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Introduction.

Given a one-dimensional random walk S, with S,=0, we consider the
time reversal

(1) (0’ Sr—l_Sry Sr-—-z—su *t Sl'_Sﬂ _"Sz')

where 7 denotes the time of first entry into the open negative half line
(—co, 0) for the random walk S,. We then take independent copies
w,, W, -++ of the (finite length) path-valued random wvariable (1) and
define a new process {W,, n=0} by (1.2) (see §1). The purpose of this
paper is to prove that, under the assumption that < a.s., {W,, =0}
is a Markov process on [0, «) with transition function (1.3) which is of
a form of a superharmonic transform of the dual random walk. Golosov
obtained a similar result in the study of random walks in random en-
vironment (see Lemma 6 of [2]); however, it was assumed in [2] that the
random walk has zero expectation and finite variance, and the transition
funection of the process W, whose Markovian property is our concern was
given in a form which is somewhat different from ours (see the final
remark in §5). Our only assumption is that the random walk enters the
open half line (— oo, 0) almost surely. Our method is quite elementary.
It is not clear whether the present problem can be discussed in the
framework of the general theory of time reversal of Markov processes
due to Hunt [3] and Nagasawa [6].

This work was motivated by the study of the probability law of a
valley which appeared in the investigation of limiting behavior of random
walks and diffusion processes in one-dimensional random environment (cf.

[2] [4] [5] [8] [9D.

§1. Main theorem.

Given real valued i.i.d. random variables X,, k=1, we consider the
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random walk
S,=0, S,=X,++--+X, (nz=l)

and denote by z the time of first entry of the random walk into the
open half line (—, 0). We assume throughout the paper that

(1.1) P{r<}=1.
Let w,, w,, --- be independent copies of

o, S..,—S, S.,—8, -+, §,—8, —8)
which is regarded as a random variable with values in

w(0)=0 }

W={w=(w(0)’ w(®), - WD) g ) =min wk), 121

Writing w, = (w,(0), w,(1), w,(2), -+ -w(s), k=1, we define a process {W,,
n=0} as follows:

w,(n) for 0=nx=l,,
w, (1) +wy(n—1) for l,<n=l+1,,

1.2) W, =1

T
A

k
Zﬁh‘)

J=1

k—1 . k—1
Siwl)tw(n—% ) for Sl<n
j=1 J=1

We also define p.(x, dy) by

(1.3) Pe(w, dy)=—2—Plz—X, € dy}e@)m®) ,
£(x)
where
1 for =0,
(1.4)

§@)= E{él[o,z)(sn)} for x>0

wherein 1, denotes the indicator function of a set A. We easily see
that £(z)< o, =0 (see the remark at the end of the next section). It
will be proved that p.(x, dy) is a transition function on [0, ) (see Lemma
1). Now we can state our main theorem.

THEOREM. Under the assumption (1.1), {W,, n=0} s a Markov
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process on [0, ) with transition function D.(x, dy).
§2. Transition function.

For x€ R we write S:=x2+S,. Let

r*=min{n=1: S2<0}, 2=0,

and put
@.1) G, H=E{S 1D}, 220, Aes(0, =),
22  pe dn)=Pe+X,edy}, B, dy)=Pl—X cdy}.

Then &(x)=G(0, [0, 2)) for >0. In this section we prove the following
lemma.

LEMMA 1. Pz, dy) s a Markov transition function on [0, ).
PrROOF. We are going to prove
ﬁé(x’ [07 m))zﬁe(% (O; Oo))=1 ’ xzo .

For this it is enough to prove that
(2.3) | p@ dnew=¢@) , azo0.

