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Introduction.

Let M=G/K be a compact homogeneous space of a compact Lie
group G with a G-invariant Riemannian metric g and N be a Riemannian
manifold. A homogeneous harmonic map from M to N means a p-
equivariant harmonic map from M to N relative to a homomorphism o
of G to the isometry group of N. The existence and construction of
harmonic maps are interesting and important problems in various situ-
ations. Homogeneous harmonic maps make a simple and nice class of
harmonic maps. Concerning the existence of homogeneous harmonic maps,
in general it is known by the idea of W.-Y. Hsiang that given a non-
constant p-equivariant map @ from a compact homogeneous Riemannian
manifold M to a compact Riemannian manifold N, then @ can be de-
formed to a nonconstant p-equivariant harmonic map ¢, through a smooth
homotopy of p-equivariant maps ¢, (t€[0, 1]) with @,=¢ (ef. [Gub5]).
Naturally we are interested in getting more explicit descriptions and
detailed properties of homogeneous harmonic maps for specific homo-
geneous Riemannian manifolds M and N. In his nice paper [Gul], Guest
pointed out many interesting connections of the research for homogeneous
harmonic maps with problems of differential geometry and mathematical
physics. Moreover he gave algebraic descriptions of the harmonic map
equation for general homogeneous maps, and discussed the harmonicity
of homogeneous maps into complex projective spaces and a construction
of homogeneous harmonic maps from flag manifolds into complex Gras-
smann manifolds by the method of osculating flags and twistor spaces
(cf. [E-W]). In this paper we discuss homogeneous harmonic maps and
minimal immersions into complex projective spaces in detail, by using
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the relation between complex line bundles and smooth maps into complex
projective spaces.

In Section 1 we shall recall the correspondence of a smooth map
from a manifold into a complex projective space with a system of smooth
sections for a complex line bundle over the manifold. We point out a
relationship between the homotopy-theoretic properties of the smooth
maps and the equivalence property of complex line bundles. Furthermore
we shall describe the harmonic map equation for a smooth map into a
complex projective space in terms of the corresponding system of smooth
sections for a complex line bundle. In Section 2 we shall consider homo-
geneous complex line bundles over compact homogeneous spaces. Using the
spectral decomposition of the space of all smooth sections of a homogeneous
line bundle and results in Section 1, we give a description of all homo-
geneous maps into complex projective spaces. Furthermore we shall show
a result on the multiplicity in the spectral decomposition over compact
symmetric spaces, which plays an essential role in Section 5. In Section 3
we shall give a description of homogeneous harmonic maps from certain
compact homogeneous Riemannian manifolds into complex projective spaces
in terms of Sections 1 and 2. In Section 4 we shall apply results of Section
3 to the case when the domain manifold is a compact homogeneous Kahler
manifold and study some properties of homogeneous harmonic maps from
such complex manifolds into complex projective spaces. In Section 5 we
shall determine the spectral decompositions for all homogeneous complex
line bundles over every irreducible Hermitian symmetric space M=G/K
of compact type. We shall give a complete list of irreducible represen-
tations of the compact Lie group G appearing in the space of smooth
sections of each complex line bundle. In Section 6 we shall classify
homogeneous harmonic maps and equivariant minimal isometric immersions
between complex projective spaces. By this result we find a nice series
of minimal isometric immersions of complex projective spaces into complex
projective spaces, which contains neither holomorphic, antiholomorphic nor
totally real immersions. It is a generalization of homogeneous minimal
2-spheres in complex projective spaces given by [B-O], [B-J-R-W], [Gu1] to
higher dimension. In Section 7 we shall give a remark om homogeneous
minimal 2-spheres in quaternionic projective spaces.

In the famous paper [Ta], Takahashi showed a connection of the
Laplacian acting on smooth functions with minimal immersions into
spheres and a construction of minimal immersions of compact homo-
geneous Riemannian manifolds with the irreducible isotropy representation
by eigenfunctions of the Laplacian. This work can be regarded also as
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a natural extension of Takahashi’s results to eigensections of the Laplacian
in complex line bundles and harmonic maps, minimal immersions into
complex projective spaces.

We hope to find more properties and more explicit descriptions of
harmonic maps and minimal immersions into complex projective spaces
than those obtained here.

§1. Complex line bundles and harmonic maps into a complex
projective space.

Let CP*(c) be an n-dimensional complex projective space with the
Fubini-Study metric g, of constant holomorphic sectional curvature c>0
and RP*(c) be an n-dimensional real projective space with the standard
metric of constant sectional curvature ¢>0. RP%(c/4) is imbedded into
CP*(¢c) in the natural manner as a totally real totally geodesic submanifold.
Let S*(c) be an n-dimensional sphere with the standard metric of constant
sectional curvature ¢>0. Then we have a natural isometric covering
S*(¢) — RP"(c).

Let {&, -, €.} be the standard basis of C™'. We denote by <, >
the standard Hermitian inner product on C™'%; (2, w)y=>7,%'w'. Let
(,)=Re(,) denote the associated real inner product on Cc**'. Let
7: C**'\{0} — CP" be the canonical projection. Then C""\{0} is a principal
bundle over CP» with the structure group C*, where C* denotes the
group of non-zero complex numbers. The restriction of = to Snti(c/4)
is a Riemannian submersion. Let E=(C""\{0})XsC be the universal
bundle over CP™: the fibre E, over any z € CP" is the complex 1-dimensional
subspace of C"*' determined by x. Thus E is a holomorphic subbundle
of the trivial bundle C*** over CP". Let E* be the subbundle of C"*
whose fibre at z is the orthogonal complement of E, in C""'. E, E* and
E* have natural Hermitian connected structures. We give E*QE* the
tensor product Hermitian connected structure. Then there exists a natu-
ral bundle isomorphism h: T"CP" — E*QE* preserving connections which
satisfies <h(Z), MW))>=(c/2)9.Z, W) for Z,We T+ CP" (cf. [E-W, p. 224]).

Let ¢: M—CP" be a smooth map from a manifold M to a complex
projective space. A map @ is called full if the image (M) is not con-
tained in any proper complex projective subspace of CP". Consider the
exact sequence of pull-back vector bundles over M:

0 — g (E*QE) —— g (B*®RC*) — o~ (E*QE") — 0 ,

where 7 is the natural inclusion and j is given by the orthogonal pro-
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jection along E. We call the section @ =1(1) e C(p~(E*RC")) the
universal lift of @ (cf. [E-W]). Pulling back h: T"OCP*—E*QE"' by
P, we get a connection-preserving bundle isomorphism k: p~}(T**CP")—
P (E*QE"). Let D denote the covariant differentiation of the bundle
P (E*QC"") relative to the pull-back connection. Then the following
facts are known (cf. [E-W]):

(i) <o, o>=1.

(i) For any XeC~(TM¢, D;®ecC~(e (E*QRC"*")) has image in
@ 'E*. Moreover one has

(1.1) h((dp)*"(X))=Dy®

for any Xe T,M¢. Here (dp)"” denotes the (1, 0)-component of dp in
CP*.

We recall the relation between a map to a complex projective space
and a system of sections of a complex line bundle.

Let L=Px,C be a complex line bundle over a (paracompact) manifold
M associated with a principal bundle (P, =, M, K). Here (g, C) is a complex
1-dimensional representation of the structure group K. Then the vector
space C=(L) of all smooth sections of L can be identified with the vector
space C*(P, C)x of all C-valued smooth functions f on P satisfying the
condition f(uk)=c(k)"'f(u) for any u € P and k € K, by the correspondence
A: C*(L)s f—feC=(P, C)x, Fu)=u"(f(n(w))) for each u c P.

