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§0. Introduction.

Let G, be the general linear group GL,.(F,), that is, the group of
nonsingular matrices of degree » with coefficients in the finite field F,
and P, be the maximal parabolic subgroup of G, consisting of matrices
(gij) € G, such that 9u=gu="+"*=0¢,=0.

In this paper we show an inductive method to calculate the irreducible
characters of P, and also determine the branching rules of irreducible
characters for G,— P, and P,—L,, where L, is a Levi subgroup of P,
and hence L, is isomorphic to G,xG,_,. J.A. Green [2] showed how to
calculate the irreducible characters of G, and A.V. Zelevinsky [5] de-
termined the branching rules for G,—H, and H,—G,_,, where H,=
{(9.;) € P, | g,=1} is the group of affine transformations. Thus this paper
can be viewed as an application of these two papers.

We use the following notation. We deal here only with complex
characters and so for a finite group G, Irr G stands for the set of all
irreducible complex characters of G and chG is the ring of virtual
complex characters of G. For a subgroup H of G and @ech H, Ind§ ¢
is the induced character of @ from H to G and for Xech G, Res{ X is
the restriction of X to H. For X, X,€chG,

Oy 1)o=IG1" 5, 1@ -

For ge G, Z4(g) is the centralizer of g in G and for a fiinite set X, |X|
denotes its cardinality. Moreover we denote by N the set of natural
numbers, so that N={0, 1, 2,---}. Now let V,=F," be the n-dimensional
vector space of column n-vectors with coefficients in F, and (e, e,,** -, ¢,)
be the canonical basis of V,. Then V, is naturally a left G,-module.
For f€eEndV,, Im f is the image of f and Ker f is the kernel of f. We
also regard F, to be the subset of EndV, identifying a € F, with a-1, .
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This paper is organized as follows. In §1 we give a parametrization
for the conjugacy classes of P, and H,, and in §2 after giving a para-
metrization of Irr P,, we show an inductive formula for the value of
irreducible characters of P, and H,. Finally in §3, applying a theorem
in [5], we give branching rules for G,— P, and P,— L,.

The second named author would like to express his gratitude to
Arunas Rudvalis for showing him the character table of P, over F, and
sharing with him some interesting observations.

§1. Conjugacy classes.

For m € N, a partition » of m is a finite sequence of integers \=
dy, L, -+, 1) such that {,=l,=---=1,=0 and m=l,+1l,+ -+ +1,.. We
identify {, 1, ---, 1,) with (¢, +-+, {,, 0, -+, 0). The integers I, are called
the parts of A and 7;(\) is the number of parts of A which are equal to
j. If 1,>0 and [,,,=0 then 7 is called the rank of A\ denoted by r=r(\).
Also m is the degree of A denoted by m=|\|. Let P, be the set of all
partitions of degree m and put P= U,y P,.

Let .# be the set of all irreducible monic polynomials over F, with
nonzero constant term in the indeterminant t. For me N, S,(<; P) de-
notes the set of mappings » from & to P such that

5 ()] deg f=m .

We write supp(v)={f €. | [v(f)|>0}.

It is well known that the conjugacy classes of G, are parametrized
by S.(<, P). In fact, a representative ¢, of the conjugacy class corre-
sponding to v € S,(, P) is given as follows. For f(t)=t*+a,_ t* " +---+
a,t+a,€ &, put

1

. . 1

J(f) == Jl(f) =]  eescer s et s csss 0000
. . . . . 1
_— a() —_ a’l . . . —_— a’d—l

And for a positive integer m, put
J(Of) 1,
Julf)= JU) L €Gs
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and moreover for x=(,, I, ---, l,) € P with r=r(\), put

Ji(f) =diag(Jy,(f), « -+, J,,(f) .

Then, if supp(v)={f, «-+, fv}, a representative ¢, of conjugacy class cor-
responding to v is given by

c,=diag(J, ) (f)s * 5 Lo (fw)

If ft)=t—a for acF,*=F\{0}, we write J,(a), J)(a) instead of
Ja(t—a), Ji(t—a). Now for a positive integer k, 0<k=n, acF,* and
reS, (=, P), we define an element c,(a'®, t) of P, by

c.(a®, p)y=diag(J(a), c,) .

PROPOSITION 1.1. (i) The set f{c,@™, pf) | 0<k=<mn, acF,, pe
S,._i.(F, P)} is a complete system of representatives of conjugacy classes

wn P,. In particular the conjugacy classes in P, are parametrized by
the set

U (S5 PYXS(57 P)) .