The proof is divided into two steps.
Step 1. X[ G0, dx)P{—X, ¢ (z, =)} =1.
0, )
In fact, we have
1=P{r< o}
=P{T=1}+21P{z'=’n+1}

=| __ v ay)
(—o0,0)

+§“;1 Sm w)p(O, dwl)s w)p(xl, dxz)---g w)p(wn_l, dwn)g o)p(x,., dy)

Lo, (o, (—o

= 60| _ »@, dv)

(—co

- S[O _ GO, dn)P{~X, &z, =)} .
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step 2. | 5, dnew)=¢@), wz0.
In fact, the left hand side of the above is equal to

| _Pu—x.ecan| 6o d2
(0,00) Lo,

(z,

- S[o _G(0, d9IP(— X, &z, )} + P~ X, & (2=, )]

=1+§[ GO, d2)P{—X, € (z—=, 2]} ,
0,00)

where we used the result of step 1; also notice that the second term
vanishes if x=0. The last line of the above equalities can be written as

1+ Sm _ GO, d)P(z+X, € [0, )

=1+§[ (0, da,)
0,2)

+5 [ p0,d0)| p@, dz)--| p@..de) o, dv)

n=1 [o,

=G(0, [0, z))=¢(=) .
The proof of the lemma is finished.

REMARK. There are several ways of proving £(x)< o, x=0. Here is
a proof based on the identity (2.8) that was proved without using the
finiteness of &(x). The assumption (1.1) implies that p(x, (x+e, «<))=
P{—X,>¢}>0 for some £>0. Therefore the identity (2.83) with x=0
implies that &(x,)<<o for some z,>¢, and again the identity (2.3) with
x=2a, implies that &(x,) <o for some z,>x,+&. Repeating this argument,
we see that there exists a sequence {x,} such that »,=0, x,—2,_,>¢ and
&)< for all m=1. This combined with the monotonicity of &(x)
proves the finiteness of &(x) for all x=0. '

§3. Proof of the theorem in a special case.

In this section we give a proof of the theorem in the special case
where

(3-1) P(X,cZ)=1.

In this case the space 77 consists of the paths of the form w=



TIME REVERSAL 163

(w(0), w(l),+ - -, w(l)) where w(k) e Z (0=k<1), w(0)=0, 0<w(l)=min, ., w(k)
and 1=1. We denote by g the probability law of (0, S._,—S,, S._,—S.,
-+, S5,—8S,, —8,); of course, /¢ is a probability measure on %" Put

o, Y)=Plz+X,=y}, D& y)=py, ), % yeZ
and let us prepare a simple lemma.

LEMMA 2. If a,a, -+, ;€ Z (I1=1) satisfy

(8.2) min a,=a,>0,
1sksl
then
(3.3) tlw=(0, a,, -+, a)}=5(0, a)p(a, a,) -+ Hla,_,, a;) .

PROOF. Since the event
r={z=l, S,_,—S,=a, AZkLl)}

is the same as the event {S,_,—S,=a, 1<Ek=<I)}, the left hand side of
(3.3) equals

P(I'}=p0, a;_,—a)p(@;_,— &, ¢;_,—a;) «++ pla,—a;,, —ay)
=p(ay, )Py, &)+« + Play, 0)
= the right hand side of (8.3).

In what follows =, z,, ¥, @ are always assumed to be integers. For
z, y=a we put

9.(x, y)=6,c,,,+§;‘0 >, o, x)p, x,) - p(,, ¥Y) ,

ro=2

ml,---,x“ga
ga(x;‘ y)=3x,y+23 E ﬁ(wo, xl)ﬁ(xu xz) s ﬁ(xm y) .
n= zg=a

Byt TpZa
Then it is clear that
(3.4a) 9.(x, Y=g.9, ) , x,y=a,
(3.4b) 9.(®, Y)=gosr(®+b, y+0b), x, y=a, YbeZ,
(8.4¢) &(@)=G(0, [0, 56))"—‘0 > 9.a, 2), x=1.