Assume given a system {g,, ---, ®,} in C°(L) with no common zeros.
Let {®,, ---, $#,} be the corresponding system in C=(P, C).. We define a
smooth map @: P—C"*"'\{0} by $=(H,, -+, $,). Since @ satisfies H(uk)=

o(k)~'¢(u) for any u€P and k€K, the map &: P—C**'\{0} becomes a
bundle homomorphism from (P, z, M, K) to (C**'\{0}, =, CP", C*) with the
homomorphism ¢7': K—C* of the structure groups. Therefore & induces
a smooth map ¢: M— CP" and the diagram

P2 (o)

an nlC*

M-—S‘D-—)CP"

is commutative. Let H=FE™* be the hyperplane bundle over CP*. Then
we see that the pull-back bundle @'H is isomorphic to L: o"'H=L.
Conversely every smooth map ¢: M—CP" is obtained in this manner by
considering the pull-back complex line bundle ¢ 'H over M and a system
of n+1 sections of » 'H given by the homogeneous coordinates on CP".
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Hence giving a smooth map from M to CP" is equivalent to giving a
complex line bundle L over M and a system of n+1 smooth sections of
L with no common zeros.

Let @, 4v: M— CP" be two smooth maps. If 2n=dim M, then by the
classification theorem we have

p=op —p H=4"'H,

where @~+ means that ¢ is homotopic to . Since an equivalence class
of complex line bundles is determined by the first Chern class, we get

P H=y'He——=c,(p7 H)=c,(y 'H)
— @*c,(H)=q*c,(H) .

Hence the homotopy class of a smooth map ¢: M — CP" is determined by
the first Chern class ¢,(L) of the complex line bundle L=¢*H. When
M is oriented and H¥M, Z)=Z, the degree of a map ¢: M—CP" is an
integer deg @ defined by c,(L)=¢@*c,(H)=(deg p)w,, where w, denotes a
positive generator of H*(M, Z). Then we get

Py —=deg p=deg .

Any two maps from M to CP" constructed from systems of sections
of the same line bundle are homotopic to each other if 2n=>=dim M. It
is an interesting and important problem to find many harmonic maps in
a given homotopy class of maps. We shall describe the harmonic map
equation for a map ¢ in terms of &.

Assume that M is an m-dimensional Riemannian manifold. Denote
by V¥ the Riemannian connection of M. We endow the principal bundle
P with a connection I". The connection I" induces the covariant differen-
tiation VZ in the associated line bundle L. For X, YeC*(TM€®), we
denote by X*, Y* e C=(TP¢) the horizontal lifts of X, Y to P with respect
to the connection I. Let ® be the universal lift of the map . By
(1.1) we have

h((dp)*"(X))P=(DxP)P
_ x5 PP 5
(P, §)
=j(X*P) .
Here we regard & as a section of the pull-back bundle o7*H. By a
straightforward computation we get
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h((Vy(dp)“") X )P
=j<y*X*¢._(vgx)*a_my*a_mx*a) .
(P, P> (P, P>
We denote by z*” € C=(p~'T“"CP") the (1, 0)-component of the tension
field ¢ for the map @. . Then we have

Ms

(Ve (dP)*")(e)) )P

-
1

h(z"")& =h( 1
=i(3; ererp—(vie)p)—2 5 G B 4piary)
1 =l LP, P

where {e;} denotes a local orthonormal frame field on M. By virtue of
[K-N, I, p. 115] or [Oh1, p. 162], this equation becomes

Ms

-,
1l

o m Vip)~, @
h(,z.(l,o))q,___:.7<_(AL¢)~_2t§|i ( <¢,;P)¢>(P> (Vf;? ~) .

where p=(@,, -+, ,) and A*=(V*)*Vi=—_3", (VaVe—Vix,).

€

PROPOSITION 1.1. (i) @ %8 a harmonic map if and only if the system
{Pos * ++, P.} satisfies

(AL¢)~+2 zm\‘ <(VGL¢):, ¢>
=1 Lp, P

(Vip) = puip

SJor some function p on M.

(i) Assume that Arp;=pp; (j=0,---, n) for some function Kron M.
If $: P—C**'\{0} maps horizontal subspaces on P to horizontal subspaces
on C"*\{0}, then ¢ 18 a harmonic map.

Note that when M is a complex manifold, ¢ is a holomorphic map
if and only if D;0=0 for each Ze T M.

Let 2 be the curvature form of the connection I" and R’ be the
curvature form of the connection V* in the line bundle L. Then we
have (R")~=0(2). The 2-form (L) on M defined by (v(L))~=
V' =1/27)(RY)~=(1"—1/27)6(2) represents the first Chern class c,(L) of
the line bundle L.

A smooth map @: M—CP" is called totally real if p satisfies p*w=0,
where @ denotes the Kahler form of CP".

PrROPOSITION 1.2. If ¢: M—CP~(c) is a totally real map from a
simply comnected manifold M, then ¢ has a horizontal lift $: M—
S**Y(c/4) relative to the Riemanmian submersion m:S™+'(c/4)— CP™(c).
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Moreover in case M s a Riemannian manifold, ¢ is harmonic if and
only if  is harmonic.

ProOF. The condition @*w=0 is equivalent to the flatness of the
connection induced from the canonical connection of the principal bundle
S+, &, CP", S') through ¢. q.e.d.

§2. Homogeneous line bundles and homogeneous maps into com-
plex projective spaces.

Let M=G/K be an m-dimensional compact homogeneous space with
a compact connected Lie group G. We denote by g and f the Lie algebras
of G and K, respectively. Let (,) denote an Ad(G)-invariant inner
product of g and m the orthogonal complement of £ in g with respect to
(,). Let Aut(CP") be the group of all holomorphic isometries of CP*.
Aut(CP™) is identified in a natural way with a projective unitary group
PUn+1)=SUn+1)/{el,.,; e»*=1}. For a given Lie group homomorphism
©0: G— Aut(CP™), a map ¢: M—CP" is called p-equivariant if ¢ satisfies
p(a)ep=q@ov, for each a €G, where 7, denotes the natural action of G
on M. A map ¢: M—CP" is called G-equivariant if there exists a Lie
group homomorphism p: G— Aut(CP") such that ¢ is p-equivariant.

