Automorphisms of Unital C*-Algebras Which are Strongly Morita Equivalent to Irrational Rotation C*-Algebras

Kazunori KODAKA

Keio University
(Communicated by Y. Ito)

Abstract. Let B be a unital C^* -algebra which is strongly Morita equivalent to an irrational rotation C^* -algebra. Then Rieffel showed that it is isomorphic to $A_{\theta} \otimes M_n$ where A_{θ} is an irrational rotation C^* -algebra and M_n is the $n \times n$ matrix algebra over C. In the present paper we will show that for any automorphism α of $A_{\theta} \otimes M_n$ there are unitary elements $w \in A_{\theta} \otimes M_n$, $W \in M_n$ and an automorphism β of A_{θ} such that $\alpha = \mathrm{Ad}(w) \circ (\beta \otimes \mathrm{Ad}(W))$.

§ 1. Preliminaries.

For each irrational number $\theta \in R$ let A_{θ} be an irrational rotation C^* -algebra by θ and for each $n \in N$ let M_n be the $n \times n$ matrix algebra over C. Let B be a unital C^* -algebra which is strongly Morita equivalent to A_{η} for some irrational number η . Then Rieffel [7] showed that there are an $n \in \mathbb{N}$ and an irrational number $\theta \in \mathbb{R}$ such that B is isomorphic to $A_{\theta} \otimes M_n$ where θ is an element in the orbit of η under the action of $GL(2, \mathbf{Z})$ on irrational numbers by linear fractional transformations and $GL(2, \mathbf{Z})$ is the group of all 2×2 matrices over \mathbf{Z} with determinant 1 or -1. In what follows, we will study automorphisms of $A_{\theta} \otimes M_n$. Let u and v be generators of A_{θ} with $uv = e^{2\pi i \theta}vu$. Then $K_{1}(A_{\theta}) = \mathbf{Z}[u] \oplus \mathbf{Z}[v]$. Let τ be the unique tracial state on A_{θ} and p be a Rieffel projection in A_{θ} with $\tau(p) = \theta$. Then $K_{0}(A_{\theta}) = Z[1] \oplus Z[p]$ and $\tau_{*}(K_{0}(A_{\theta})) = Z + Z\theta$ where τ_* is the homomorphism of $K_0(A_\theta)$ into R induced by τ . Let Tr be the unique tracial state on M_n and tr be the unique tracial state on $A_\theta \otimes M_n$ defined by $\tau \otimes \text{Tr.}$ And let $\{e_{ij}: i, j=1, 2, \dots, n\}$ be matrix units of M_n and U and V be the generators of M_n defined by $U = \sum_{j=1}^n e^{2\pi i (j/n)} e_{jj}$ and $V=e_{1n}+\sum_{j=2}^n e_{jj-1}$. Then $UV=e^{2\pi i (1/n)}VU$. And let I_n be the unit of M_n . Furthermore let A^{∞}_{θ} be the dense *-subalgebra of smooth elements of A_{θ} with respect to the canonical action of the two dimensional torus.

§ 2. Automorphisms of $A_{\theta} \otimes M_n$.

Let A be a C^* -algebra and B be a C^* -subalgebra of A. Let α be an automorphism of A. Let $\alpha|_B$ denote the monomorphism of B into A defined by $\alpha|_B(x) = \alpha(x)$ for any $x \in B$.

LEMMA 1. Let α be an automorphism of $A_{\theta} \otimes M_n$. Then there is a unitary element $w \in A_{\theta} \otimes M_n$ such that $(\operatorname{Ad}(w^*) \circ \alpha)|_{A_{\theta} \otimes c_{\theta j j}}$ is an automorphism of $A_{\theta} \otimes Ce_{j i}$ for $j = 1, 2, \dots, n$.

