion B(t)
states that B(t)—2M(t) is a Bessel process of index 3, where B(0)=0 is
assumed and M(¢) denotes the minimum of B(s), 0=<s=<t¢. This theorem
can be obtained, after a scaling limit, from a similar theorem for a
coin-tossing random walk on Z which is easy to prove and may still be
called Pitman’s theorem. An extension of Pitman’s theorem to higher
dimensional random walks is the following: given a simple random walk
S, on the d-dimensional lattice Z°¢ starting at 0, let Sy’ be the i-th
coordinate of S, and denote by M¥ the minimum of S, 0<k=<mn. Then
the process

(1) S,—2M,=(SP —2M®, S —2M®, - -, St —2M)

ought to be a Markov chain. Unlike the corresponding statement for a
higher dimensional Brownian motion, the above statement for d=2 is
not an immediate consequence of the one for d=1 since the coordinate
processes of S, are not independent (in the case d=2). The purpose of
this paper is to prove that S,—2M, is a Markov chain on the d-dimensional
(sub-)lattice Z? of points with nonnegative integral coordinates (Theorem
1). Although a straightforward method used in the case d=1 (see §2)
may also be applied to the case d=2, the argument will be quite messy.
In this paper we employ another method which is based on the following
simple observation: the coordinate processes of a simple random walk on
Z* (d=2) with continuous time are independent although this is not true
for the case of discrete time.

§1. Statement of the result.

Given an integer d=2, we write e, e, ---, e¢; for the d-dimensional
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unit veectors (1,0, .--,0), (0,1,0,---,0), ---, (0, ---,0,1) spanning Z°.
Given positive constants p{”, 0= =+1, 1=<i<d, such that 32, p,=1, where
p,=p{V+p{Y, let S, denote the position at time » (=0,1,2, --:) of a
particle performing the random walk on Z¢, according to the following
rule: the particle starts at 0, namely, S;=0, and when the first =
positions S,, 0<k=<n—1, are fixed, the particle starts afresh at S,_,,
jumping next to one of the 2d neighbours S,=S,_,+o0e, o==+1, 1=<i<d,
with probability »{” for landing at S,_,+oce,, We are interested in the
Markovian property of the process {S,—2M,; n=0} defined by (1).
Before giving the definition of p(x, y), x, y€ Z¢, which is expected
to be the transition function of S,—2M,, we introduce a transition
function p(z, ¥; @) on Z, with parameter a € (0, 1) as follows: if a+1/2,

1 for x=0,y=1,
(2.2) @, ¥; )= A1—a)1—7)A—7*)"  for x=1,y=z—1,
» I a(1—75+2)(1—7z+1)—1 for z=1, y=2+1,
0 otherwise ,

where y=(1—a)a™; if a=1/2,

11 for x=0,y=1,
272 (x+1)"* for =1, y=2—1,
2.b s Y 1/2)=
(2.b) P& U U= sy o)t for z2l y=wil,
0 otherwise .

We then define p(x, y) for x=(x,, @;, -+, x;) € Z{ and y=(y,, ¥,, * * *, Ya) € Z}
by

p.0(x, Y3 2D for y=x-+oe, with some ¢
(3) b(x, y)=1 (1=<i=<d) and g==+1,

0 ' otherwise ,

or equivalently by

(3 p(x, y)=h(x)"p(x, y)h(yY) ,

where p(x, y) is the (one-step) transition function of S, and

B =11 k(@) ,

hi(x)____{]l—{_%:;%}xﬂ

z+1 if pit=pio .

it p{pi,
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Our result is now stated as follows.

THEOREM 1. ({S,—2M,; n=0} is a Markov chain on Z{ with (one-
step) transition function p(x, y).

§2. Pitman’s theorem in the case d=1.

For our proof of Theorem 1 we need its one-dimensional version
(Proposition 2); of course, this is essentially due to Pitman [2]; however,
since a detailed proof in the case of asymmetric random walks on Z seems
to be found nowhere, we give it here.

Given positive constants « and 3 such that a+3=1, we consider a
random walk

{SO=O
Sn=X1+"’+Xn ’ (ngl) ’

where X,, k=1, are independent identically distributed random variables
with P{X,=1}=qa, P{X,=—1}=8 (k=1). We put M,=min{S,; 0=<k=n}.

PROPOSITION 2. {S,—2M,; n=0} is a Markov chain on Z, with tran-
sition function p(x, ¥; a) given by (2).

Proor. We give the proof only in the case a>1/2, since the proof
in the case a<1/2 is much easier. Define a random time r=min{n=1;
S,=—1} with the convention min @ = and let

_ (O, Sl, ety Sr—u 1) if T,

=1, n20) if r=co .

Note that the assumption a¢>1/2 implies 7= with positive probability.
We regard w as a random variable taking values in Z =%"uU% ",
where %7’ is the space of finite sequences w=(w(n), 0=n=<l!) in Z, such
that (i) 1=1< 0, (ii) w(0)=w(l—1)=0, (iii) w{)=1 and (iv) wn+1)—wn)=
+1 for each n; 77" is the space of infinite sequences w=(w(n), n=0)
in Z, such that (i) w(0)=0, (ii) w(n+1)—w(n)==1 for each n, and (iii)
w(n) —oco as n—oo,

Take independent copies w,, w,, --- of w, write w,=w,(n), 0<n=l,)
or w,=(w,(n), n=0) according as w, e ¥?#”’ or w,e #"" and put L,=0,
L,=l,+l,++--+1,, k=1, with the convention [,=« if w,€ %#™. Since
T=-co has positive probability, we have N=min{k=1; L,= =}< o almost
surely. Denote by (W, P) the probability space on which w,, k=1, are
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defined. We then define a process {W,, n=0} on the probability space
(W, P) by

(4) W.=k—l+wyn—L,,) for L,,<n<L,, k=1,2 -+, N.