<aes®

For w=(w(0), w(), ---, w(l)) e %7 we define l(w) by
(8.5)  lw)=1.
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Given positive integers a,, -+, @, (m=1) we put

(3.6) a*=min a,
1sksm

and for an integer a with 0<a<a* we consider the events

w(0)=0
k=a, 1<k
Ay, <oy Qs A)={WEH wik)=a, (I=kzm) , n=0,
(wy=m+n

wim+n)=a

A@y, + -y Op; @)= @o/ln(al, crey O @)

LEMMA 8. For positive integers a, a, ---, a, (m=1) with 0<a=<a*
where a* 1s defined by (3.6) we have

3.7 Ay, -0y Cm; a)}={ﬁﬁ(aj_1, a,-)}-ga(a, @),  a%=0.
ProOF. The identity (38.7) is a consequence of the following (3.8),

(3.9) and (3.10):

68  alda, -, o ay)— | @y @) if a=a, (and hence =a*)
¢ 0\*1y y Wiy =4qk=1

0 otherwise .
(3.9) t{a.(a;, -, an; @)}
= E #{WZ(O’ Qg >y gy Apppyy ** %y Tyin—yy a’)}
Cm+12%m+2:* 1 Cm+n—129
= 2. 20, a)p(ay, ;) + -+ * D(@minsy @)  (bY (3.3))
Om+1:%m+20" 2+ n—120

= {,f[:l pla;_y, aj)} “Gu s nzl,

where
ﬁ(a’m’ a) if n= 1 9
9= p DUy Ui ) D@ty Cmia) ** * DAy, @) I 0=2.
I+ 1% m+2: " 1% m+n—120
(3.10) Oap,at ,.z:‘i 9.=0.(an, a)=9g.(a, a,) .

We now proceed to the proof of the theorem assuming (1.1) and
(8.1). Let w, w,, +++ be i.i.d. random variables with values in % and
with common probability distribution g and define a process {W,, n=0}
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by (1.2). Given integers

=0, a,>0, -+, a,>0(m=1),
we consider the events
A={W,=a, AZk=m)},
Aa,:{Wk:ak (lékém), W:—_-a} I

where W7=min,.,W,. Then A= Uy, 4. (the case a=0 is excluded
because W,=1 for all n=1). Let 0<a=a, and define m(0)>m(1)>
m2)>-+->m(a)=0 as follows:

m0)=m ,

m(l)=max{n<m: a,<a},

m(2)=max{n<m(l): ¢,<Anw} ,

m(a)=max{n<m(a—1): a,<@pq_n} -
Then it is clear that

(O’ @y, Qgy * v, a’m(a-—l)) e ’

(0’ Amia—1)+1" Cmia—1)s Omie—1)+2~ Bmia—1)s **° @ (ae—2) —'a‘m(a—l)) e ’

0, Cmizyt1— Uy, Cmr42=Cmzyy ***y Oy = bmizy) € F#

Therefore, the event 4, can be expressed as

a—1
/1a=l:kf]1 {w,=(0, @pigatrnt1— Cmia—rosny ***» Qm(a—k) —a’m(a—k+1))}]
n {wa € A(am(1)+1‘—a’m(1): O — Ay qyyy a_am(l))} ’

and consequently an application of Lemma 2 and Lemma 38 yields

P{4,}=]

a mia—k)—m(a—k+1)
A

1L I pm-} Gotmy (@ Cnt)y G — Comry)’
L

={[I sy, a0} 0.0, 0, ,

=1

_[

where

A~ A~
D1i=DP(@mia—i+1) 4ic1 ™ Cma—k+i)y Bmia—i+n)+7i— Cmia—i+1) o

Thus we have
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o)
B
fl
=
=y

(a'k-v a’k)} '0<§a ga(a’y a’m)
[T 50,0, a0} &) (by (3.40)
= lﬁe(ak—v a’k) ’

which proves the theorem in the special case.

REMARK. From what we have proved it follows that the theorem
holds for AZ-valued random walks satisfying the condition (1.1) where
A>0 is a constant. :

§4. Proof of the theorem in general case.

To prove the theorem in a general situation we approximate {S,, = =0}
by a sequence of random walks {Sy,,, n=0} with values in 277Z, N=1.
For integers N, k=1 we put

AN,k={|Xk| §N} .

