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§0. Introduction.

In a joint work ([HI]), we showed that a family of stable vector
bundles of rank 2 on a 3-dimensional rational scroll forms a complement
of a dual 3-dimensional rational scroll. It is natural to ask what is its
closure in the moduli of stable sheaves of same rank and same Chern
classes (cf [M2]). Is the moduli of stable sheaves connected? Does it
have other irreducible components? We will answer such questions in
this paper.

Let (X, H) be a 3-dimensional rational scroll and M be the moduli
of H-stable sheaves of rank 2 on X with C,=C,(&"), C,=D-F and C,=0
(see (2.1) for notations).

In section 1, we list up several formulas and describe the normal
bundle of an n-dimensional rational scroll. In section 2, we show that
there are 6 types of stable sheaves. The hierarchy of such types will
be settled. In section 8, we construct limits of extensions. This is the
main tool of this paper. The idea comes from monad (IBH]) and ele-
mentary transformation ([M1]). The main theorem (Theorem 3.13) says
that the moduli M is connected and has two irreducible components M,
and M,. M, contains all vector bundles and M, contains no vector bundles.
The dimension of M, is greater than that of M,. In section 4, we construct
a family for the difference M,\ M,. The description of the normal bundle
of a 3-dimensional rational scroll will be used to construct the family.
In section 5, we construct a family for M,. The construction will be
sketched without proofs.

§1. Preliminaries.

In this section, we list up some basic formulas and describe the normal
bundle of an n-dimensional rational scroll. The former will be used mainly
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in section 2 and the latter will be used in section 4.
Let k be an algebraically closed field of arbitrary characteristic. In
this paper, the ground field k¥ will be fixed.

Formulas. Let X be a non-singular projective 3-fold.

(1.1) RIEMANN-ROCH FORMULA. For a coherent sheaf & of rank r
on X,
Cl(g) (C1(g) _ Kx)(zcx(g) _ Kx) —_ Gcz(g) (Cl(g) — Kx) + BCs(g)
12

+_11501(g)-02(x )+rX(Py) -

X&) =

(1.2) Let & be a coherent sheaf of rank r on X and D be a divisor
on X. Then we have

C(s2(D)) = C(&F) + (r—1)C(5) - D+ f_(”—;-im ,

Cy(& (D)) =Cy(&) + (r —2)Cy(&) - D

n ('r—1)2('r—-2) C()-D*+ 'r('r—lf)s('r—Z) De .

LEMMA 1.8. Let & be a coherent sheaf on X.

(1) If dim Supp & =0 then C(F)=Cy(&F)=0, Ci(&F)=2n(F").

(2) If dim Supp & =1 then C/(5)=0, C(z)-D<0 for any base
point free divisor D.

PROOF. (1) It is obvious that C,=C,=0. By the Riemann-Roch

formula for . (&) =3Cy(F). (2) It is also obvious that C;=0. For
a general member D’ in |Dj, dim Supp(F X, ) <0, and there is a short

exact sequence
0—> F(—=D")— F - F R7, — 0.
Since C,(F (—D")=Cy(F") and Cy(# (—D")=Cy(5)+2C,(&F ). D',

0=XF Q@)
=X(F)—-XF (=D
=—Cy(&)-D’".

LEMMA 1.4. For a torsion free coherent sheaf & on X, let &V be
the double dual of & and Z be the cokernel of & =&V'. Then
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C1(gvv) = C1(g) ’
C2(gVV) - Cz(g) + C2(L§?_) ’
Cs(gvv) = Cs(g) =+ C1(g) * Cz(u?//?’) + C3(._7-) ’

and C(&ZVV):-D=C,(¥)-D, for any base point free divisor D on X.
Moreover if dim Supp & <0 then

02(gVV) = Cz(g) ’
C(&VV)=Cy(&) +2h°(F) .

ProoOF. Since dim Supp.# <1, it is clear by Lemma 1.3 and the
calculation of the Chern polynomial

C(&EVV) =1+ C (&)t +Cu(2)t+ Co()) (1 + Co(F) 8 + Co F)E)
=1+ C(&)t+(Ca&) +C(F N+ (Co(&) +C(&) - Co F) + C(F )T .

(1.5) ([H]) For a reflexive coherent sheaf & of rank 2 on X,

Ci(&)=C,(det &) , V=R (det &)™,
C&)=h(&Er (&, &)

If & has a section whose scheme Y of zeros has codimension =2,
then C,(&)=Y and there is an exact sequence

0 > Px > & » ZRdet £ —— 0 .

The normal bundle of an 7n-dimensional rational scroll. Let 7" be
a vector bundle of rank » on the projective line P'. If each component
of 7”7 has positive degree, the tautological line bundle #~;(1) of the pro-
jective bundle n: X=P(7") > P*' is very ample and ~;1)Qr*Zp(—1) is
generated by global sections. The complete linear system |~”;(1)| (resp.
|x(V)Q@7*Ppi(—1)|) defines an embedding X —P¥ (resp. a morphism
¢: X—P" ™), where N+1=h"(X, &x(1))=deg 7 +n. The pair (X, (1))
is called an m-dimensional rational scroll. The aim of the rest of this
section is to prove the following theorem.