PROOF. Since $\operatorname{tr} \circ \alpha$ is a tracial state on $A_{\theta} \otimes M_n$, by the uniqueness of the tracial state on $A_{\theta} \otimes M_n$, $\operatorname{tr}(\alpha(1 \otimes e_{jj})) = \operatorname{tr}(1 \otimes e_{jj})$ for $j = 1, 2, \dots, n$. Hence by Rieffel [7, 2.5. Corollary] there is a partial isometry $w_j \in A_{\theta} \otimes M_n$ such that $w_j^* w_j = 1 \otimes e_{jj}$ and $w_j w_j^* = \alpha(1 \otimes e_{jj})$ for $j = 1, 2, \dots, n$. We define $w = \sum_{j=1}^n w_j$. Then w is a unitary element in $A_{\theta} \otimes M_n$ such that $w(1 \otimes e_{jj}) w^* = \alpha(1 \otimes e_{jj})$. Thus for any $x \in A_{\theta}$ and $j = 1, 2, \dots, n$,

 $(\mathrm{Ad}(w^*)\circ\alpha)(x\otimes e_{jj}) = (\mathrm{Ad}(w^*)\circ\alpha)(1\otimes e_{jj})(\mathrm{Ad}(w^*)\circ\alpha)(x\otimes I_n)(\mathrm{Ad}(w^*)\circ\alpha)(1\otimes e_{jj})$ $= (1\otimes e_{jj})(\mathrm{Ad}(w^*)\circ\alpha)(x\otimes I_n)(1\otimes e_{jj}).$

Since $(1 \otimes e_{jj})(A_{\theta} \otimes M_n)(1 \otimes e_{jj}) = A_{\theta} \otimes Ce_{jj}$ for $j = 1, 2, \dots, n$, we obtain that $(\mathrm{Ad}(w^*) \circ \alpha)(x \otimes e_{jj}) \in A_{\theta} \otimes Ce_{jj}$ for any $x \in A_{\theta}$ and $j = 1, 2, \dots, n$. Hence $(\mathrm{Ad}(w^*) \circ \alpha)|_{A_{\theta} \otimes Ce_{jj}}$ is an automorphism of $A_{\theta} \otimes Ce_{jj}$ for $j = 1, 2, \dots, n$.

Q.E.D.

Let $M_n(A_{\theta})$ be the $n \times n$ matrix algebra over A_{θ} . We identify $M_n(A_{\theta})$ with $A_{\theta} \otimes M_n$. Let $A_{\theta}^{\infty} \otimes M_n$ denote the $n \times n$ matrix algebra over A_{θ}^{∞} , i.e., $M_n(A_{\theta}^{\infty})$.

COROLLARY 2. Let α be an automorphism of $A_{\theta} \otimes M_n$ with $\alpha(A_{\theta}^{\infty} \otimes M_n) = A_{\theta}^{\infty} \otimes M_n$. Then there is a unitary element $w \in A_{\theta}^{\infty} \otimes M_n$ such that $(\mathrm{Ad}(w^*) \circ \alpha)|_{A_{\theta} \otimes c_{\theta j j}}$ is an automorphism of $A_{\theta} \otimes Ce_{j j}$.

PROOF. By the assumptions, $\alpha(1 \otimes e_{jj}) \in A_{\theta}^{\infty} \otimes M_n$ for $j=1, 2, \dots, n$. Since $\operatorname{tr}(\alpha(1 \otimes e_{jj})) = \operatorname{tr}(1 \otimes e_{jj})$, $[\alpha(1 \otimes e_{jj})] = [1 \otimes e_{jj}]$ in $K_0(A_{\theta}^{\infty})$ for $j=1, 2, \dots, n$. Hence $(1 \otimes e_{jj})(A_{\theta}^{\infty})^n$ is stably isomorphic to $\alpha(1 \otimes e_{jj})(A_{\theta}^{\infty})^n$ as a finitely generated projective right A_{θ}^{∞} -module. However the same result as Rieffel [7, 2.2. Theorem] holds for A_{θ}^{∞} , that is, A_{θ}^{∞} has cancellation. Thus there is a partial isometry $w_j \in A_{\theta}^{\infty} \otimes M_n$ such that $w_j^* w_j = 1 \otimes e_{jj}$ and $w_j w_j^* = \alpha(1 \otimes e_{jj})$ for $j=1, 2, \dots, n$. Therefore if we repeat the same discussion as Lemma 1, we obtain the conclusion. Q.E.D.