To define Sy, we need another sequence of events By,. Enlarging the
basic probability space if necessary, we choose a sequence of events By ,,
N, k=1, 2, ---, such that
(i) for each integer N=1 the random variables 1,, ,, k=1, are i.i.d.,
(ii) P{By.}<1 for each N and limy._.. P{By}=1,
(iii) {Byu; N, k=1} is independent of {X,, k=1}.
For an integer N=1 we define a function ¢, by

py@)=G+1)2™%  for j2V=sx<(@+1)27%, j=0, £1,.--.

Then @y(x)|x as NTw. Now we are in position to define Sy,. Put
FN,,,=AN,,,ﬂBN,,, and define XN,k by

Py X(w) if wely,,

X =
vl @) { Cx otherwise ,

where ¢, is a constant of the form 727¥ which is chosen so that
E{Xy.}=0 holds. Such a constant ¢y exists because P{I'y,}>0 by (ii).
Let

SN,0=0 ] SN,n=XN,1+"'+XN,,,, ’ ngl ’
ty=min{n=1: Sy <0} .

Then {SN,,,, n=0} is a random walk on 2%7Z satisfying the condition
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P{ry<oo}=1 which is a consequence of E{Xy ,}<0. Therefore the result
in the special case can be applied for {Sy ., 7n=0}.

LEMMA 4. &xy(x) converges to &(x) boundedly on any bounded subset
of [0, ) as N— o, where &(x) is defined by (1.4) and

1 for x=0,
BB L) for 2>0.

PROOF. From the definition of X, , it is clear that

Xy pe=px(X3) for 1=Vk=n,
(4'1) OéSN,n“_Sné'nng ’
TNET

holds on the set I'y,={c=n}N{Ni-,'y:}. Therefore

Xy pv=Pn(Xy) for 1=vk=r,
4.2) 0=Sy.—8S,=n2% for 1l=Vn=rt,
Ty=7, ‘

holds on the set I'y={Uz., "'y .} N{S.< —727%}. Since P{I'y,}—1as N—oo
for each fixed k¥ and ¢ is finite a.s., it is easy to see that

- (4.3) leim P{Iy}=1.

The assumption (1.1) implies that there exists 0>0 such that
P{X,<—4}=d6. Then from the definition of X, , it follows that

P{Xy < —0/2}2P{(X,<—0)NTy,}26/2
for all sufficiently large N, say for N=N, Let >0 be given and put

y=[2x/6]+1,
oy=min{n=1:a+S,,¢[0, )}, 0=a<x.
Then for N=N, we have
(4.4) © - Plot>v}<1—Plot <y}
_S.l—P{XN,kg'—a/z: 1§Vk§l)}
=1-(8/2y’<1, 0sa<z .

Note that (4.4) implies that there exist constants ¢>0 and 4 € [0, 1) (which
depend on x) such that ‘ ’
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Ploy>n}=co" for vnz=1, 0va<z, VN=N,,

from which it follows that

MIE sup E{O'?v}< oo,
i

M, = sup [E{(03)]" < .

NZNO

(4.5)

For typographical convenience we often write Sy(n) instead of Sy ..
We define oy,, k=0, as follows:
l) 0N,0=0, 0N,1=a(llv-
ii) If oy; 0<jsk (k=1), are defined, we define oy, by

_ 0w et Ov e I Sylov)22,
ONk+1— .
TN otherwise ,

O';V,k+1=min{nzalv,k: Sy.=x},
o = {min{'n_2_1: Sy(0% s +n) &[0, )} if Sylowis) €[0, ),
o i Sy <O -

Then we have
. TN
(4.6) E'{k% 110, (Sw.e) 5 'cN>n}

=k2___1E“ p 1[o,z)(SN.:i); Ty >N, 0N,k-—1<TN}

ON k—13T<0N, k

I
Me

E; > 1[o,a)(SN,:'); Ty >N, O'N,k-1<TN}

ON,kSISON,k

=
i
-

(we put oy,,=0)

E; > l[o,a:)(SN,a'); Ty >N, aN,k—1<TN}

oN, kSISON,k

A
M

by
|l
P

Lo

S Bl 5 1au(x)i Oraa<tf

k=m+1 o kSISON .k

2|

+

2 12
= by 150, (Sw,5) ;aN,k—1<TN} Plry>n}”