(ii) For peS, (=, P), put r,=r,(t({t—a))=the number of parts of
n(t—a) e P which are equal to i, and put

e=e(c,(a®, y)):k—1+2fz_‘ ir,.+(2k—1)"z_:n .
=1 i=
Then we hvae

|Zs, (cal@®, 1)) =|Zs,_(c)a—1)g" .

Proor. Let p be an element of P, so that pe,=ae, for some
acF,*. Let k be the positive integer determined by e, ¢ Im(p—a)* and
e, € Im(p—a)** and choose v, €V, (4=1, .-, k) such that v,=e,, (p—a)v,=
vy, vy, (@—a)v,=v,_,. Then if V' is the subspace spanned by {v, ---, v,},
then pV’'=V"’ and so p induces an element 7 € GL(V,/V"), which determines
peS, (&, P) such that 7 is conjugate to ¢, in GL(V,/V’). Then it is
easy to see that p is conjugate to c.(a”, ) in P,. The other assertion
can be proved easily and so we omit the proof.

Next we consider the conjugacy classes of H,. We start with the
following lemma.

LEMMA 1.2. Let h, and h, be elements of H,, which are conjugate
wn P,. Then they are also conjugate in H,.
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PROOF. Let h, = ((1) g) €H, x€G,_, beF,™), and h,=ph,p™ for

p€ P,. Since P, is a semidirect product of the normal subgroup H, and
M={(9:;)e P, | 9.,=1 for 2=¢=<m and ¢,;,=0 if i+#j}~F*, P,=MxH,, it

is sufficient to show that for p=(a' 1 ) with a € F,*, we can find he H,

such that php~'=hhh~', which is satisfied by h=((1) af’lx).

Combining (1.1) and (1.2), we have

PROPOSITION 1.3. (i) The set {c,A"™, ) | 0<k=n, acF>, pe
S._.( &, P)} 18 a complete system of representatives of comjugacy classes
in H,. In particular, the conjugacy classes in H, are parametrized by
the set Ui S|(=, P).

(@) 1Zu,(ca1®, ()| =(@—1)Zp,(ca1, ).

§2. Characters of P,.

Firstly we recall the definition of generalized inductions and re-
strictions (cf. [5]). Let G be a finite group and A, S be subgroups of
G such that A is normalized by S and ANS={1}. Therefore S is a
subgroup of N=NyA)=the normalizer of A in G and in general N acts
on Irr A by "X(a)=X(n"'an) for Xelrr A, ac A and ne€ N. Now let
be a linear character of A such that ScStaby(y)={ne N|"p=q}. Let
(0, E) be a representation of S so that E is a finite dimensional vector
space over C and o is a homomorphism from S to GL(FE). Then o can
be extended to a representation o’ of AS by p’(as)=+(a)o(s) for ac A
and s€S. Then the generalized induction of (o, F) to G is defined by
Ind%s0’ which will be denoted by (i,4)%(0). Now let (9, E) be a repre-
sentation of G. Then E,={ve FE|pa)v=v(a)v for all ac A} is an S-
stable subspace of E and the representation (Res$p, Ey,) of S is called
the generalized restriction of (g, ) to S and is denoted by (r,,)%(9).
We also regard (i, )% (resp. (r,y)%) to be an additive homomorphism
from ch S (resp. chG) to ch G (resp. ch S). In particular, if A is trivial
then (7,,)$=Ind¢ and (r,,)¢=Resi. Moreover we can prove the following
property of the generalized inductions and restrictions without difficulty
(cf. [5], 8.1 and 8.2).

PROPOSITION 2.1. Let G, A, S, ¥ be as above.
(i) For XechS and pechG, we have

(L4, 90, Pla=Q, (ra9)5(P))s
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(ii) Assume moreover that A is a mnormal subgroup of G and
Stabg(y) =AS. Then (r,y)§o(14,4)s=idens.

(iii) Let G, be a subgroup of G which contains A, S as its sub-
groups and S,CS. Then (r,y)i°Resi =Res§ o(r, 4)$.

Furthermore, if G=Ax B is a semidirect product of an abelian
normal subgroup A and a subgroup B, then we can apply the method
of little groups to determine Irr G as follows.

THEOREM 2.2. Let G=AXxB with A abelian.

(i) Let e€lrr A and By = Stabg. Then
(14,9)3,(0) €Irr G.

(ii) For every @clrr G, there exist r€lrr A and o €lrr By such
that o= (i, ¥)3,(0).

(iii) For cp,-=(i4,¢,.)g,h(a,-) elrr G where J;€lrr A and o;€lrr By,
(G=1, 2), ¢,=p, if and only if +,=%, and o,=°0, for some g€ QG.

for all o e€lrr By,

For a proof we refer the reader to [1, §11B].