THEOREM 1.6. Let _4" be the normal bundle of an n-dimensional
rational scroll (X, #x(1)) in P?Y. Then N =a* T pnQRp* T pr-n, where
Ty stands for the tangent bundle of Y. More precisely, the pull back
of the Euler sequence

0 —— Ppr—n—— Ppn-a(1)@W =7 5 Fon 50

by the morphism ¢: X— PY" 4s




304 TOSHIO HOSOH

0 — Py 2 P V)RT* P — 1)V s Rr* 2 — 0

PrROOF. Let . be the cokernel of the composite homomorphism
T 27 x> T pv@%. Then there is the following exact sequence

(1.6.1) 0O— n* I pp— F — 4 —0.

On the other hand, if & is the kernel of the surjective homomorphism
O o then 7 =(n*@V)@x(1). Since the homomorphism 273+ —
7" implies an isomorphism of global sections and H'(P', &p)=(0), we
have H(P!, «&)=H'P', «)=(0). Hence we have & =Zpm(—1)®"*"™,
Tensoring (1.6.1) with 7*2,, we get

0 —_— ﬂx _¢._) yx(1)®n*ﬁpl(_1)@(1\f+l—‘n) —_ ;/’/‘®7C*Qp1 N 0 .

We only have to show the homomorphism ¢’ is complete. If 7" =@ p(a,)
(a,>0), for homogeneous coordinates (x:y) of P*, let

N—tk—0-ZF_jap k—1+Eflap
.

— y (=1, m).

Then = (¥, * - -, 4r,) defines a surjective homomorphism 7~ — 7 (N) which
implies an isomorphism of global sections. The morphism + corresponds
to a section C of w and C is a rational normal curve of degree N in
P?., The normal bundle sequence of C=> X<=sP” is

0— Aox—— Aoy — N QT —0 .

The normal bundle of a rational normal curve is balanced ([K] (3.5)),
that is,

‘///Zv/pN Eﬂpl(N'F 2)$N—1 .

If the morphism ¢ were not complete, the normal bundle _s~ would
have ~2,1)Q7n*~»(1) as a direct summand and .7#;,v would have
O VDRr* (V)R =7»(N+1) as a quotient line bundle. This is a
contradiction.

COROLLARY 1.7. For n>1, the normal bundle of an n-dimensional
rational scroll s simple.

PrROOF. Put Z;(1)Qn*@rm(—1)=F, 4+ Qr*2p=% and N+1—n=t.
Taking the dual of the sequence

(1.7.1) 0Pt ™ e 0,
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we get

(1.7.2) 00—y s PV 0,

Since n>1, h'(X, &V)=0 (¢=0,1). Thus A'(X, £V)=1. Tensoring the
sequence (1.7.2) with <~ we get

00— &R 7% & > Z >0 .

By the completeness of the morphism ¢, h/(X, £V®.%)=0(1=0,1). Tensor
the sequence (1.7.1) with &V and take the long exact sequence of coho-
mology groups. Then
s HY(X, £VQ.)® — HY(X, Eour &)
— H'(X, V) — HY(X, £VQRF)® —s...

Thus A'(X, &.- ¥)=1.

§2. Hierarchy of stable sheaves.
The notation below will be fixed.

(2.1) NOTATION. For integers a, b such that a<5=<0,
7= ﬁpl(a)@ﬁpl(b)@ﬁm.
w: X=P(7)— P
D: a divisor on X such that z.~7,(D)= 7.

For a closed point z in P!,

F:= 77 (x).
For an integer g such that ¢=1—a,
H:= D+qF.

p:=(D-H»)=2q9+a-+0b.
F = C(—D+(p+1F).

The couple (X, H) is a 3-dimensional rational scroll. We will work
on X and consider H-stable sheaves of rank 2 on X. We will use the
words ”stable sheaf” instead of ”H-stable sheaf” on X. The following
theorem was settled for stable vector bundles of rank 2 ([HI] Theorem
1.5). The same proof is valid for stable reflexive sheaves of rank 2.

THEOREM 2.2. For integers a, x and y, let & be a stable reflexive
sheaf of ramk 2 with C(£)=—aD+(ap+1)F and C,¥)=xzD*+yD-F.
If a>0 and <0, then there are integers 1=0 and m such that
E(—ID—mF) has a section whose scheme Y of zeros has codimension
=2 and there is a short exact sequence
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0 > Px » E(—ID—mF) — F(—(a+2)) D+ (ap+1—2m)F) —0 .
And the following imequalities hold

l+a)+2=0,

y=llap+1)—(a+20)m —b{l(l +a) +x)}
lap+1)—(a+2l)m
2(l+a)p+l.

COROLLARY 2.83. Let & be as im Theorem 2.2. If the additional
assumption y=0 holds, then x=y=0 and there is a short exact sequence

00— Py — & —> Ox(—aD+(ap+1)F)— 0.
In particular & is locally free and Cy,(&)=0.

PrROOF. Let I, m and Y be as in Theorem 2.2. Then one sees that
r=y=l=m=0 and Y=0.