ONESISON,k

M

0

+ >, Mp*! (m=1 being arbitrary)

k=m+1

|
|
|
where
|
|
|
|
: =mM,P{cy >0} +Mpe~(1—p0)" (N=N),

where
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o= sup Pla+Sy,, hits (x, ) before hitting (— oo, 0)}
0sa<z
NZNO

=1~ inf P{x+ Sy , hits (—, 0) before hitting (x, o)}

<1- inf P{Xy,< —6/2, 1=Vk=<y}=<1—(5/2r<1.
=)

For x>0 we put

E@=E{3 1,80 ; 7=n}
EY@=B{3 16,80 ; w>n},
5%)(:”):1?{1:2:'0 1[0,4:)(SN,k); TN§’”’} ’

3
2

gl(\?)(x)=E{kZ=1 l[o,z)(SN,k) ’ z'N>’”f} .

Then we have &(x)=¢"(x)+&"(z) and a similar formula for £,(x). Since
the probability that (4.2) holds tends to 1 as N—c by virtue of (4.8),
we have

leim e (@) =£&"(x) for each fixed =» ,
while (4.6) implies
EV (@) =mMAP(ry>n)"+Mo"(1—p), N=zN,
for any m=1. Therefore
lim 11‘;1—5 EP(x)=0,

and consequently we have
Tm |éx(@) — @) <Tim |6 (@) — ()|

+m 29 @)+ @)
=Tim &0() +87@)
—0 as n—oo,

The estimate (4.6) also implies that &,(x), N=1, are bounded by a constant
which depends monotonically on x. We have therefore proved the lemma.

Now we are in the final stage of the proof of the theorem. Let f,,
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1<k<m, (m=1 being arbitrary) be continuous functions on [0, ) with
compact supports and vanishing at =0 and put

1=E{TLA.(W»} ,
L=E{{Lfu(Ww} ,
where {Wy,,, n20} is defined from {Sy . n20} in a way similar to (1.2).
For simplicity we also put
B, dy)=D(x, dy) ,  Dxx, dy) =D, (=, dy) ,

where P, (x, dy) is defined in a way similar to (1.8). Then by the result
in the special case we can write

@n  I={ 50, d)f@)| o, dmifim) || Bonny do)fue)

(0,

=E{(f,(—Sy,)f(— 8w * * * ful—Sw,m)éx(—Sy,m)} »

where we put, for <0, &y(@)=f(@)=0 1=k=m). Since &y(x)1,(x) and
£(x)1,«(x) are left continuous nondecreasing functions, (4.2), (4.3) and
Lemma 4 imply that &y(—Sy.) converges to &(—S,) in probability as
N-—, and consequently the second expression of (4.7) tends, as N—oo,
to

(4'8) E{fl(—S1)fz(_Sz) s fm(—Sm)é(—-S,,,)}
{50, dr)re| |, dmane) - | BGwn dnifuten

(0,

Therefore I=limy_. Iy= the right hand side of (4.8). This completes the
proof of the theorem in the general case.

§5. Examples.

ExAMPLE 1. Simple random ‘walk. We consider the case where
X, X,, --- are i.i.d. with

P{X,=1}=p, P X,=—-1}=1—p=¢q.

We assume that 0<p=<1/2, so that the condition (1.1) is satisfied. An
easy calculation shows that

9,0, x)=r*/q , x=0,

where r=p/q, and consequently for =1
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x it p=Li,
q 2
=11 1 1
=. if 0 _.
g 1l-r IR
Therefore, if p=1/2, then
z—1 for 2=2, y=2—1,
. 2x
Pew, y)=q 2+l for =2 y=x+1,
2x
0 for =2, y#x+1;
if 0<p<1/2, then
) . pe 1—r for xg2, y=x—1,
1—7r® v
Pe(@, ¥)= q-!‘—_——l‘f—{i for =2, y=x+1,
1—7r®
0 for z=2, y+ax+1;

in either case

ﬁé(Or 1)=1 ’ ﬁe(o, y)-":O fOI' Oéy:’bl ’
P, 2)=1, P, y)=0 for 0=y+2.