Now let α be an automorphism of $A_{\theta} \otimes M_n$. We suppose that $\alpha|_{A_{\theta} \otimes C_{\theta jj}}$ is an automorphism of $A_{\theta} \otimes C_{\theta jj}$ for $j=1, 2, \dots, n$.

Since $A_{\theta} \otimes Ce_{jj}$ is isomorphic to A_{θ} , there is an automorphism β_{j} of A_{θ} such that $\alpha(x \otimes e_{jj}) = \beta_{j}(x) \otimes e_{jj}$ for $j = 1, 2, \dots, n$. Furthermore we have the following lemma.

LEMMA 3. Let α be an automorphism of $A_{\theta} \otimes M_n$ satisfying the above condition and β_j , $j=1, 2, \dots, n$, be as above. Then there are unitary elements $y_j \in A_{\theta}$ such that

$$\beta_{j+1}(x) = y_j \beta_j(x) y_j^*$$
 for $j=1, 2, \dots, n-1$

and

$$\beta_1(x) = y_n \beta_n(x) y_n^*$$

for any $x \in A_{\theta}$. In particular if $\alpha(A_{\theta}^{\infty} \otimes M_n) = A_{\theta}^{\infty} \otimes M_n$, $y_j \in A_{\theta}^{\infty}$ for $j = 1, 2, \dots, n$.

PROOF. Let $V = e_{in} + \sum_{j=2}^{n} e_{jj-1}$. Then $(1 \otimes V)(1 \otimes e_{jj})(1 \otimes V)^* = 1 \otimes e_{j+1j+1}$ for $j=1, 2, \dots, n-1$. Since $\alpha(1 \otimes V)(1 \otimes e_{jj}) = (1 \otimes e_{j+1j+1})\alpha(1 \otimes V)$, we obtain that

$$\alpha(1 \otimes V) = y_n \otimes e_{1n} + \sum_{j=2}^n y_{j-1} \otimes e_{jj-1}$$

for some $y_j \in A_\theta$ $(j=1, 2, \dots, n)$. Since $\alpha(1 \otimes V)$ is a unitary element in $A_\theta \otimes M_n$, y_j , $j=1, 2, \dots, n$, are unitary elements in A_θ . Since $\alpha(1 \otimes V) \times (\beta_j(x) \otimes e_{jj}) = (\beta_{j+1}(x) \otimes e_{j+1,j+1}) \alpha(1 \otimes V)$, we obtain that

$$\beta_1(x)y_n = y_n\beta_n(x)$$

and

$$\beta_j(x)y_{j-1} = y_{j-1}\beta_{j-1}(x)$$
 for $j = 2, 3, \dots, n$.

Therefore we get the conclusion. In particular if $\alpha(A_{\theta}^{\infty} \otimes M_n) = A_{\theta}^{\infty} \otimes M_n$, $\alpha(1 \otimes V) \in A_{\theta}^{\infty} \otimes M_n$. Hence $y_j \in A_{\theta}^{\infty}$ for $j = 1, 2, \dots, n$. Q.E.D.

COROLLARY 4. Let α be an automorphism of $A_{\theta} \otimes M_n$. Then there are a unitary element $w \in A_{\theta} \otimes M_n$ and an automorphism β of A_{θ} such that $(\mathrm{Ad}(w^*) \circ \alpha)(x \otimes e_{jj}) = \beta(x) \otimes e_{jj}$ for any $x \in A_{\theta}$ and $j = 1, 2, \dots, n$. In particular if $\alpha(A_{\theta}^{\infty} \otimes M_n) = A_{\theta}^{\infty} \otimes M_n$, $w \in A_{\theta}^{\infty} \otimes M_n$ and $\beta(A_{\theta}^{\infty}) = A_{\theta}^{\infty}$.