COROLLARY 2.4. For an integer x such that x<0, let & be a stable
reflexive sheaf of rank 2 with C(¥)=C/() and Cy(&)=xD*+D-F. Then
=0 and either

(1) there is an exact sequence

0 > Px »E(F)— F2F)— 0,

n particular & s locally free and Cy(&)=0, or
(2) there s an exact sequence

00— — ¥ — AR¥ —0,

where Y is a line wn a fibre of &, and Cy(&)=2, in particular & is not
locally free.

PrOOF. If I, m and Y are as in Theorem 2.2, then one sees that
x=1l=0 and m=—1 or 0. Now assume m=—1. Since C,(&(F))=0, one
obtains Y=@ and an exact sequence

0 > Px » E(F) — FL2F)— 0.

If m=0, then C,(¥)=D-F, and hence Y is a line in a fibre of #. Since
&t (A QL Ox) = Ee((F(—1), Ox) =det 457, Qr(1) = T%(2), taking
the dual of the short exact sequence

0—Or— & — £ —0,
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one obtains the following exact sequence

0 — Ty — Pp(2) — & (L, Ox) — 0,
and C,(&)=h(&E. (L, 7)) =2.

(2.5) For a stable sheaf & of rank 2 with C,(&)=C,(<?), C(£)=D-F
and C,(&)=0, denote the double dual of & by VvV and the cokernel of
the inclusion £ <=>¥¢vVY by &#. & falls into one of the three cases:

Case (I) & is locally free,

Case (II) & is not locally free but VvV is locally free,

Case (III) neither & nor £V is locally free.

We investigate each case separately and set up the hierarchy of such
stable sheaves.

LEMMA 2.6. Under the above situation,
Case (I): There is an exact sequence

00— y(—F)— & — F(F)—0.
Case (II): There is an exact sequence
0 > Ox > EVY » F >0 .

In this case, we see C,(ZVV)=Cy(&"vV)=0.
Case (III): There fis an exact sequence

0 > Ox »EVY — £ QRF — 0,

where Y is a line in a fibre of m. In this case, we see C,(&VV)=D-:F
and C,(&VV)=2.

ProOF. Let Cy(¥VV)=xD*+yD-F. Since both divisors F and D—aF
are base point free, by Lemma 1.4, one obtains the inequalities <0 and
brx+y=<1, and therefore y<1. If y=1, by Corollary 2.4, one gets Case
(I) or Case (III). If y=<O0, by Corollary 2.3, one gets Case (II).

LemMmA 2.7. If Case (II) occurs, then either F =7 or there is an
exact sequence

00— k(@) — & —> P (—1)— 0,
where Y is a line im a fibre of m and x is a closed point of X.

PRrROOF. Since C,(¥VV)=Cy(¥VvV)=0, one sees that C,(& )=—-D-F
and Cy(s )=—1 by Lemma 1.4. Since C,(& )= —D-F, the codimension
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2 part of Supp.# is a line in a fibre of #. Let Y be the codimension
2 component of (Supp & ).ea. Let # ' be the quotient of @7, modulo
the torsion part of # @y as y-modules, and let .25 be the kernel of
the surjective homomorphism &+ — #'. Since C,(& )= —D-F, the rank
of &' as ~y-modules is 1, and dim Supp %#°<0. Let & '=() and
(2 )=mn. Since Cy(Zy()=21—1 and Cy(.%)=2n, Cy(F)=2(1+n)—1.
Thus n+1=0. Since there is a surjective homomorphism &VV— & —
“y() and since VYR =P (—1), I=—1. If |=0 then F =7,.
If I=—1 then there is an exact sequence

00— k(x) — &+ »Py(—1)— 0.

PROPOSITION 2.8. If Case (II) occurs, then & is obtained by ome of
the following mon-trivial extensions

(2.8.1) 00— 4 > & » ¥ —0,
(2.8.2) 00—~ »& » A Q¥ — 0,
(2.8.3) 0 » Ox » & » A5 Q¥ — 0,

where Y is a line in a fibre of @, x 18 a closed point of X and where
“ 18 defined by the following exact sequence

00— 4 > »k(x) — 0 .

Moreover, all the above extensions are locally trivial at every closed point.

PROOF. We have to consider two possibilities of .&#. One is that
F =, where Y is a line in a fibre of n. The other is that & is
obtained by an exact sequence

00— k@) — & — 7(—1)—> 0,

where Y is a line in a fibre of # and x is a closed point of X. If
F =7, then there are following two exact sequences

0— Py —— &V —s 7 —0,
00— ¥ — VYV > Oy >0 .

Since there are no surjective homomorphisms from & to £, one gets
the extension (2.8.1). If the latter possibility happens, then there are
following three exact sequences

00—t o 0,
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0— & — &V

> F >0,
0 — k(z) — F —s (1) — 0 .

Since there are no non-zero homomorphisms from /7, to ~»(—1), the
composite homomorphism heogof is a zero homomorphism. If gof+0 one
gets the extension (2.8.2). If gof=0 one gets the extension (2.8.3).
The last assertion is clear, since the extension

00— Or— &V — F—0
is locally trivial.