Let }?1, X,, -+ be i.i.d. random variables with X'ké—-X1 ‘where =
means the equality in distribution, and consider the random walk S,=
X+ +X,(5,=0). Let {W, n=0} be the Markov chain (1.2) and let
{V., n=0} be defined by

s 0 for _n=0
"1+ U0, for n=1,

where U,=8§,—2min <, S,, »=0. Then by virtue of Lemma 2 it is not
hard to see that

(W, n20}={V,, n=0},

from which one can obi;ain the following Pitman’s theorem for the
random walk S, ([7]): {U,, n=0} is a Markov chain on {0, 1, ---} with
transition function o ' .
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1 for x=0,y=1,
p._];i?:_ for x=1, y=x-—1,
1__,rz+1
P, ¥)=1 T S
T for z=1, y=z+1,
1_,'.z+1
0 otherwise .

(Note that, in the case p=1/2, p(1—7r*)1—r**)"! and gl —r=*5)(L—r=+)*
in the above must be replaced by 27*(x+1)"x and 27 (x+1)"'(x+2), re-
spectively.)

The above Pitman’s theorem for (7,, holds also for 1/2<p<1 as can be
proved directly (e.g. see [10]). Now suppose a constant b is given and, for
each ¢>0 which is assumed to be small, consider the random walk S® with

P(R,=1)}= 1;”5 ,  PR=-1= 1;”“’ .

Taking the weak limit of scaled eSA[‘:}Ez] and ef/'[‘:,’,z] as ¢/0, we can obtain
the following result: If B(¢) is a Brownian motion with constant drift,
i.e., a diffusion process with generator (1/2)(d*/dx?) +b(d/dx) starting from
0, then B(t)—2min.,<, B(s) is a diffusion process on [0, <) with generator
(1/2)(d?*/dx*) +b coth(bx)(d/dx) starting from 0. This result was obtained
also by Pitman.

EXAMPLE 2. Let f be the common probability density of the i.i.d.
random variables defining the random walk S,. We consider the following
two cases:

Case (i) (Bilateral exponential distribution):

;%e“ for z<O0,
5.1) Sfx)=

ab e~ for 2>0.
a+b

Case (ii) (Modified bilateral exponential distribution):

@ f <0
e’ or o
a-+b ’
(5.2) fl@)= o
—~bz
o e for x>0.

Here a and b are positive constants. If a=b, the two cases coincide.
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It is assumed that a<b in the case (i), so that E{X,}=b"'—a!<0. In
the case (ii) E{X,}=0 holds always. Therefore, the condition (1.1) is
satisfied in either case. Let G(0, dx) be defined by (2.1) and, for an in-
terval [r, r,] containing 0, put

T=min{n=1: S, ¢ [7'1, 7]} .

We apply the Fourier method as explained in Feller [1: p. 600]. After
somewhat messy computation we obtain the following result.
Case (i):

5.3) G(0, dx)=6,(dx) +ae~*“*dx .
ary a—lbe—ar2 —_ e-—brg
(5 » P{ST <"'1} =e a~the—rr—re _ gph—lg—(ra—ryb ’
: —brg earl . ab-—leb-rl
P{ST > 7‘2} =e 2. a"tbe~(r—rve __gh—lg(ra—r1)b *
Case (ii):
(5.5) G(0, dx)=6,(dx)+bdx .
P S < J}= ’)”2 + b"l ’
5.6) t5r<r ry—ri+a b7
P{S;>r,}= —rta

r,—r,+a*+b! )
REMARK. In the case (ii) we have for >0

6.7 &@@)=G(0, [0, x))
=const. lim AP{S, hits I, before it hits I}

A—00
where I;,=(—c, —A] and I=[z, «). Comparing our theorem with Lemma
6 of Golosov [2], we see that (5.7) holds in general if the random walk
has zero expectation and finite variance; naturally this fact itself can be
verified by a more direct method.
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