In this section we consider the case when M is a compact homo-
geneous space G/K of a compact connected Lie group G and the principal
bundle (P, 7, M, K) is the standard principal bundle (G, =, M, K) of the
homogeneous space M=G/K. We endow M with a G-invariant Riemannian
metric g on M. Suppose that (s, C) is a complex 1-dimensional unitary
representation of K. Then the associated complex line bundle L=G x,C
becomes a G-homogeneous vector bundle with a Hermitian fibre metric
{,>. C=(L)and C~(G, C); have (left) G-module structures in a standard
manner so that the map A preserves the actions of G. Let 2(G) denote
the set of all equivalence classes of finite dimensional irreducible complex
representations of G. Let for each 4¢€ 2(G), (04, V,) be a fixed represen-
tation of 4. For each 4€ &2 (G) we assign a map A, from V,@Homg(V,, C)
to C=(G, C)x by the rule A,(vQT)a)=T(oa"")v). Here Homg(V,, C)
denotes the space of all linear maps T of V, into C such that g(k)oT=
Top,k) for each ke K. For A€ 2(G), set Cy(L)=A A,V ,QHomy(V,,
C))). By virtue of the Peter-Weyl theorem and the Frobenius reciprocity

law, the algebraic direct sum 3. ,.. C7(L) is uniformly dense in C=(L)
relative to the uniform topology (cf. [Wa2]):

(2.1) , C=(L)= ) eé‘,(o) CrL) .
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Choose the canonical G-invariant connection I” on the principal bundle
(G, =, M, K) with the horizontal subspaces determined by the subspace
m. Let V® be the covariant differentiation on the complex line bundle
L induced from the connection I". The Laplacian A” gives the eigenspace
decomposition of C~(L) in the same sense as (2.1):

(2.2) CL)=2 &l),

where &, (L)={f e C*(L); A*f=yf} is the eigenspace of A’ corresponding
to the eigenvalue v. Since A’ commutes with the action of G on C~(L),
each &,(L) is a finite dimensional G-submodule. Hence each &,(L) is a
finite direct sum of some irreducible G-modules. Assume given a finite
dimensional G-submodule V of C=(L). Set n+1=dim.V. Decompose the
G-module V into the direct sum: V=3_,V, of irreducible G-modules V.

with dim;V,=n,+1. For any real numbers (r,:--, »,) with S ri=1,
we can construct a smooth map o(V;r,---, 7,): M—CP"* as follows.
Choose a unitary basis {p, ---, ¢,} of V with respect to the L‘-inner
product such that {p,,_,, --, #,,,_} is a unitary basis of V., where

t(v)=2>}-,dim;V; and t(0)=0. By the G-invariance of {,> and each
Vi

E; 7 Peis—n, Pe—n) + oo+ {Prior—1» Priir_))
is a positive constant on M. In particular the system

rPesns =+ TPy 5 1=1, - -, 8}

has no common zeros. By using this system of sections of L, we obtain

maps (V;r, -+, r,):G—-C*""\{0} and o(V; 7, ---, 7,); M—CP". Note that
the map o(V; r,---, r,) is full.
We define a unitary representation po,: G —>U(n+1) by L.(&,, -+, &,)=

(Pos + =+, Pn)Oy(a) for each a € G, where L, is the left action on C=(G, C)x.
Note that o,(a)e U(n,+1)Xx --- x U(n,+1). Then the map (V;r, ---, r,)
is py-equivariant for each r,---, r, with 3)_, 72=1. Hence we have

PV 7y, -+, r)(@)=(0r(a))v, ,
PV 7y, -« -, 7Y@ 0)=n((0,(a))v,)
for each aeG. Here o=¢KeM and v,=3(V;r,---, r,)(e) € C**'\{0}.
Under the identification m=T,M, choose an orthonormal basis

{Xiy -+, X} of m with respect to g. By Proposition 1.1 the tension
field ¢ of @(V;7,---,7,) at o€ M is given by
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WY, — i {32 2), o _<PV(X~;)_P_07 Vo)
@3) e u=i((F e X o2 5 SIS 0, (X, )
We describe the first Chern class ¢,(L) of the homogeneous line bundle
L. The curvature form 2 of I" is given by

(2.4) | 2X,YV)=~[X,Y]

for X,Yem (cf. [K-N, I, p. 103]). We choose an element ), € f such that
o(X)w=1v"—=1(\,, X)v for any Xcf and v€C. Then the 2-form

2.5) I (X, Y)Zz_ln([“’ X1,Y) for X,Yem

represents the first Chern class ¢,(L) of L.

Assume that (G, K) is a compact symmetric pair. Let g=f+m be
the canonical decomposition of g associated with the symmetric pair
(G, K). Let a be a maximal abelian subspace of m. Choose a maximal
abelian subalgebra § of g containing a. Fix a linear order < on b. Let
4 (ch) denote the root system of g relative to ). We have the root
space decomposition of g¢ relative to b:

=B+ 3 B »

where §,={X e g% (ad H)X=1"—1(a, H)X for any He§}. Let 4 be the
set of positive roots which do not vanish identically on a. Set nt=

Diacs+ 8.. Then n is a nilpotent Lie algebra and the Iwasawa decompo-
sition gives a direct sum decomposition

(2.6) g°=1€+a€ 4 n®

as vector spaces.

LEMMA 2.1. Let 0: G—GL(V) be a complex irreducible representation
of G with the highest weight ¢€ 9 and {, ) be a G-invariant Hermitian
inner product of V. Choose a weight vector v, (+0)eV for the highest
wetght &. Suppose that there exists a monzero vector weV and an ele-
ment € ¥ such that o(X)w=1v"—1(\, X)w for each Xet. Then we have
{w, vey #0.

Proor. We define a complex valued linear function F' by F(X)=
o(X)ve,, w) for Xegt. For any Yen® we have F(Y)=0 because
o(Y)v,=0. For any Hea®, we have F(H)=1"—1(¢, H){v,, wy. For any
Xet, we have F(X)=<{o(X)v,, w) = — (v, 0(X)w)=v"—1(\, X){v,, w). If
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{v,, w)=0, then by (2.6) we get F'=0. By the irreducibility of o, we
have w=0, a contradiction. q.e.d.

PrROPOSITION 2.2. Let (G, K) be a compact symmetric pair and
0:G—GL({V) be a complex irreducible representation of G. For any
NEE, set

W,={weV ; p(X)w=1V"—1(\, X)w for each Xet}.
Then we have dim.W,=0 or 1.

PROOF. Let v, denote the highest weight vector of 0 as in Lemma
2.1 and {(,) be a G-invariant inner product of V. We define a linear
map f: W,—C by f(w)=<{w, v,y for we W,. By Lemma 2.1, f is injective.
Therefore we have dim.W,=0 or 1. q.e.d.

COROLLARY 2.8. If (G, K) is8 a compact symmetric pair, then in the
decomposition (2.1) we have C7(L) is8 tsomorphic to V, or {0} for each
Ae 2(G).

REMARK. These results for =0 are well-known and essential in the
theory of spherical functions over compact symmetric spaces. The proof
here was inspired by that of [Tel].

§3. Harmonicity of homogeneous maps to a complex projective
space.

Let ¢: M=G/K—CP" be a full, homogeneous map compatible with
a Lie group homomorphism p:G— Aut(CP"). Note that there exists a
unitary representation pO: G — SU(n+1) of the finite covering group G of
G such that the diagram

G——‘6—>SU('n+1)

|l

is commutative. Take wv,€S**(¢c/4) with @(0)=Cv,., Then we have
@(a-0)=p(a)p(o)=p(a)r(v,) =r(0(@)v,) for each e @G with n@=acG. In
particular we have 9(K)Cv,cCv,. Hence there is a real-valued linear form
% on f such that F(X)v,=1V —1n(X)v, for any Xet. Set t'=Kerr,=
{Xet; p(X)v,=0}. We have a decomposition t=t'Pc, as Lie algebras,
where ¢, is an orthogonal complement of ¥’ in t. Note that dimc,=0 or
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1 and ¢, is contained in the center of .
Decompose the representation space C**' of 0 into the direect sum:

C'n+1 — i Vi
t=1
of irreducible G-submodules V,, and let
vo=£§:‘i v, v,€V, (1=1=8).

Then each v, does not vanish in virtue of the fullness of @, and satisfies
P(X)v, =V —Irn(X)v, for each Xect.