PROPOSITION 2.9. If Case (III) occurs, them & 1s obtained by one of
the following extemsions

(2.9.1) 00— 7 » & » AQ¥ — 0,
(2.9.2) 00— Or— & — £ Q¥ —0,

where the motation is the same as im Proposition 2.8. Moreover, the
above extensions are mot locally trivial at a general closed point of Y.

PROOF. Since C,(¥VV)=C,(¥) and Cy(¥VV)=2, dim Supp.# <0 and
R (X, #)=1 by Lemma 1.4. Therefore, there exists a closed point x of
X such that & =k(x). There are following two exact sequences

0Py 2@e——0,

00— —oevV L k() — 0 .

If gof+#0 one gets the extension (2.9.1). If gof=0 one gets the ex-
tension (2.9.2). For the last assertion, since ¥ and &VV differ only at
one closed point, what we need to prove is the same assertion for the
extension

O— Oy —EVY — FZRF¥ —0.
It is clear because of reflexivity of £VV.

(2.10) By the proofs and the last assertions of propositions (2.8) and
(2.9), we can draw the following diagram

(2.8.2) «—(2.9.1)

l l

(2.8.3) —(2.9.2) ,
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where arrows indicate specializations. The vertical arrows are given by
the composite homomorphism gof being a zero homomorphism. The
horizontal arrows are given by the local triviality of the extensions. In
the next section, we prove that each stable sheaf of type (2.8.1) is a
limit of stable vector bundles. We also prove that a stable sheaf of
type (2.8.2) is a limit of stable sheaves of type (2.8.1) (Proposition 3.11).

§3. Limits of extensions.

In this section, we establish the remaining hierarchy of stable sheaves
in the last section and prove the main theorem. First we construct limits
of extensions in a general situation.

(8.1) Let X be a scheme over k¥ and &, &;, &, (1=1, 2) and 7
be coherent ~7;-modules which fit in the following exact commutative
diagram

0 0
0—mtoe, 2 7o
| i
0— F;— & — T, —— 0

h
g —,
0 0

The commutative diagram

Ext'( 7, ;) — Exti(=;, &,)

1 l

Ext(w, ;) — Ext(¥, ¥,
defines a homomorphism
¢ : Ext'(&, &7,)— Exti(¥, %, .

For elements ¢e¢ Ext'(s;, &,) and c(¢) e Ext(¥, &,), we consider the
corresponding extensions
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] k
E:O 5‘_7;3;%5 > F, >07

c@ : 0 > &, » E oy ——F, — 0.

(3.2) In the above situation, we can form a complex of coherent
sheaves, which is a so called monad ([BH]), over X x P' as follows

y-g
- /0
FRon LT (@ )R "3

T NHP(1),

where z, ¥y are homogeneous coordinates of P!. Let FE denote its co-
homology sheaf. FE is flat over P! since the cokernel of the first arrow
is the pull back of a coherent sheaf on X and the second arrow is
surjective. Let E, and E. be the restrictions of E to the fibres over
=0 and y=0, respectively. It is easy to see that E,= ¥, and E.= &,
by the construction. Denote the kernel of the composite homomorphism
EQp*@n(l) > E.— %, by E’, where p is the projection Xx P'— P'. By
the exact commutative diagram

0

I
<

I

00— F— EQRQp*Pmn(l)—> E,— 0

| | I

0— F — E — g, —0,
” T
0 0

FE is regained from E’. This process is a so called elementary trans-
formation ([M1]).

PROPOSITION 3.3. There is an exact sequence
0 — &, XPp(1) — B’ — FXPpm — 0
and E.=% on the fibre at y=0. v

PROOF. Let %, be the cokernel of the homomorphism (f, —j): &, —
Z,D&:,. Then one gets an exact sequence




312 TOSHIO HOSOH

0 > F, > &, » 7 DF—0.
Let L be the kernel of the homomorphism

(%-.11(:1) . (f@%)&&"ﬂ N f&ﬂpl(].) .

Then one gets the following exact commutative diagram

0 0

0— L — (I OFRTn— T KIn(1)—0

" H

00— E — &\ X7 — 7 Xm(l) —> 0

%&ﬁpl

and L.=.7 @z, on the fibre at y=0. Let L’ be the kernel of the
composite homomorphism LQp*?p(l) — L.—%,. Then one gets the fol-

lowing exact sequence

00— FX7p(1) > B’ » L' »0 .

Now consider the following exact commutative diagram

0 0 0
N " 4
%%
0— LRIp*@n(l) — (F DF)Km(l) — 7 KPpm(@2)—0
(id, -id) Y

(&)

00— r — 7 KOn()DF KO — 7 K1) — 0 .

0 0 0
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Since the bottom row splits, L'=.s#;Xl7,». The last assertion is ob-
tained by restricting the upper half of the following exact commutative

diagram
0 0 0

00— ﬁ;ﬂpl(l) —_— F— %ﬂ,ﬂ —0

00— FZXKPp1 — E —> L —0
7 N N

0 0 0
to the fibre at y=0.