Now we return to our original situation.
be the subgroups of P, defined by

Let n=2 and L, and U,

an{(gij)ePn { gl2=g13=..'=g1ﬂ=0} ’
U,={(9.)eP, | g.=1 for 1=<1=<n and g,;=0 if 11 and i+7}.

Then L,=G,xG,_, U,~F,”* and P,=L,x U,.
(2.2) to determine Irr P,.

Let v be a nontrivial character of the additive group F,, and define
Y. €IrrU, by +r.((u;;))=+(u,,) for (u,;) € U,. Then it is easy to see that
IrrU,={1} U {*+, | p€ P,}, where 1 is the trivial character of U,. Put
S,=Stab, y,. Then

Therefore we can apply

@, 0 0 «+: 0
0 Aoy oz *** Ay

S.=310 0 ay---a,|SLls | Ou=0Cur=P.,.
0 0 ay-ra,,

Hereafter we identify P, , with S, and we consider that P,_, is a sub-
group of P, with this identification and so are P,, H, and G, 1=k=n).
By (2.2) there is a bijection from Irr L,UIrr P,_, to Irr P, and so by
iteration from U, Irr L, to Irr P,. This bijection is described as follows.
Firstly since L,~P,/U, we can regard Irr L, as a subset of Irr P, and
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this inclusion is obtained by virtue of (iy ,)J». Next if {elrr P,_, then
(ty,v,)p2_ () €lrr P,. Similar statement also holds for H, and so we
have the following theorem (cf. [5, 13.2)).

THEOREM 2.8. (i) For 1<k=<mn, let
Itp=C(ig, v,)6n_0" * o (luy, wyy ) PEH 0 (By, )TE
Then the mapping I*: Up_,Irr L, —Irr P, defined by
I'Q=I;»&), for {elrrL,,
18 a bijection.
(i) For 1k<mn, let
Igr =@, v 02_00 2 o(By, ey B 0 (g, DEE_ ©
Then the mapping I'™: Ui_,Irr G,_,— Irr H, defined by
I'W=I», X, for XelrrG,_,,
18 a bijection.

For brevity, we will also write I}({)=1I1/»() if {elrrL,. The
character values of I({) on P, can be derived from the results of [2],
while for the values of I?({) 1=k<n), we have the following inductive
formula.

THEOREM 2.4. Let 1=k,l<n, {e€lrr L, and ve€S,_ (<, P). Put
ri=r{t—a)) for 1=1,2,---, n—1l. Also for i=1,---, n—1 define y, €
S._1_«{(F, P) as follows: firstly v,_,=v, and if i+#l—1, then for fe =,
f#t—a, v(f)=v(f) and

r;, of J#4,1—1,
”'j(”t(t“‘a))= ”'j—‘l ’ if J=1,
Then we have

I;©)(c.(a?, v))
=g (@ —1)gre+vtrr 7Y (L) (e, (@, v,))
'_qrﬁ".+r"—lIl?—l(C)(cn—1(a'(l—l)’ l))) ’

where if l=1, we regard the last term on the right hand side to be
equal to zero.
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PROOF. Let z=¢,(a¢"”, v) and X=1I7"'(). Then by the definition of
It, we have

Q) (x)=| UnS,.i"lyg (y-X)(g7'2g) ,

where, as usual, ¢-X € Irr(U,LS,) is extended to a complex valued function
on P, by (v-X)(y)=0 for yec P,\U.,S,.

Since we have (97'zg)e,=ae, for geP,, g~'zgec U,S, if and only if
(x—a)ge,=be, for some be F,. Let v,=e, v, -, v, be a basis of Ker(zx—a),
and put /,=! and y(t—a)=(, -, l)=((n—0)"1---,17), Then we may
assume that v, e Im(x—a)"™* and v, ¢ Im(x—a)* for 4=0,1,.--, s.

Case 1. (x—a)ge,=0. Then ge,c Ker(x—a) and so ge,=3_,a,v, for
some a,€F,(1=0,1, ---,8), which implies g 'zge,=ae, or equivalently
xge,=age,. Let p, be the natural homomorphism of vector spaces,
0.:V,—V,/Fe,~=V, 6 and w, be the canonical homomorphism of groups,
7. U.S,—U,S,/U,=S,=P,_,. Then it can be shown without difficulty that
the number of elements g € P, such that p,(ge,) € Im(x,(x) —a) \Im(x,(x) — a)*
is given by (¢"*—1)qm+t*tra—|S, U,|, for i=1,2,..., n—1l. Moreover in
this case m.(97'xzg) is conjugate to c,_,(a", v, in P,_, and (v-X)(g~'xg)=
X(m (97'29)) =X(c._(a'?, v,)). Therefore we have

1S, ULIT 30 (- X)(g7'g) = (g7 — 1)g i1t tra-1d(e,_ (@, v,)) ,

for ¢=1,2,--:, n—1, where the summation is all over g€ P, such that
g 'xzg € S,U, and that =,(¢g7'xg) is conjugate to c¢,_,(a'?, v,).