Put W=Cv,. Then W is a complex l-dimensional K-submodule of
C™*'. Consider the associated homogeneous complex line bundle L=
Gx,W* over M=G/K, where (¢*, W*) denotes the dual K-module of W.
We define a smooth map &=(@,, - -+, @,): G— (W*)*"'msC*** by (P,(a))(w)=
(Pla)w, €,y (3=0,---, n) for each a € G and we W. Since each &, satisfies
P(ak) = o(k)Pa), ie. & ,eC(G, Wz, (P -+, P} induces a system
{Pos * + +, .} of smooth sections of the bundle L. Let V denote the G-
submodule of C>(L) spanned by ¢, -, .. Then ¢ is equivalent to
oV; ry -+, r,) for some real numbers satisfying >, ri=1.

We shall study harmonicity of the homogeneous map ¢=@V; 7, -,7,).
We prepare a lemma. Choose a subspace m of g such that Ad(K)m=m
and g=f+m is a direct sum as vector subspaces.

LemMmA 3.1. PO([t, m])v, i8 horizontal with respect to the Hopf fibration
z: S**(c/4) — CP™, that is, {P([t, m])v,, v,y =0. Therefore if [t, m]=m, then
p(m)v, is horizontal. Here [t, m] denotes the vector subspace of m spanned
by {[T, X]; Tet, Xem).

PROOF. From the invariance of the Hermitian inner product (, )
by the action g of G, for any Tef and Xem we have

<ﬁ(T)15(X)'vo’ Vo) + <45(X)'vo; ﬁ(T)'vo> =0.
Since O(TYvy=V"—1n(T)v,, We have
{B(X e, P(T Yoy =—V —In(T)P(X )V, v
and

P(TYP(X )Ivo, vo) = P(T, XDvo, vo) + P(X)O(T yvo, vo)
=BT, XDve vop +V —IN( T)B(X )05y v
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Hence we obtain {O([T, X])v,, v,y =0. q.e.d.

REMARK. Set m=[f, m]+m, where m, denotes the orthogonal com-
plement of [f, m] in m with respect to an Ad(G)-invariant inner product
of g. Then m, is Ad(K)-invariant and satisfies [f, m,]=0 and [m, m]Cm.

- If the homogeneous space M=G/K satisfies one of the following
conditions, then we have m=[f, m]:

(1) The isotropy representation of M=G/K is irreducible.

(2) rank G=rank K.

(3) g is semisimple and (g, f) is a symmetric Lie algebra.

The compact homogeneous spaces with irreducible isotropy representation
were classified by [Wo]. By a result of Hopf-Samelson M=G/K satisfies
rank G=rank K if and only if the Euler-Poincaré characteristic of M is
positive.

Let g be a G-invariant Riemannian metric on M. Let g, denote the
G-invariant Riemannian metric on M induced by an Ad(G)-invariant inner
product (, ) of g.

From Proposition 1.1, (2.3) and Lemma 3.1 we get the following.

PROPOSITION 3.2. Suppose that the homogeneous space M =G/K
satisfies the condition [f, m]=m. Then the following statements for a
G-equivariant map e=pV;r, -+, r,): (M, g) — CP™ are equivalent to each
other:

(1) o 18 a harmonic map.

(2) Cr, p(X))v, € Rvy,, where {X,, .-, X,,} denotes an orthonormal
basts of m with respect to g.

(8) For some constant vy, A*p;=vp,; (§=0,--:, n), that s, the sub-
space V of C=(L) is contained in some eigenspace &,L) of A~.

By this proposition we see that if M=G/K satisfies [f, m]=m, then
{(V;ir, -+, r); V is a G-submodule of some eigenspace for A%, r,€ R
(t=1,---,8) with >}, =1} is the set of all equivalence classes of G-
equivariant harmonic maps from (M=G/K, g) to a complex projective
space. Here s denotes the number of G-irreducible components of V.

Let & denote the Casimir differential operator of G with respect
to the Ad(G)-invariant inner product (, ) of g, that is, 2=>\_, X, X,,
where {X,},-,..; is an orthonormal basis of g with respect to (,) and
{X}e=ms1,--.; 18 contained in f. If g=g, then we have P, X, X)=
(&) — ki P(X,):. If the representation (0, C**') is irreducible, then
by Schur’s lemma §(%) is a constant operator —c¢(@)I for some c¢(9)>0.
In this case we have G, X, X,)v,=(—c(0)+ (o M)V, Therefore we
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obtain the following.

PrROPOSITION 38.8. Suppose that M= G/K satisfies the condition
(f, ml=m. If V 1is irreducible (equivalently, (o, C***) is tirreducible),
then p=@(V;r, -+, r,): (M, gq) > CP™ is a harmonic map (s=1).

We shall give an explicit formula for the energy density of a G-
equivariant map o: (M, g5 — CP".

PrOPOSITION 3.4. Suppose that M =G/K satisfies the condition
[t, m]=m.

(1) The energy density e(p) of a G-equivariant map @: (M, gs)—
(CP", g,) s given by

o) = — L@@ )0y, vy — 2l
2 C
Moreover if (@, C™*) is irreducible, then

e(P) ——-—(C(ﬁ)— ol®)

(2) If p*9,=rgs for some positive constant r>0, then r is given by

— 1 ~ 4. e
r=-— dim M {<p(g)vo; 'Uo>+—c—l)\lo‘ } .

Proor. Under the identification m=T,M, by Lemma 3.1 we compute

e(®)  (PFg)(X, X)

Il

DO po|H
CiMe 1M

<.0(X Yo, O(X ) o)

Il
I

A(ZX.X, o, v0>

Il

1/

2\’

1 l 2 2
— 2B @0 v+ 3 MKl

1

2

==L B@ 0 v+ 20l

From this we get (1). Immediately (1) implies (2). q.e.d.

By virtue of the formula of Freudenthal, the eigenvalue ¢(0) of the

Casimir operator (&) for an irreducible representation (g, C**') is given
by
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c(0)=(4; A;+29) ,

where A4; denotes the highest weight of the representation g0 and o
denotes half the sum of the positive roots of g, relative to a maximal
abelian subalgebra of g and a linear order on it.

REMARK. (1) Similar results and formulas can be found in [Gul],
[Gu 8] for a flag manifold G/T. In [Gu3], [Gu4], Guest gives more results
and interesting observations from the viewpoint of twistor geometry and
symplectic geometry.

(2) If K has the discrete center, then the associated homogeneous
complex line bundle L is a flat vector bundle and any homogeneous map
@ made from sections of L is always totally real.

§4. Homogeneous harmonic maps of compact homogeneous Kihler
manifolds into complex projective spaces.

Let g be a compact semisimple Lie algebra and t be a maximal abelian
subalgebra of g. Denote by g° and ¢ the complexifications of g and t,
respectively. t¢ is a Cartan subalgebra of g°. Let (,) be an Ad(G)-
invariant inner product on g defined by (—1) times the Killing form of
g. Let Y (ct) denote the root system of g relative to . We have a
root space decomposition of g°:

=1+ g,
where g¢={Xeg® ; (ad H) X=1"—1(a, H)X for any Het}. Choose a lexi-
cographic order > on 3. Put X*={a€X;a>0}. Let IT be the funda-
mental root system of I consisting of simple roots with respect to the
linear order >. We identify 7 with its Dynkin diagram. Let {4,},en (C1)
be the fundamental weight system of g corresponding to I7:

Haup_p it a=g,
(B’B) 0 if a+ps.