(3.4) Let (X, H) be a non-singular polarized variety over k. For
torsion free coherent sheaves &, and &, of rank 1 with deg, &, >
deg, .&,, we consider a non-trivial extension

(3.4.1) 0 > Z, > & » T, >0 .

If & is unstable, then & has a unique rank 1 subsheaf ¥,, which we
call the destabilizing subsheaf, such that the quotient ¥,=%/%, is torsion
free and deg, ¥,>deg, ¥,. Then we get the following exact commu-
tative diagram

(8.4.2) 0 » F, > & > F, >0,
g, =,
0 0

where 9 = &/, =%,/ &, is a non-zero torsion sheaf. We call the
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above diagram the destabilizing diagram of the unstable extension (8.4.1).
Applying the functor Hom( , .&#;) to the sequence

0 » &, > F, > T -»0,
we have the long exact sequence

---— Hom(w,, &,) — Ext(.7, ;)
— Ext‘(ﬁ'{, -g;) — Eth(gu j;) —>ec .

For a non-trivial extension (8.4.1), &, lifts as a subsheaf of & if and only
if the image of the extension (3.4.1) in Ext(¥,, .&#,) is trivial. Since
deg, <, >deg, .#,, Hom(¥,, #;)=(0). Thus each non-trivial extension

0 - Z, » &, > T >0,

where &, has no torsion, corresponds to precisely a destabilizing diagram
(3.4.2). If we assume Hom( %, .#;)=(0), then for a non-trivial extension
(8.4.1), & is simple. The projective space M=P(Ext'(s;, &;)Y) param-
etrizes mutually distinet sheaves. If the unstable locus of M is a non-
empty proper closed subscheme A, to compactify the open set U=M\A
by attaching stable sheaves, you may replace each closed point x of A
by the projective space P(c(Ext'(¥, ¥&,))V) associated to the destabilizing
diagram of the unstable extension corresponding to 2. It may also
happen that P(c(Ext'(¥,, ¥,))V) has unstable points. In such cases, the
same steps should be proceeded.

Now we return to the situation in section 2. Let (X, H) be a 3-
dimensional rational scroll and F=2;(—D+(p+1)F) as in (2.1).

LEMMA 38.5. For an unstable extension
0— Ox(—F) — & — FA(F)—0,
the destabilizing diagram is as follows
0 0

00— 7x(—F) > »p(—1)— 0
3 lr

0— x(—F)— & » L(F) —0,
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where Y is a line in a fibre F of =.

PROOF. Let ¥, be the destabilizing subsheaf of . Since & is
locally free, ¥, is also locally free. Since deg, &,=1, one sees that
T\ =L ERF" has a section whose scheme Y of zeros has codimension
=2. Since C(¥Q.")=D-F, Y is a line in a fiore F of 7 and the
quotient &,=g/ = _z.

LEMMA 8.6. Let Y be a line in a fibre of m. For an wunstable
extension

00— s — &£ > &P >0,
the destabilizing diagram is as follows

0 0

T T

0— F— 7 —A(-1)—0

00— & — « N Ko —0,

LR A = FR A%
A Ar

0 0
where x i3 a closed point of Y.

PROOF. Let &, be the destabilizing subsheaf of <. Since deg, z,=1,
one sees that &, = <X _~, where Z is a closed subscheme X of codimension
=2 and the quotient ¥,=%/%, is the ideal sheaf of a closed subscheme
Z' of Y. The quotient o =_#,./ % is the ideal sheaf of Z’ in Y,
therefore _#,./ %=, (—length Z’), and this is also isomorphic to the
‘quotient /R _~#,. Thus one sees that Z=Y and length Z’'=1.

LEMMA 8.7. Let Y be a line in a fibre of &= and x be a closed point
of X. For an unstable extension

00— £ — ¥ — R 45 —0,

the destabilizing diagram is as follows
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0 0

A I'S
0 >._fz ﬁx — k(x) —0
0—m A g — XA —0,

where _%. 18 an ideal sheaf defined by an exact sequence

0 > Py > S — k(@®)—0 .

PrOOF. The proof is almost the same as the above and easy.

LEMMA 3.8. Let _%. be an ideal sheaf defined by am exact sequence

00— % > % > k(x) — 0,

where Y is a line in a fibre of © and x s a closed point of X. If a
coherent sheaf & is obtained by a mon-trivial extension

00— Py — & — FRQA%A —0,

then & 18 stable.

PrOOF. If ¢ were unstable, considering the destabilizing diagram,
the quotient ¥&,=%/%, would be an ideal sheaf which contains ~; as a
subsheaf. This contradicts to the non-triviality of the extension.

LEMMA 3.9. For the destabilizing diagram im Lemma 3.5, the homo-
morphism

¢ . Ext(2(F), ox(—F)) — Ext'(&, %)
18 surjective and

dim Ext'(&(F), &#x(—F))=N+1,
dim Ext'(&?, %)=N-3,

where N=3p—a—b+5.
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PROOF. Since <~(F) is locally free and T+ x(D) = Zp1(a)PTm(b) P
Cp, dim Ext' (A (F), &x(—F))=dim H'(X, & (—2F))=dim H\(P", 7,7}
(—2F))=—deg 7, (—2F)—8=8p—a—b-+6. The others are obtained
from the exact sequences

0— &L (-2F) — &£ (- F) — (1) — 0,
0— L (—F)— F'Q % — & 0.