It is easy to see that the process {W,, n=0} is identical in law to
{S.—2M,, n=0}.

Given z(n)e Z,, 0=n=m (m=1), such that z(0)=0, x(1)=1 and
lz(n)—x(n—1)|]=1 for 1=n=<m, we now compute P(4) where A=
(W.=2z(n); 0=n=m}. Let Mji=min{W,; n=m} and put

A,=AN{M},=x}, xeZ, .

Mi=2 0<x<x(m)) implies max{k; L,<m}=<z and hence m<L,,,. There-
fore, we have

z(m) z(m) =
P{a}= 2, P{A}= X, 3 P{4,, Lism<Lyu} .

From the definition (4) of W, we can see that

Mi=x and L,=sm<L,,, = L;,=0o
provided that k<xz. Therefore, if 0<k<x, then

P{Az’ Lk§m<Lk+1}=P{Am Lkém’ Lk+1=o°}
k
=(@(0), 5(D), -+, sm)(£) etam) ,

where 7(x(0), 2(1), - - -, 2(m)) =1, p(@(n—1), (n)), p(x(n—1), x(n)) being
equal to a or B according as z(n)—xz(n—1) is 1 or —1; &x(m)) is the
probability that the random walk {x(m)+S,, n=0} starting at x(m) hits
x but does not hit x—1. It is easy to compute &(x(m)), namely, we have

&@x(m))=r*"-2(1—), where v=pg/a (for example, see [1], p. 314). If k==,
we have

P{Am Lk§m<Lk+1}=P{Az’ Lwémy Lz+1=°°}+P{AW’ L”-S—m<L”+1<oo}
=7(@(0), #(D), -+ -, am))( L) ew(m)
a

+7@(O), #(W), -+, sm)(£ ) 7am) ,

where 7(x(m)) is the probability that the random walk {z(m)+S,, n=0}
hits z—1, namely, n(x(m))="*™-2*, Therefore, we finally obtain
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(5) P(4)=3 P{4)

x(m)

Z m(x(0), (1), -« -, (m))v* == (1 —7)

=0k

2 (W(O), 93(1), oo, x(m))ryz(m)+1

ll

=7(@(0), a(D), + -+, a(m) 2, 7"
=11 pa(n—1), =(n)) ,
where
h(y) y—aw=1

h(x) ' B
r@)=A—=7""HA-NT, € Z.) .

o, ¥)=p(, ¥)——

Since the above P(x, ¥) coincides with p(x, ¥; a) defined by (2) provided
that y—x= =1, Proposition 2 follows from (5).

§3. Proof of Theorem 1.

For each 7 1<i=<d), let S®(t) be a random walk on Z with con-
tinuous time, starting at 0 (S?(0)=0) and having generator G, where

G f@)=p" fle+1)+p " flea—1)—p.f(x) .

We assume that {S“(¢), t=0}, 1<i=<d, are defined on a common probability
space and that they are independent. Then it is easy to see that

S@t)=(S"@), S®), -+, SU®)

is a random walk on Z¢ with continuous time whose generator is G:

Gf(x)= Z >, pi"f(x+oe)—f(x) .

i=1 g==1

In other words, the coordinate processes of a simple random walk on Z°
with continuous time are independent while this is not true in the case
of discrete time. This fact, in spite of being elementary and even obvi-
ous, can not be found easily in literature; according to K. Ito it was
E. B. Dynkin who had referred to this fact. Denote by T, T, --- the
successive jumping times of S(¢) and put 7,=0 for convention. Then
the process {S(T,), n=0} on Z° with discrete time is identical in law
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to the random walk {S,, »=0} introduced in §1. Moreover, putting
MP @) =min{S¥(s); 0<s<t} and M(@t)=M %), M®(¢), -+, M'¥'(t)), we see
that

(6) (S,—2M,, n=0}=(S(T,)—2M(T,), n=0} ,

where = means the equality in distribution. On the other hand, since
for each i the successive jumping times of S“(t)—2M“(t) coincide with
those of S*(t), Proposition 2 implies that each S“(¢)—2M"(¢) is a con-
tinuous time Markov chain on Z, with generator G,:

Gf@=pd 3 p@, u; P PIF W)~ F@)} -

Therefore, the independence of S“(t)—2M'“(t), 1=<i<d, implies that
S(t)—2M(t) is a continuous time Markov chain on Z{ with generator G:

Gr=3, 3, pp(@, v+ 0; 0 Ip)S (x+0e)— F(x)
xXx=(2y **+, %) -

Observing S(t)—2M(t) at its successive jumping times T, T, --- we see
that {S(T,)—2M(T,), n=0} is a discrete time Markov chain on Z{ with
(one-step) transition funection p(x, y) given by (8). This combined with
(6) completes the proof of Theorem 1.
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