Let I7I, be a subdiagram of I7. We may suppose that the pair (17, I1,)
is effective, that is, I7, contains no irreducible component of 1. Put
3, =3 N{,};, where {II,}; denote the subgroup of t generated by II, over
Z. Define a subalgebra u of g¢ by

u=t+ 3, g% .

anoU2+

Let G¢ be the connected complex semisimple Lie group without
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center, whose Lie algebra is g°, and U the connected closed complex
subgroup of G¢ generated by u. We define a complex manifold M by
M=G¢/U, which is known to be compact and simply connected. Denote
by J the complex structure of M. G€¢ acts effectively on M, since G°
has no center. The origin U of M is denoted by o. Let G be a compact
connected semisimple subgroup of G¢ generated by g and put K=GnNU.
Then K is connected and G acts on M transitively, and hence the natural
map G/K—G¢/U induces an identification M=G/K as a smooth manifold.
M is called a generalized flag manifold. The complexification ¢ of the
Lie algebra £ of K is given by
fo=t+ 3 gs .

anO

We define a subspace ¢ of t by
c= >, RA,.

aeﬂ—”o

Then ¢ coincides with the center of . We define lattices Z and Z, of t
and ¢ respectively by

and

Z.=ZNne= >, ZA,.

We define a cone ¢t in ¢ by
¢t (resp. H={nec\{0} ; (A, a)>0 (resp. =0) for each a €Il —1I,}

and put Zr=ZNc* and Z}*=ZNc*. Then we have ¢*=>,.q-n, R*4, and
Z¥=3\nen-n, Z*A,, where R* and Z* denote the sets of positive real
numbers and positive integers, respectively. Let m be the orthogonal
complement of t in g with respect to (, ). Then we have a direct sum
decomposition g=f-+m as vector spaces. The subspace m is K-invariant
under the adjoint action and identified with the tangent space 7T,M of
M at the origin. Put Ii=3*-3, X.=—23} and define K-invariant
subspaces m* of g¢ by

(4.1) mE=3] g% .

ae!’uj‘:

Then m*=m" and the complexification m¢ of m is the direct sum mc=
mt4+m-,
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Let G¢ be the universal covering group of G¢ and G be the simply
connected subgroup of G¢ generated by g. Let U be the connected closed
complex subgroup of G¢ generated by u and put K=GnU. Then we
have also identifications M=G¢/U =(7/I?. Let T be the toral subgroup
of G generated by t.

We choose E,cgé for a€ X with the following properties and fix
them once and for all:

[Em E—a]=l/_:]—-a ’ (Em E—a)=1 ’ Ea=-E_a for a€l.

We denote by X+ X the complex conjugation of g¢ with respect to the
real form ¢g. Let {®“}..; be the linear forms on ¢¢ dual to {E,},cs, more
precisely, the linear forms defined by

*(1t%)={0},
. 1 if a=g,
o E)=10 i a’g .

Every G-invariant Kahler metric on M is given by

g()\,)=—21;c— S v @)@%-@*  for nect (cf. [B-HJ, [Te2]) .

aezf

Denoted by w()\) the Kahler form (or fundamental 2-form) of g()\),
o)X, Y)=g(\)(JX,Y). Any G-invariant Riemannian metric on M is a
Hermitian metric with coclosed fundamental 2-form.

Given any )2n€Z., we can define a complex 1-dimensional unitary
representation o(A) of K by (¢(\)(a)=exp(l’ —1(n, X)) for each ac€ K,
where a=exp X and Xcf. We construct a homogeneous complex line
bundle L,=G X, C over M=G/K associated to the representation (¢(\), C)
of K. Conversely for each homogeneous complex line bundle L over
M=G/RK, there exists a unique element ) € Z, such that L=L,. The first
Chern class c¢,(L;) of the complex line bundle L; over M associated to
M€ Z, is represented by the closed 2-form
V' =1

(4.2) YLy = >\ Q)WCAGE .

*
aeXy

This is because by (2.5) we have

V=1, a)E., E) .
7T

V(LB Ep>=51{<[x, E,), Ey)=

PROPOSITION 4.1 (cf. [B-H], [Te2]). Let (M) and S#*(M, g) be
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the real vector space of all G-invariant closed 2-forms on M and the real
vector space of all harmonic 2-forms on M with respect to a G-invariant
Riemannian metric g on M, respectively. Then we have the following
isomorphisms:

c=HY(K, R\ =H*M, R)=27*M, 9)=_7&M)

|1 I

Z.=HYK, Z)=H*M, Z)
and the linear isomorphism between ¢ and _ZZ(M) is given by

1V —1
27

n(\)= 2+ N, Q@A D% € FEM)

aelX

for ne€c. Here note that we can identify H YK, Z) and H*M, Z) with
subgroups of H*(K, R) and H*(M, R) since these integral cohomology groups
have nmo torsion.

Let (M) be the complete set of equivalence classes of complex
line bundles over M. Then we get the bijective correspondences among
X (M), H¥M, Z) and Z. by c,(L;)=n(\) for n€ Z.

For each \€ Z, there is a unique holomorphic character X(\) of U
such that

A0 (exp H)=exp 1V —1(n, H) for each Het¢.

Then we can identify L, with the holomorphic line bundle G€ x4 C over
M associated to the principal bundle (G¢, =, M, U) by X(»). We have the
identifications L;=G X, ; C=G¢ Xz, C. Through these identifications we
endow the complex line bundle L, with the Hermitian metric and the
holomorphic structure. Hence L; becomes a holomorphic Hermitian line
bundle. Let I' be the canonical G-invariant connection on the principal
bundle (G, 7, M, K) and let g=g(#) (£ €c*) be a G-invariant Kahler metric
on M. By (2.4) and (4.1) the curvature form 2 of I' is of type (1, 1).
Let V? denote the covariant differentiation of L; induced from the con-
nection I'. Then V? is the Hermitian connection of the holomorphic
Hermitian line bundle L;. The complex Laplacian (% of L, is defined by

O =5*3f = — 3, [V VA f—Viua f]  for feC=(Ld,

where o and 6* denote the (0, 1)-operator of the holomorphic line bundle
L, and its adjoint operator respectively, and {u;} is a unitary basis of
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T{°M with respect to g=g(¢). Then we have
Of = =3 Vioef = =3 2 [V e f + Vo f + B0, 7))

—_ 1 AL (ku a)

_'-2—‘[A 7 27{“2:: ¢ ) } '
where A? and R’ denote the rough Laplacian relative to V? and the
curvature form of V* respectively. Hence if a=g, that is, ¢,(L,)z=[0(t)],
then it becomes 0'=(1/2)(A*—27zm-1), where m=dim;M. Set v(n, ¢)=
27 Xizesy (M @)/(#4, ). In the next section we will determine all eigen-
values and eigenspaces of the Laplacians (0 and A* for each irreducible
Hermitian symmetric space M of compact type.

Let I'(L;) be the subspace of C~(L;) consisting of all holomorphic
sections of L,. We see that I'(L,)={f e C~(L,); O*f=0}={f € C(L,); A*f=
v(\, 0f}. From the Borel-Weil theorem ([Bt]) we know that I'(L,) is an
irreducible G-submodule of C=(L,) with the highest weight ), hence if
M€ Z\(Z}U{0}), then I'(L;)={0}. It is known that A € Z* if and only if
L, is very ample. Let £,(L,) be the eigenspace of A* with the eigenvalue
y. The decomposition (2.2) of C~(L;) becomes

C=(Ly)=I(L,) +v>§m &gW(Ly) .