LEMMA 8.10. For the destabilizing diagram in Lemma 3.6, the homo-
morphism

¢ : Ext(Z #) — Ext(FR. %,  7)
18 mot surjective. More precisely

dim Ext'(*Q. %, #)=N—1,
dim Im(¢c)=N—-5.

And Im(c) consists of extensions of type (2.8.2).

PROOF. By virtue of the spectral sequence of local and global Ext,
there is an exact sequence

8.10.1) 0— HYX, (PR 5, 7)) —s Ext( QR %, 4)
— (X, & (LR A, 7)) — HY(X, n( PR, 7)) .

Now apply the functor S£..(<®. %, ) to the sequence
00— = >y — k() — 0 .

Since z €Y, it is easy to see that Fen( PR Ay F)= P, Fon( PR _F,
k(x)=k(@)® and Zr (R %, k(x))=Fk(x). Thus there is an exact se-
quence

00— k(x)®:— &, (FR A, A)— Pp(2) — k(x) — 0 .

Therefore dim H( &£ (R 7, ) =4. Since H*( %) =0, dim Ext' (R
H, A)=dim H()+4=N—1. Since Ext(# oy (—1) = H(X, &#'®
Z¥(—1))=(0), the homomorphism Ext(<, %) —Ext'(% _#) is surjective.
Therefore the image of ¢ coincides with that of the homomorphism

(3.10.2) Ext'(¥ ~Z) — Ext( ¥R %, . 74) .
Applying the functor 2£..( , _~Z) to the sequence

0— R _#% > » Oy(—1)— 0,
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we see that £ (P (—1), Z)=k(x). Since Hom(¥Q %, £)=(0) and
Ext(Zy(—1), ~Z)= H(X, k(x))=Fk, the dimension of the image of the
homomorphism (8.10.2) is dim Ext'(<%, #)—1=N—b. Since all extensions
in the image of (8.10.2) are locally trivial, by the dimension estimate,
we can see the last assertion.

PROPOSITION 3.11. Let Y be a line in a fibre of @ and x be a closed
point of X.
(1) Every stable sheaf of type (2.8.1) is a limit of stable vector

bundles.
(2) If xeY every stable sheaf of type (2.8.2) 18 a limit of stable

sheaves of type (2.8.1).

ProOF. (1) Combining the sequences

0 — O(—F)— K — P(-1)—0,
0— F— LPF)— T(~-1)—0,

one gets a destabilizing diagram as in Lemma 3.5. The assertion follows
from Lemma 3.9.
(2) Use the sequences

0 > > F >»Py(—1)— 0,
0__.,52@._}7——)5(———»0}(—-1)——-—)0 ’

and Lemma 3.10.

LEMMA 3.12. Let Y be a line in a fibre of = and x be a closed point
of X, then

dim Ext'(¥® %, £)=N-—1.

PROOF. If zeY then it has been already shown in Lemma 3.10.
Now assume z¢ Y, then &/ (¥R %, Z)=T»2). By the sequence
(8.10.1), dim Ext'(¥*Q %, %) =dim H(X, & 7'Q.#,)+dim H(X, Oy(2)) =
N—4+8=N-1.

THEOREM 3.18. Let M be the moduli of stable sheaves of rank 2
with C,=C,(&), C,=D-F and C,=0. M has two irreducible components
M, and M,. The difference M,\ M, consists of all vector bundles and all
stable sheaves of type (2.8.1). The intersection M,N M, contains at least
all stable sheaves described im Proposition 8.11, (2). The dimension of
M, is N and that of M, is N+4.
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PrROOF. In ([HI] Theorem 8.19), we showed that the moduli of stable
vector bundles of rank 2 and the given Chern classes is an open sub-
scheme of the projective space P(Ext'(Z(F), @x(—F))V). Let M, be
its closure in M. The dimension of M, is N by Lemma 8.9. Since
dim Ext'(#£Q®. %, £)=N—1 for every line Y in a fibre of = and every
closed point # of X by Lemma 8.12, all the stable sheaves of type (2.9.1)
form an irreducible family of dimension (N—2)+8+8=N-+4. Let M,
be its closure in M. By the hierarchy of stable sheaves (2.10), M, consists
of all stable sheaves of types (2.9.1), (2.9.2), (2.8.2) and (2.8.3). The
statements for M,\ M, and M,N M, are easily shown by using Proposition
3.11. By Lemma 2.6 and propositions (2.8) and (2.9), we see that M=
M,UM,.

In the next section, we will construct a family of stable sheaves
for M,\ M, by the method (3.4). We don’t proceed the same step to
compactify the family. In section 5, we will construct a family of
stable sheaves for M,.

S4. Construction of a family for M,\ M.,.
In addition to the notation (2.1), we introduce the following notation.