PROOF. By Lemma 1 we can assume that α satisfies the assumptions of Lemma 3. Hence there are unitary elements $y_j \in A_\theta$ and automorphisms β_j of A_θ for $j=1, 2, \dots, n$ such that

$$\alpha(x \otimes e_{jj}) = \beta_j(x) \otimes e_{jj}, \ \beta_{j+1}(x) = y_j \beta_j(x) y_j^* \quad \text{for} \quad j=1, 2, \cdots, n-1$$

and

$$\beta_1(x) = y_n \beta_n(x) y_n^*$$

for any $x \in A_{\theta}$. Let $\beta = \beta_1$ and $w_j = y_j \cdots y_2 y_1$ for $j = 1, 2, \cdots, n-1$. And let $w = 1 \otimes e_{11} + \sum_{j=1}^{n-1} w_j \otimes e_{j+1\,j+1}$. Then we obtain that $(\mathrm{Ad}(w^*) \circ \alpha)(x \otimes e_{jj}) = \beta(x) \otimes e_{jj}$ for $j = 1, 2, \cdots, n$. Furthermore we suppose that $\alpha(A_{\theta}^{\infty} \otimes M_n) = A_{\theta}^{\infty} \otimes M_n$. Then by Corollary 2 and Lemma 3 we can easily see that $w \in A_{\theta}^{\infty} \otimes M_n$ and $\beta(A_{\theta}^{\infty}) = A_{\theta}^{\infty}$. Q.E.D.

LEMMA 5. Let α be an automorphism of $A_{\theta} \otimes M_n$. We suppose that there is an automorphism β of A_{θ} such that $\alpha(x \otimes e_{jj}) = \beta(x) \otimes e_{jj}$ for any $x \in A_{\theta}$ and $j=1, 2, \dots, n$. Then there is a unitary element $W \in M_n$ such that $\alpha = \beta \otimes Ad(W)$.

PROOF. In the same way as the proof of Lemma 3 we can show that $\alpha(1 \otimes V) = y_n \otimes e_{1n} + \sum_{j=2}^n y_{j-1} \otimes e_{jj-1}$ where y_j , $j=1, 2, \cdots, n$, are unitary elements in A_θ , and that $\beta(x)y_j = y_j\beta(x)$ for any $x \in A_\theta$ and $j=1, 2, \cdots, n$. Hence y_j , $j=1, 2, \cdots, n$, are in $A_\theta \cap A'_\theta$. Since $A_\theta \cap A'_\theta = C1$, y_j , j=1, 2, \cdots , n, are in C1. Thus there is a unitary element $Y \in M_n$ such that $\alpha(1 \otimes V) = 1 \otimes Y$. Let $U = \sum_{j=1}^n e^{2\pi i(j/n)} e_{jj}$. Since $UV = e^{2\pi i(1/n)}$, we get $UY = e^{2\pi i(1/n)} YU$. Hence U and V (or Y) generate M_n . Since $\alpha(1 \otimes U) = 1 \otimes U$ and $\alpha(1 \otimes V) = 1 \otimes Y$, $\alpha|_{C_1 \otimes M_n}$ is an automorphism of $C1 \otimes M$. Hence there is a unitary element $W \in M_n$ such that $\alpha|_{C_1 \otimes M_n} = \mathrm{Ad}(1 \otimes W)$. Thus we obtain that $\alpha = \beta \otimes \mathrm{Ad}(W)$.

THEOREM 6. Let α be an automorphism of $A_{\theta} \otimes M_n$. Then there are a unitary element $w \in A_{\theta} \otimes M_n$, an automorphism β of A_{θ} and a unitary element $W \in M_n$ such that $\alpha = \operatorname{Ad}(w) \circ (\beta \otimes \operatorname{Ad}(W))$. In particular if $\alpha(A_{\theta}^{\infty} \otimes M_n) = A_{\theta}^{\infty} \otimes M_n$, then there are a unitary element $w \in A_{\theta}^{\infty} \otimes M_n$, an automorphism β of A_{θ} with $\beta(A_{\theta}^{\infty}) = A_{\theta}^{\infty}$ and a unitary element $W \in M_n$ such that $\alpha = \operatorname{Ad}(w) \circ (\beta \otimes \operatorname{Ad}(W))$.

PROOF. This is trivial by Corollary 4 and Lemma 5. Q.E.D.

