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Abstract. Let B be a unital C*-algebra which is strongly Morita equivalent to an
irrational rotation C*-algebra. Then Rieffel showed that it is isomorphic to As®M, where
Ay is an irrational rotation C*-algebra and M, is the nXn matrix algebra over C. In the
present paper we will show that for any automorphism a of AsQ@M, there are unitary
elements w€ As@M,, We M, and an automorphism 8 of As such that a=Ad(w)-(BRQAA(W)).

§1. Preliminaries.

For each irrational number 4 R let A, be an irrational rotation
C*-algebra by 6 and for each ne N let M, be the nxn matrix algebra
over C. Let B be a unital C*-algebra which is strongly Morita equivalent
to A, for some irrational number 7. Then Rieffel [7] showed that there
are an n€ N and an irrational number 6 € R such that B is isomorphic
to A,QM, where @ is an element in the orbit of 7 under the action of
GL(2, Z) on irrational numbers by linear fractional transformations and
GL(2, Z) is the group of all 2x2 matrices over Z with determinant 1
or —1. In what follows, we will study automorphisms of A,QM,. Let
u and v be generators of A, with uv=e*“vu. Then K,(4,)=Z[u]DZ[v].
Let 7 be the unique tracial state on 4, and p be a Rieffel projection in
A, with z(p)=6. Then K,(A4,)=Z[11PZ[r] and 7.(K,(A,)=Z+2Z6 where
74 is the homomorphism of K,(A4,) into R induced by z. Let Tr be the

unique tracial state on M, and tr be the unique tracial state on A,QM,

defined by z@®Tr. And let {e;;: 4, 5=1,2, --., n} be matrix units of M,
and U and V be the generators of M, defined by U=31, e***'¥/"¢,; and
V=e,+33%.,¢€;;_,. Then UV=e"vY"VU., And let I, be the unit of M,.
Furthermore let Ay be the dense *-subalgebra of smooth elements of A4,
with respect to the canonieal action of the two dimensional torus.
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§2. Automorphisms of A,QM,.

Let A be a C*-algebra and B be a C*-subalgebra of A. Let a be
an automorphism of A. Let a|; denote the monomorphism of B into A
defined by als(*)=a(x) for any x€ B.

LEMMA 1. Let o be an automorphism of AQRQM,. Then there is a
unitary element w € A,QM,, such that (Ad(w*)oa)| spece;; 18 an automorphism
of A/QCe;; for 7=1,2, -+, n.

PROOF. Since troa is a tracial state on 4,QM,, by the uniqueness
of the tracial state on A,QM,, tr(a(1Re;;))=tr(1Re;;) for j=1,2, ----, n.
Hence by Rieffel [7, 2.5. Corollary] there is a partial isometry w; e A,.QM,
such that wiw;=1Qe;; and ww}=a(lRe;;) for j=1,2, -+, n. We define
w=>7,w;, Then w is a unitary element in A,Q@®M, such that
w1lRe;)w*=a(1®e;;). Thus for any x€ 4, and j=1,2, ---, n,

(Ad(w*)oa)(@®e;;) = (Ad(w*) o) 1Re;5)(Ad(w*) e ) (#Q L) (Ad(w™*) e ) (1&es5)
=(1Qe;;)(Ad(w*) e a) (@R )(1Re;;) -

Since (1R®e;;)(AQRQM,)ARe;;) =A;RCej; for j=1,2, ---, m, we obtain that
(Ad(w*) oa)(@Re;;) € AyXCe;; for any xz€ A, and j=1,2, ---,n. Hence
(Ad(w*)oa)|syece;; is an automorphism of 4,QCe;; for j=1,2, ---, n.
Q.E.D.

Let M,(A,) be the nxn matrix algebra over 4,. We identify M,(4,)
with A,QM,. Let AyQM, denote the nx»n matrix algebra over A7, i.e.,
M, (A%).

COROLLARY 2. Let a be an automorphism of A,QM, with
(A QM,)=A7Q@M,. Then there is a unitary element we A7QM, such
that (Ad(w*)oa)|secs;; i8 an automorphism of A,RCe;;.

PROOF. By the assumptions, a(l1Qe;;) € AZQM, for j5=1,2, ..., n.
Since tr(a(1®e;))=tr(1RQe;y), [a(1Re;)]1=[1Re;;] in K(A7) for j=1, 2,
.-, n. Hence (1Re;;)(Ay)" is stably isomorphic to a(l®e;)(A4A7)" as a
finitely generated projective right Ay-module. However the same result
as Rieffel [7, 2.2. Theorem] holds for Af, that is, A7 has cancellation.
Thus there is a partial isometry w;e AyQ@M, such that wiw,;=1Qe;; and
wwi=a(l@ej;) for j=1,2, ---, n. Therefore if we repeat the same
discussion as Lemma 1, we obtain the conclusion. Q.E.D.

Now let a be an automorphism of A,QM,. We suppose that alec.;;
is an automorphism of 4,XCe;; for j=1,2, ---, n.
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Since A,QCe;; is isomorphic to A, there is an automorphism B; of A,
such that a(xQe;;)=p;@)Re;; for j=1,2, ---, n. Furthermore we have
the following lemma.

LEMMA 8. Let a be an automorphism of A,QM, satisfying the above
condition and B;, 7=1,2, ---, n, be as above. Then there are unitary
elements y; € A, such that

Bin(®)=y;8;(®)yF  for j=1,2, ..., n—1
and

Bi(X) =Y.8.(X)yx

Sfor any xe A,. In particular if a(AyQM,)=AsRQM,, Yy, € Ay for j=
1,2 ..., n.