(4.1) NOTATION.
77V : the dual of the vector bundle 7" =Ppi(a)P7p:(b)P 1.
#: X=PV)—P.
D:a divisor on X such that #,2:(D)=7V.
For a closed point z in P!,
F .= # ().
H:=D+@+1)F.
Y Xx X : the universal family of all lines in fibres of 7 defined in ([HI]
(3.4)).
% : the ideal sheaf of ¥ in Xx X.
g: XxX—X, §: Xx X— X : the projections.
P := PExt(Z(F), Px(—F))V).

(4.2) For the convenience of the reader, we summarize the results
in ([HI] §3).

On Px X, there is an exact sequence
(4.2.1) 0— PN (—F) — &p— X Z(F)—0 .

There 13 @ morphism
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r.X—P

defined by the complete linear system |H|. Let ; be the pull back of
“p by the morphism ¥ xid: XX X—PxX. Then we have an exact se-
quence

4.2.2) 00— Oy—FX¥ — € — AZRQ*C:(H+F)— 0.

Put P\U(X)=U. Let £y, be the restriction of &p to UxX. (U, &) 18

a universal family of stable vector bundles of rank 2 with C,=C/(<¥),
C,=D-F and C,=0.

(4.8) Let P— P be the blow up of P along ¥(X) and X be the ex-
c_eptional divisor. Now pull back the sequences (4.2.1) and (4.2.2) to
Px X and Xx X, respectively, to obtain

(4.3.1) 00— (VD)X (— F) > &r >» O F(F) — 0,

(4.8.2) 0—> ox(— XY — £r— FHRQ*O(H+F)—-0,

where §: Xx X— X is the projection. Let & be the kernel of the
surjective homomorphism

&r— Lz — SHQ*Ox(H+F) .

We are interested in what happened on Xx X. Let’s consider the follow-
ing exact commutative diagrams

0 0
P

0 — FH—XXX)— &7 — %Ly —0

0—»%(—L‘?><X) > =z9’,x(—-%).£”———>0

0 0

and
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0 0
(- FXF — ox(-FX¥
0— F(—XxX)— F — Fr —0

0— F(—XxX)— LA(—XXX) — _FQRr.x(—XxX)—0,
0 0
where &% is the restriction of & to Xx X and # = _#Q¢*Z(Hx F).
Let <7(1) be the tautological line bundle of X=P(_s), where _s  is
the normal bundle of ¥(X) in P. Since Pr.(—XxX)=g*~%(1), the
right column of the above diagram
(4.3.8) 00— _FRCOrxx(—XXX)— g7 — O(—F)X.&¥ — 0
defines an element of
Ext(Zx— X%, A#Qi*Cs(H+ F)Qg*7x(1))
=H(Xx X, AQUex(H+2F)Qcx1)X.™)
= H(X, Z'9.(ARQiRNL QR H+2F)Rx(1)) .

The last isomorphism follows from the vanishing of 7.( Z®(@(X.F™).
By the commutative diagram

X1, XxXx
fl lg |
X T Xx X,
P (FFRQ(OK L ™)) = f* 2 7. (AR(g* <#71)) since f is flat. Therefore
H'(X, 2'§.(AR(:XF Q@ (H+2F)Qx(1))
=H(X, Z'7.(ARQq* F VR :(H+2F)Q._+) .
LEMMA 4.4,
R0 (FAR* QO H+2F)=_y~  and
Ext'(Z(— )X, ##Q*Cx(H+ F)Q7*7:(1)=End(s) =k .
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PrROOF. Tensoring the sequence

0 — PH(— RO~ F) —> F — Oy px(— ¥)— 0
with 2:(H+2F)X7, we get

0 — Z(H+ )R (—F) — AQ(@:(H+2F)RK .
— N*ﬂ’i(ZF')®ﬁixmx —_0.

Taking the direct images of the above sequence, we get
0 — 232F) s oy B+ FYQH (7 (— F))
— B'F(FHR* L )R (H+2F) — 0 .

By Theorem 1.6, to prove the first assertion, it suffices to show that
the homomorphism

Qo H(—2F) : #y — O:(H— FYQH (& (—F))

is complete. If it were not, then there would be a surjective homomor-
phism

R (AHR* ™)) — P(—F) .

Tensoring the sequence

0 > > % xX > Oy >0
with ¢* <~ and taking the direct images, we get

0 — §*(@¥Q(q* L) — F'T(HR@* &™)
— Z7:QHY(X, &) —0.

Since 7,(7Q(@* N =T 7/mQ@P:(— D—(p+1)F), there are no non-zero
homomorphisms from 2'4,(%R@*¥ ™)) to Zi(—F). Therefore the
homomorphism ¢®0’X~(——217') is complete. The second assertion follows
from Corollary 1.7.

LEMMA 4.5. The extension (4.83.3) s mon-trivial and induces an
180morphism
PG FAH* LR H+2F) =y .