Let α be an automorphism of $A_{\theta} \otimes M_n$ and α_* be the automorphism of $K_1(A_{\theta} \otimes M_n)$ induced by α . Since $K_1(A_{\theta} \otimes M_n)$ is isomorphic to \mathbb{Z}^2 , we can regard α_* as an element of $GL(2, \mathbb{Z})$.

COROLLARY 7. With the above assumptions let α be an automorphism of $A_{\theta} \otimes M_n$ with $\alpha(A_{\theta}^{\infty} \otimes M_n) = A_{\theta}^{\infty} \otimes M_n$. Then $\alpha_* \in SL(2, \mathbb{Z})$.

PROOF. By Theorem 6 there are a unitary element $w \in A_{\theta}^{\infty} \otimes M_n$, an automorphism β of A_{θ} with $\beta(A_{\theta}^{\infty}) = A_{\theta}^{\infty}$ and a unitary element $W \in M_n$ such that $\alpha = \operatorname{Ad}(w) \circ (\beta \otimes \operatorname{Ad}(W))$. Since $K_1(A_{\theta}) \cong \mathbb{Z}^2$, β_* can be regarded as an element of $GL(2, \mathbb{Z})$. Then by Cuntz, Elliott, Goodman and Jørgensen [2], $\beta_* \in SL(2, \mathbb{Z})$. And $\alpha_* = \beta_*$ on \mathbb{Z}^2 since $\alpha = \operatorname{Ad}(w) \circ (\beta \otimes \operatorname{Ad}(W))$. Thus $\alpha_* \in SL(2, \mathbb{Z})$. Q.E.D.

For any s and $t \in \mathbf{R}$ let $\beta_{(s,t)}$ be the automorphism of A_{θ} defined by $\beta_{(s,t)}(u) = e^{2\pi i s}u$ and $\beta_{(s,t)}(v) = e^{2\pi i t}v$, and for any $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL(2, \mathbf{Z})$ let β_g be the automorphism of A_{θ} defined by $\beta_g(u) = u^a v^c$ and $\beta_g(v) = u^b v^d$.

COROLLARY 8. Let α be an automorphism of $A_{\theta} \otimes M_n$ with $\alpha(A_{\theta}^{\infty} \otimes M_n) = A_{\theta}^{\infty} \otimes M_n$. Let θ have the generic Diophantine property. Then there are unitary elements $w \in A_{\theta}^{\infty} \otimes M_n$, $W \in M_n$, $z \in A_{\theta}^{\infty}$ and $s, t \in R$, $g \in SL(2, \mathbb{Z})$ such that

$$\alpha = \operatorname{Ad}(w) \circ ((\operatorname{Ad}(z) \circ \beta_{(s,t)} \circ \beta_{g}) \otimes \operatorname{Ad}(W))$$
.

PROOF. This is trivial by Theorem 6 and Elliott [3].

Q.E.D.

References

- [1] B. BLACKADAR, K-theory for Operator Algebras, MSRI Publication Series, Springer-Verlag, 1986.
- [2] J. CUNTZ, G. A. ELLIOTT, F. M. GOODMAN and P. E. T. JØRGENSEN, On the classification of noncommutative tori, II, C.R. Math. Rep. Acad. Sci. Canada, 7 (1985), 189-194.
- [3] G. A. Elliott, The diffeomorphism group of the irrational rotation C*-algebra, C.R. Math. Rep. Acad. Sci. Canada, 8 (1986), 329-334.
- [4] G. K. Pedersen, C*-Algebras and Their Automorphism Groups, Academic Press, 1979.
- [5] ——, The linear span of projections in simple C*-algebras, J. Operator Theory, 4 (1980), 289-296.
- [6] M. A. RIEFFEL, C*-algebras associated with irrational rotations, Pacific J. Math., 93 (1981), 415-429.
- [7] ——, The cancellation theorem for projective modules over irrational rotation C^* -algebra, Proc. London Math. Soc. (3), 47 (1983), 285-302.

Present Address:

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND TECHNOLOGY, KEIO UNIVERSITY HIYOSHI, KOHOKU-KU, YOKOHAMA 223, JAPAN