PROOF. Let V=¢,+3}¢;;,_;. Then 1QV)1Re;)(1RV)*=1Re;., 14,
for j=1,2, .-+, n—1. Since a(l@V)1Re;;)=1Re;11.)a(1®V), we ob-
tain that

a(l®V)=y,.Ke,, +j2=2 Y51,

for some y;€ 4, (j=1,2, ---, n). Since a(1®Q V) is a unitary element in
AQRM,, ¥;, 7=1,2, --+, n, are unitary elements in 4,. Since a(lRQV)x
(Bi(*)Re;5) = (B71,(2) Q€)1 54)a(1Q V), we obtain that

Bl(x)yn = y'nl@n(m)

and

Bi(®)Y i1 =Y ;i_1B;_.(2) for 7=2,8, .-, m.

Therefore we get the conclusion. In particular if a(A7QM,)=A;RM,,
a(l®V)e A7QM,. Hence y;€ Ay for j=1,2, -+, n. Q.E.D.

COROLLARY 4. Let o be an automorphism of AyRQM,. Then there
are a unitary element we A,QM, and an automorphism B of A, such
that (Ad(w*)ea)(xRe;;) =Bx)Re;; for any x€ Ay, and §=1,2, ---, n. In
particular if a(ATQM,)=A7QM,, we AyQM, and B(AT)=AZ.

PROOF. By Lemma 1 we can assume that o satisfies the assumptions
of Lemma 3. Hence there are unitary elements y; € 4, and automorphisms
B; of A, for j=1,2, ..., n such that '
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a(x®e;) = Bi@)Ress Bin(®)=yiB:@y;  for 7=1,2,+-+,n—1
and | '

By(®) =Y. Bn(X)Yn

for any x€ A,. Let g=g, and w;=y; - ¥, for j=1,2, -++,n—1. And
let w=1Re,+ 3= w;Re;1, 54+ Then we obtain that (Ad(w™*)oa)(@Re;;) =
B@)Re;; for j=1,2, -+, n. Furthermore we suppose that a(AQM,)=
A=®M,. Then by Corollary 2 and Lemma 3 we can easily see that
we AZ@M, and B(A7)=A7. Q.E.D.

LEMMA 5. Let a be an automorphism of AQM,. We suppose that
there is an automorphism B of A, such that a(xQe;;)=pB(x)Qe;; for any
ze A, and j=1,2, --+, n. Then there is a unitary element We M, such
that a=RRAd(W). -

ProoF. In the same way as the proof of Lemma 3 we can show
that a(1® V) =¥, + =, ¥;-,Qe;;-, Where y;, j=1, 2, -+, n, are unitary
elements in A,, and that g(x)y;=y;8(x) for any x€ A, and j=1,2,:--, n.
Hence y;, j=1,2, -+, n, are in A,N As. Since A,NA,=C1, y;, 7=1,2,
..., n, are in C1l. Thus there is a unitary element Y€ M, such that
al®@V)=1RY. Let U=31, e " e;;. Since UV =¢"'"", we get UY =
&mYU. Hence U and V (or Y) generate M,. Since a(lQ U)=1QU
and al®V)=1QY, alcer, i8 an automorphism of Cl1®XM. Hence there
is a unitary element We M, such that alcew,=Ad(1® W). Thus we ob-
tain that a=gRA4A(W). Q.E.D.

THEOREM 6. Let o be an automorphism of AsQM,. Then there are
a unitary element we A,QM,, an automorphism 3 of A, and a unitary
element WeM, such that a=Adw)(BRAA(W)). In particular if
a(ARM,)=AsRM,, then there are a unitary element we A7QM,, an
automorphism B of A, with B(A7)=A7 and a unitary element We M,
such that a=Ad(w)-(BRQAd(W)).

PrOOF. This is trivial by Corollary 4 and Lemma 5. Q.E.D.

Let o be an automorphism of 4,QM, and a, be the automorphism
of K,(AsQM,) induced by a. Since K,(4,QM,) is isomorphic to Z%, we
can regard a, as an element of GL(2, Z).

COROLLARY 7. With the above assumptions let a be an automorphism
of A,QM, with a(AsQM,)=A7Q@M,. Then a,€SL2, Z).
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PROOF. By Theorem 6 there are a unitary element weA7RM,, an
automorphism B of A, with B(Ay)=Ay and a unitary element We M,
such that a=Ad(w)-(8RQAA(W)). Since K,(4,)=Z? Bx can be regarded
as an element of GL(2, Z). Then by Cuntz, Elliott, Goodman and
Jorgensen [2], B,€SL(2, Z). And «a,=8, on 2Z°® since a=Ad(w)o
(BR®AA(W)). Thus a,eSL(2, Z). Q.E.D.

For any s and te R let 3,, be the automorphism of A4, defined by
Be,n(w)=€""u and B, ,(w)=e""*v, and for any g=l:? 3:IGSL(2, Z) let B,
be the automorphism of A, defined by g,(u)=wu*v" and B.(v) =ubv?.

COROLLARY 8. Let a be an automorphism of A;QM, with
a(A7QM,)=A7QM,. Let 6 have the gemeric Diophantine property.
Then there are unitary elements w e A7QM,, WeM,, zec A7 and s, tc R,
9€SL2, Z) such that

a=Ad(w)°((Ad(2)°B,,°B,) QAA(W)) .
PrOOF. This is trivial by Theorem 6 and Elliott [3]. Q.E.D.
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