PrROOF. Let Y be a line in a fibre of # and 7 be a non-zero ele-
ment of Ext'(<% _#%). By Lemma 8.9, there exists an element &, in
Ext(Z(F), &x(—F)) such that c(g)=7n. Let ¢. be an element of
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Ext'(Z(F), &#x(—F)) corresponding to a destabilizing diagram
0 0

A

0 — (—F)—> A — O(—1)—>0

0— Pe(—F) —> &, — LP(F) —0.

&~ is unique up to the multiplication by a non-zero constant. Let [ be
the line joining [&] and [£.] in P. For general &, ! intersects #(X) at
[£..] transversely. By Proposition 8.3, there is a rational map ¢: P'— P
such that ¢(0)=[g,] and ¢(~)=[t.]. Since ¢ is not constant and defined
by a homomorphism Ext'(Z(F"), Zx(—F)"Qn— Tn(l), ¢ is an iso-
morphism onto its image and ¢(P')=I. The sequence given by Proposition
3.8 is the pull back of the sequence (4.2.1) by ¢Xid: P!XX—-PXxX. Let
1 be the strict transform of I by the blow up P—P. Let = be the
closed point of 7 lying over [¢.]. By the construction, the restriction
of the extension (4.8.83) to s x X is » up to constant. Therefore the
extension (4.3.3) is non-trivial and induces an isomorphism

BT (FHRQA* L )R H+2F) =y~
by Lemma 4.4. |

P_lchPOSITION 4.6. There is a closed subscheme A of P such that for
V=P\ A, (V, &) is a family for M,\ M,

PrOOF. Let Y be a line in a fibre of # and y be the closed point of
X corresponding to Y. Since 27, (_%R(¢* L V))RQky)=H (X, L 'R %),
X =P(_4V) parametrizes all coherent sheaves of type (2.8.1), which
contains also unstable sheaves. Since the extension (4.8.3) induces an

isomorphism
F0( AERQ* F NQRQH(H+2F) =y,

the extension (4.3.3) is a universal family of all extensions of type (2.8.1)
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up to constant. Let A be the unstable locus of X. Since (P\ X, &53z)=
(U, #£y) is a universal family of stable vector bundles, for V=P\ A,

(V, &) is a required family.
§5. Construction of a family for M,.

In this section, we will sketch the construction of a family for M,.
All proofs are omitted because they are tedious but easy.

LEMMA 5.1. Let & be a torsion free coheremt sheaf of ramnk 2 on X
with C(&)=C(¥), C(&)=D-F and C(£)=2. & 1is stable if and only
if & is a non-trivial extension of LR % by Ox;

0 > Oy > & >g®%—>0,

where Y is a line in a fibre of =.

(56.2) For a line Y in a fibre of =, there is a unique unstable vector
bundle &, which is a non-trivial extension of _% by & ([HI] (8.3));

00— Fx— & » A —0.
The family (X, &%) is a universal family of &,’s ([HI] (8.6)).
LEMMA 5.3. There 18 an exact sequence
0 — Ext( ¥R %, &) — H(X, &'Q¥ ™) — HY(X, &™) —0.
(5.4) Taking dual of the second arrow of the exact sequence (4.2.2)
0— O(— FRF — i — HZQU*CH+F)— 0

and applying the functor 2'G,( ®¢*<'), by Lemma 5.3, we get an
exact sequence of vector bundles on X

(5.4.1) 0— P —— PG, (LLR* &) — PG, (Pr(F)Rq* 2 — 0

such that for a line Y in a fibre of 7, Z2Rk(y)=Ext'(FQR._%, %)
where y is the closed point of X corresponding to Y. The rank of &
is dim Ext(&Q %, #x)=N—2. Put P(AG(£iQ¢* < ))=W and
P(#)Y=Z. Let g:W—X and f:Z—X be projections, and h=
gxid:Wx X—XxX. There is a family of extensions on Wx X

00— W)W ' — F —h*&r—0.

Let & be the kernel of the composite homomorphism
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F—— W E—— BN ARQT O H+ F)) .
Put h*(_%QR7*P:(H+ F))=_#. There is an exact commutative diagram

0 0
— A
00— ,QXF F > h*&; —0
00— ,1H)X.F™ > & » V¥ (i~ FYX¥) —0.
1\ A
0 0

By the exact sequence (5.4.1), the restriction of the bottom row of the
above diagram to Zx X splits. Now consider the restriction of the middle
column of the above diagram to Zx X. Define a coherent sheaf 5# on
ZxX X by the following exact commutative diagram

0 0
0—b ﬁz(ljx}.gﬂ“l — H — _5&Z—0
- } B S A

W (2 iH(— FYX L), == h*(@:(— F)X L),

I T

0 0

PROPOSITION 5.5. The family (Z, 5#7Qp*¥) is a family of all the
stable sheaves of rank 2 with C,=C(%), C,=D:F and C,=2 where
p:ZxX—X 1s the projection.

(5.6) Put P(oFRp*)=Z. Let .22 be the pull back of SFQRXp* <~
to Z. Let i:Z=2ZxX<>ZXxX be the closed immersion. Let _# be the
kernel of the composite homomorphism
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FZ KOy — LNy — M Zz(VH)X 7)) =5Q1) .
PROPOSITION 5.7. (Z, _#) 8 a family for M,.
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