Let p=@{V; 7, -, r,); M—CP" be a homogeneous map associated to a
finite dimensional G-submodule V of C=(L,) as in Section 2. We use the
same notation as in the preceding sections.

PROPOSITION 4.2. (1) @=9V;7r,:--, r):M—CP" is a full holo-
morphic map if and only if v € Z} and V=I(L),) (s=1).

(2) If neZ satisfies (A, a)*0 for each acll —II, then o=
PV, ry -, r,): M—CP" 18 an immersion.

(83) If neZ} and VC &,(Ly) for v>v(\, 1), then p=pV; 7, ---,r,):
M —CP" 18 a harmonic map which i8 meither holomorphic, antiholomor-
phic mor totally real. Moreover if a harmonic map =@V ;r, ---, r,):
M — CP" with the simple compact Lie group G and dim,M=2 is neither
holomorphic nor antiholomorphic, then ¢ is not even pluriharmonic (cf.
[Ud], [0-U)).

(4) If p: M=G/K—CP" 18 a G-equivariant, stable harmonic map
of a compact homogeneous Kdhler manifold M=G/K with the second
Betti number b,(M)=1, then @ i8 holomorphic or antiholomorphic.

PROOF. (1) Note that by the G-invariance of » and Lemma 3.1 we
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have (D;0)p=X*® for each X e TMC¢. Assume that n€ Z! and V=I'(L))
(s=1). From xeZ} we see I'(L;)+#{0}. Since (0zP.)0,...a=(ViP)iZ0,.c.n=
Z*3=0 for each Ze T“"M, we get D;0=0. Thus @ is holomorphic.
Conversely assume that ¢ is holomorphic. Then for each Ze T““M we
have 0=(Dz0)P=Z*P=(Vip)iiy,....n=(02P)is,....n. Hence {@, ---, @,} are
nonzero holomorphic sections of L;. Thus by the Borel-Weil theorem
we get v € Z! and V=I'(L)).

(2) Let w, denote the Kahler form of (CP" g,). Then the first
Chern class ¢,(H) of the hyperplane bundle H over CP" is represented
by v.(H)=(c/4n)w,. Since op*c,(H)=c,(L;) and o*v,(H), 7,(L;) are G-
invariant closed 2-forms, by (4.2) and Proposition 4.1 we get ¢o*v,(H)=
v.(L;), that is,

go*w.,=%1/:i 3 @ ANO* .
aezy
Hence we see that (\, a)#0 for each acIl—1II, if and only if ¢p*w, is
nondegenerate, and then ¢ is an immersion.

(38) The first statement follows from (). If p=oV;r,---, r,) is
a nonconstant pluriharmonic map, then by a result of [Ud] we have
rank, dp <2, hence dim,p(M)=1 or 2. Since G'={a € G; ax=x for each
x€@(M)} is a normal closed subgroup of G and G is simple, G is locally
isomorphic to G/G’. Since G/G’ acts effectively on (M), G must be of
type A,. Thus dim,M=1.

(4) By (2) » must be an immersion. By a result of [B-B] (see also
[B-B-B-R]), we see that @(M) is a complex submanifold of CP". Hence
by the G-equivariance of ¢ the standard complex structure of CP” induces
a G-invariant complex structure J' on M through . By Proposition 13.8
of [B-H] the complex structure J’ or —J’ coincides with the complex
structure J of M=G¢/U. Thus ¢ is holomorphic or antiholomorphie.

q.e.d.

REMARK. (1) The statement (1) of Proposition 4.2 can be regarded
as a very special case of the famous Kodaira embedding theorem. If
€ ZAZF, then the holomorphic map ¢=¢(I"(L,)): M— CP" is not an im-
mersion. For each ne€Z', we have a Kiahler embedding p=9("(L))):
(M, (4z/c)g(\))— (CP™, g,). These Kahler embeddings were investigated
and classified in detail by [Te2].

(2) If (G, K) is an irreducible Hermitian symmetric pair, since the
isotropy representation of M=G/K is irreducible, the statement (3) of
Proposition 4.2 gives neither holomorphic, antiholomorphic nor totally
real, minimal isometric immersions ¢: (M, rgs) — CP" for some r>0. The
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values r and eigenspaces £,(L,) are determined precisely from Proposition
3.4 and results of the next section.

§5. Spectral decomposition for complex line bundles over compact
Hermitian symmetric spaces.

In this section we discuss the case when the generalized flag manifold
M is a Hermitian symmetric space.

Let IT={a,, ---, a;} be an irreducible Dynkin diagram. A pair (ZZ, II,)
is called irreducible symmetric if I —II,={a,} and the highest root & of
the system Y with the fundamental root system /7 has an expression:

a=a,+>, ma, m,€Z, m,>0.

A general pair (1, II,) of Dynkin diagrams is said to be symmetric if
the pair (I1, I1,) is a direct sum of irreducible symmetric pairs of Dynkin
diagrams. Let M=G/K be a generalized flag manifold associated to an
effective pair (17, I1,). It is known that the pair (G, K) is a symmetric
pair if and only if the pair (7, II,) is symmetric. In this case for any
G-invariant Riemannian metric g on M, (M, g) is a Hermitian symmetric
space and the identity component Aut’(M, g) of all automorphisms of
(M, g) is equal to G. Every Hermitian symmetric space of compact type
is obtained in this way.

PropoSITION 5.1 (cf. [H-C], [He]). There exists a subset v, -+, 7, of
3t comsisting of stromgly orthogonal roots, i.e. v, £7;¢ X (1=1, j=r) such
that

a°=3} C(Ey,+E_r,)
18 a maximal abelian subspace of m€. In particular
a=3} R(E;,+E_;)

18 a maximal abelian subspace of m.

Consider the inner automorphism p of the Lie algebra g, the so called
Cayley transformation

v=Ad(c,) ,

where c,=exp(r/2V —1 3, (E,,—E_;)/(V"2]7,]). Then we have y(a)Ct
and v((Eri—E_ri)/l/—Q_)= —v./17 for 1=<i<r (cf. [H-C]).
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Set 4,=4,, for i=1,---,1. In our case we have Z.=Z4,. For each
x=kd, € Z,, the first Chern class ¢,(L;) is given by ¢,(L;)=kw, where w, .
is a positive generator of H*(M, Z). For each ke Z, set W,=(a(k4,), C).

We shall determine the spectral decompositions (2.1) of all complex
line bundles over each irreducible Hermitian symmetric space of compact
type. Let D(G) be the set of all dominant integral elements of t. By
Proposition 2.2 we know dim Hom(V(4),W,) =0 or 1 for each A€ D(G).
Set

D(G, K; k)={4€ D(G) ; dim Hom (V(4), W,)=1}
for each ke Z, and D(G, K)=D(G, K; 0).

THEOREM 5.2. The following 13 a complete list of D(G, K; k) (ke Z)
Jor each compact irreducible Hermitian symmetric space M=G/K. Here
each diagram is the Satake diagram of (G, K) and © represents the
element of Il —1II,.

(1) (AllD,, A=p=9): M=G, (C), l=p+q—1. If 1=p=l/2,

a a a,

5 < B

/N AN N I
]
1
1
]

A4 A\ 4 A\ 4 I

o o S —0—

a, a_, A py1

p—1
D(G, K; k)= {3, mdit fy_os) +my dy 1y ey
m, € Z, mZ0 (i=1, -+, p+1), m,—m,., =k} .
If 2p—1=lI,

ROe—0R
“—>
>

R

p—1
D(G, K; )= {3 m A+ Ay +m, 4, ;

m,€Z, m,=20 (1=1,---, p), m,—|k|=0 s e've'n} .
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(2) (BD), (m=b5): M=Q,(C), l=[m/2]4+1=3. If m is8 odd (I1=3),

@, a, ay a;_, a,

If m 18 even (1=4),

Xy

a;
D(G’ K; k)={m1/11+m2/12 ’
m, € Z, m;=0 (1=1, 2), m,—|k|=0 is even}.

(3) (CI) (122): M=Sp(OH/UD).

gl ol as ., a;

-
DG, K; k)= {z m2A,4+md; ;

i=1

m, e Z, m=0 (=1, -, 1), m— k| =0 is even} )

(4) (DIII), 1=5); M=So@nh/U®). If l=2r,

a_,

D(G, K; k)= {Z, m2ds+m, 4 ;

m,€ Z, m,20 (i=1, -+, r), m,—|k|=0 is even} i

If 1=2r+1,
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r—1
D(G, K; k)= {3 m2Aptm,dy_i+m,ids
my € Z, m,=0 (G=1, -, r+1), My— My = —k} )

(5) (EII): M=E,/Spin(10)-T.

D(G, K; k)={m4,+m,4;,+m1; ;
m,eZ, m,=0 (1=1, 2, 8), m,—m,;=—k} .

(6) (EVII): M=E,/E,-T.

«a,

©

O o
a, a; a @,

“Qo
R

D(@G, K; k)={m1A1+mer+msA7.;
m,€ Z, m,=0 (1=1, 2, 3), m;— |k|=0 s even} .

We will get Theorem 5.2 by proving the following lemma.

LEMMA 5.3. Let p be the Satake involution of (G, K) (or (I, I1,)).
(1) If p(i,)+#1, then

DG, K; k)=D(G, K)+k4,, for each k=0 and
D(G, K; k)=D(G, K)—kd,, for each k<O.

(2) If p()=1, then
D(G, K; k)=D(G, K)+k|4,  for each keZ.

PROOF. Note that if p(i,)+#4%, then k4, € D(G, K;k) for k=0 and
—kd,., € D(G, K; k) for k<O, and if p(%,) =1,, then |k|4, € D(G, K; k) for
keZ. Let Ae DG, K; k). We show that if k=0, then 4 € D(G, K)—kAy -
Let & be a nonnegative integer. Now we take the tensor product G-
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module (V(k4,))*®V(4). Here V* denotes the dual G-module of a G-
module V. Then we have the direct sum decomposition of the G-module
V(k4,)*QV(4) into irreducible G-modules U,

V (k4 )*QV()=U.DBU.D - U, ,

where U, denotes the highest component. Since (V(kA4,)*=V(k4,.,), we
have U,=V(k4,,,+4). Choose a nonzero weight vector f e (V(k4,))* for
the lowest weight —k4, and a nonzero vector w € V(4) belonging to a K-
submodule of V(4) isomorphic to W,. Then we see p(X)f=—1v"—1(kA,, X)f
for each X et and p(a)(fQ@w)=fX@w for each a € K, where p denotes the
action of G on each representation space. Moreover choose a nonzero
weight vector f, e (V(k4,))* for the highest weight k4,,, and a nonzero
weight vector v, € V(4) for the highest weight 4. Note that f,Qwv, eU,.
For each Het, we have

p(H)(f1®’l)1) = l/_—_]-(kAzJuo) +4, H)(f,Qv) .
Since {p(c,)"'f,, f>+#0 and {p(c,) v, w)+#0 by Lemma 2.1, we have

()T (fi®v1), FRwW) = <p(c)™"f, £ <0(co) ™ vy, w)#0 .

Write fQw=u,+ +++ +u,, where u,cU, (i=1, -+-,s3). Then we see
p(a)u,=wu, for each a € K and o(c,)(f@w)=p(co)u,+ -« - + p(c)u,, o(c,)u, € U,
(1=1,---,8). 8ince {(fi®v, P(c.)(fRw)) = {fiQv,, p(c)u,) #0, we get
o(c)u,#0. Hence 0+#u,€ U, and p(a)u,=wu, for each a€ K. Thus we
obtain k4,.,+4¢€ D(G, K).

Similarly we can show that if k<0 and A€ D(G, K; k), then A€
D(G, K)+kA,. We have only to apply the same argument to the tensor
product G-module V(—kA4,)QV (4).

First we discuss the case when p(z,)#1%, that is, the pair (G, K) is
of type (AIll),,, (DIII),_,,,, or (EIII). Let A€ D(G, K; k). Assume k=0.
By the above assertion we can write

A=m(4;+ Ay ) —k Ay, +[terms involving 4; with j=+4, p(i)]
for some m,€ Z, m,=0. Hence we get
A=my(4,+ 4,,,) +kA,,+[terms involving A; with j+#14, p(%,)]

with m,=m;—k=0. Thus we obtain A€ D(G, K)+k4,. Next assume
k<0. Similarly by the above assertion we can write

A=my(A,,+ 4,,,) + kA, +[terms involving 4; with j+#4, p(3,)]
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for some mo€ Z, m;=0. Hence we get
A=mo(Ai0+Ap(io))kap(io)+[terms involving 4; with j##14, ()]

with m,=m,+k=0. Thus we obtain 4€ D(G, K)—k4,,,. Conversely if
AeDG, K) and k=0 (resp. k£<O0), then A + k4, (resp. A’ —kd,,,)€
D(G, K; k). In fact, if we let ueV(4') and veV(k4,) (resp. V(—k4,.,))
a nonzero K-fixed element of V(4’) and the highest (resp. lowest) weight
vector of V(k4,) (resp. V(—kd,,,)), then by Lemma 2.1 we see that the
highest component of the tensor product V(4)QV(k4,) (resp. V(4K
V(—k4,,,)) contains a nonzero component of u®wv, and hence it contains
a K-submodule isomorphic to W,. Therefore we obtain (1).

Next we proceed to the case when »(%,)=1, that is, the pair (G, K)
is of type (BD),, (CI),, (DIII),_,, and (EVII). Let A€ D(G, K; k). From
the above assertions we already know A€ IX(G, K)—|k|4,. Hence from
Satake diagrams we can write

A=m24,— k|4, +[terms involving 4; with j=14,]
for some my€ Z, m;=0. Thus it becomes
A=m,d, +[terms involving 4; with j+1,]

with m,=2m.—|k|=0 and m,—|k| even. We have to show m,=|k|. By
the assumption V(4) contains a K-submodule isomorphic to W,,, which
also denoted by W, because V(4)* is isomorphic to V(4). By the irre-
ducibility of V(4) and the K-invariance of W,,,, we have

V(/l)’—‘q% . Z}s ., 0(@5) - - 0(85) Wi

for a sufficiently large integer N. Note that o(g7) --- 0(g5,) Wi, is con-
tained in the weight space of V(4) for the weight |k[4,+G,+ --- +23,,
or it is zero. Hence we can write

(b.1) A=k|d;,+ B+ -+ + B,

for some ¢=0 and B8,--, 3, €2}. Indeed, we have only to choose
{B1,***, B} 2. of the minimal number ¢ such that o(E;) .- o(E,)w is
the nonzero highest weight vector of V(41), where w is a nonzero element
of W,,,. We check that

(5.2) _2_(_@’.2‘10)_:0, 1or 2
(i Q)

for each g€ X}. Indeed, we define an integer j, by 7,=2 if (G, K) is of
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type (BD),., jo.=0l—1 if (G, K) is of type (CI),, j,=l—2 if (G, K) is of
type (DIII),_,, and j,=6 if (G, K) is of type (EVII). Then from the list
of root systems we see that

2(atjp i) _
(at°7 aco)

and for each g€ X}, B has the following form:

(@, a;)=0 for j+#1, j,, and -1,

(479
B=1{a,,+a; +[terms involving a; with j+#4, j], or
a,,+2a; +[terms involving «; with j+#4, j ] .

Hence we get (5.2). Therefore from (5.1) we have m,=2(4, a,)/(a,, a.) =
Ikl +2323-, (B a)/(t, i) Z|kl. We got D(G, K; k)CD(G, K)+|k|4,. In
the same way as the proof of (1) we can show D(G, K)+ k|4, c D(G, K; k).
We obtain (2). q.e.d.

PrOOF OF THEOREM 5.2. The method of determining D(G, K) by
Satake diagram is well-known in the theory of spherical functions over
compact symmetric spaces (cf. [Tel] and references of [He]). Therefore
Theorem 5.2 follows from Lemma 5.3. q.e.d.

§6. Classification of homogeneous harmonic maps between complex
projective spaces.

In this section we discuss the case when M is an n-dimensional complex
projective space CP™. By Theorem 5.2, Freudenthal’s formula and Weyl’'s
dimension formula, a simple computation gives the following.

PROPOSITION 6.1. For the case (Alll),,.: M=CP™, for each A=
m,A,+m.A, € D(G, K; k) with m,—m,=k, the eigenvalue c(A) of the Casimir
operator for A relative to the immer product of g=8u(m+1) defined by
(—1) times the Killing form, and the dimension d(A) of the representation
of 3u(m+1) with the highest weight A are given as follows;

c(A)= _2(71_}_1-)7 {mmi+2mm,+mm;+m(m+1)(m,+m,)} ,
1
A)— 12="——'- 2 111, 1 2)f »
c(A)— kA, 2(m+1){ m,m,+m(m,+m,)}

d(A)=(m_1+ml> (m“”mz)w
m, m, m )
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By this proposition and results of the previous sections we get a
nice series of homogeneous harmonic maps between complex projective
spaces.

THEOREM 6.2. There exists a series of SU(m+1)-equivariant full
minimal isometric immersions ™,: CP™(c(n, 1)) — CPY™"(c) indexed by the
set {(n,l)e ZXZ; n=l=0}, where

_ cm

o D= D Tmn

N(n, l)+1=<n—l+m—~1>(l+m——l>m+n .
n—l| l m

Moreover {yr,} satisfy the following:

(1) 1=0 f and only if ¥r, 18 holomorphic. In this case ., 18 the
n-th Veronese imbedding of CP™ (cf. [TeZ2)).

(2) l=n if and only if +r, 18 antiholomorphic.

(8) m s even and 2l=mn if and only if r, is totally real. In this
case YT, 18 a composite of the l-th standard minimal immersion CP™—
S¥(c/4) (cf. [Wal]), the natural isometric covering S¥(c/4)— RP"(c/4) and
the totally real totally geodesic imbedding RPY(c/4)— CPY(c).

(4) The degree of iy, is equal to n—21.

REMARK. In case m=1, 7}, is congruent to 4., in Theorem 1 of
[B-O] (cf. [B-J-R-W], [Gu1l]). So this theorem is just a generalization of
the result of [B-O] to higher dimensional complex projective spaces.

PROOF. For each A=m,4,+m,A,c DG, K;k), we set +r,=p(V,)
(s=1) by Proposition 8.3, where n=m,+m,, l=m, and k=n—2l. Then
we get the above series. q.e.d.

THEOREM 6.8. Let @:CP™—CP" be a full SU(m + 1)-equivariant
harmonic map between complex projective spaces with the Fubini-Study
metrics. Then there exists a pair of integers (n,l) with 0<I=n such
that N=N(n, l) and @ is equivalent to ;.

REMARK. From this result we see immediately that if ¢: CP™(¢')—
CP¥(c) is a full SU(m+1)-equivariant minimal isometric immersion, then
there exists a pair (n,!) with 0<I<% such that ¢'=¢(n,!l), N=N(n, D)
and ¢ is congruent to 7.

PrROOF. Let k& be the degree of . By the results of Section 3,
there exists a unique homogeneous complex line bundle L with ¢,(L)=Fk




114 YOSHIHIRO OHNITA

over CP™ such that @ is equivalent to @o(V; r,,- - -, r,) for some G-submodule
V of an eigenspace of A* in C~(L) and some 7,,---, 7, € R with 3:_, r:=1.
It suffices to show s=1. Let V=3,V be the direct sum decomposition
into irreducible G-modules and A“ =m{®4, +m{P4, € D(G, K; k) be the

highest weight of V¥ for 7=1,-.--,8. Then we have
6.1) {m{"—mé"=k for TI=1, cee, 8,
c(A)=c(A"HY) for 2=1,-..,83—1.

By (6.1) and Proposition 6.1, a simple computation shows m{® =ml*" and
mP =mi* for ¢=1,..-, s—1, that is, 4“9=4“"" for ¢2=1,...,8—1. By
Corollary 2.3, we get s=1. q.e.d.

REMARK. (1) It is important to investigate the rigidity of the
above minimal immersions. Refer to [Ca] for the rigidity of +™, or ™,
and to [Wal], [Ur] for the rigidity of 7, with n=2I.

(2) After the author finished this work, Dr. Burstall informed him
that Toth also got examples of non(anti)holomorphic harmonic maps
CP™—CP" for m<n.

§7. Homogeneous minimal 2-spheres in quaternionic projective
spaces.

It is interesting to study homogeneous harmonic maps into quater-
nionic projective spaces by applying our argument to quaternionic line
bundles and smooth maps into quaternionic projective spaces. Here we
give homogeneous minimal 2-spheres in quaternionic projective spaces and
some information about them. They were discussed first by Salamon
[Sa].

Let HP"(c) denote an n-dimensional quaternionic projective space with
the standard metric of maximum sectional curvature c.

PROPOSITION 7.1. There exists a series of SU(2)-equivariant mini-
mal isometric immersions @, ,: CP'(c(n, a))— HP"(c) indexed by the set
{(n, ) e ZXZ; n=a=0}, where

| c
n, )= or =]1,.-+, n—1,
o) = mi—wionil 1T @
=_ ¢
olm, n)= nn+1) ’

and the image of each @, , is not contained in any proper totally geodesic
submanifold of HP". Moreover a=0 or n if and only if @,, is totally
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complex. Conversely they give all proper SU(2)-equivariant minimal
immersions of CP' into HP".

REMARK. (1) Refer to [Ts] for the definition of a totally complex
immersion. It is equivalent to the inclusive condition in [E-S] as a
smooth map. In [Sa] a connection of these maps with the twistor spaces
Sp(n+1)/Sp(n) x U1) and Sp(n+1)/U(n)x Sp(l) over HP" was studied.
This result shows that the statements in Lemma 2.10 and Theorem 4.1
in [Ts] do not hold for @, ..

(2) We conjecture that {p,.} exhaust all proper minimal isometrie
immersions of CP!¢") into HP™(c).
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