Case 2. (x—a)ge,=be, for some be F,*. Thus we have ¢, ¢ Im(x—a)
and hence [>1. Therefore (x—a)e,=e, and so ge,—be, € Ker(x—a), which
implies that ge,—be,=>:_,a,v, for some a,€F, i=0,1,..., 8. Putting
g 'e,=ce, for ce F,*, we have

(97'xg)e,=bce, + ae,

and 8o (y-X)(97'xg) =(be)X(w,. (97 xg)), where 7,.(¢g '2g) is conjugate to some

Cnyi(@®, v,) for some 7=1,.--,l—1. Therefore we have
1S, U™ 25 (3= X)(97"g)
— _(qri_l)qr¢+1+-'-+r,,_;x(cn_1(a(i), ui) ’ for 7':1: M -2,
= _qu_1+rl+...+r”_;x(c“~1(a’(z-—1)’ V), for i=1—1,

where the summation is all over g€ P, such that g 'zg € S,U, and that
w.(97'xg) is conjugate to ¢, ,(a'?, v,). Thus adding these values in cases
1 and 2, we obtain the required results.
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Let m be the multiplicity of the eigenvalue a of x=c¢,(a'’, v). Using
the same notation as in the proof of (2.4), we have

n—1 ]
m=>,wr;+1=>1,.
=1 1=0
The following corollaries are easy consequences of (2.4).

COROLLARY 2.5. If I;(X)(c.(a'”, v))#0, then m>n—k.

COROLLARY 2.6. Assume that m=>_,l,.>n—k.

(i) If l,=l,=---=l,=1 and so m=s+1 and v(t—a)=(1*), then
(2.6.1) ;) (c.(@a®, v))=(g*—1)- - - (¢ "** " =1 X)) (c.(a®™, ) ,
where

l)(.f) ’ if f-_;ét—a/ ’

yk(f)z (1.—n+k) , if f=t——a .

In particular, we have

(2.6.2) deg I;(X)=(¢g*"*—1)--+(¢*—1)deg X .
(ii) If s=0 and hence m=Il>n—k, then
(2.6.3) LX) (ea(@®, v)=(—1)"* i) (e (@, v)) .
In particular if X=X, XX,_,€Irr G, xIrr G,_, and l—n+k=1, then
(2.6.4) FX)(ea@?, v))=(—=D"* X (@)Xs_1(Crr () -

REMARK 2.7. The formula (2.6.4) means that certain part of the
character table of G, multiplied by (¢—1)th roots of unity appears as a
part of the character table of P,. In particular if ¢=2, then the matrix
Ki—i(cr_,(»))), where X,_,€IrrG,_, and ve S,_(&, P) and v(t—1)=(0), ap-
pears as a submatrix of the character table of P,.

Now we consider a relation between Irr P, and Irr H,. By (2.3),
every irreducible character of P, (resp. H,) can be expressed as I. 2 ({)

(resp. I»(X)) for some (e€lrrL,, (resp. XelrrG,), 0=k<mn. Since
L,.,=~G,xG,, we have {=a-X for some a€lrr G, and X elrrG,.

PROPOSITION 2.8. With the motation as above, we have the following
branching rule for P,— H,.

(i) ResfmolIl» (a-X)=IZ»X).

(i) IndfneIZr00) = Saerrea, I8, (- X).



CHARACTERS 297

ProoF. (i) Let @elrr H, be a component of ResfinoIT» (a+X).
Then by a theorem of Clifford (ef. [1; 11.1]) and by (1.2), we have
Reszy, oIfp, (a-X)=ap, for some positive integer a. On the other hand,
we have

(ResgnoIfn (a-X), IE2(X)x,
=(ResgyeIiy (a-X), (i, v, 0 _ o LE2—1(0))x,
=((ry,v,)ir_oResfnoIfs (a-X), I&»—(X))u,_,
=(Resga-to(ry, »,)br_ o Ifp, (- X), IEr—(X)x,_,
=(Res§::i°If,;‘_;11(a'X), é‘;"“l(X))H,,_l
= (ResgiitoIzEr (e X), I&F+1(X))ny,,
=(Resittio [Tk (a - X), (Tuyy )6k ) my,
=((Ty,,, )8 o ResfEtio [TE (- X), X)g,
= (Resgttio(ry, ., )ittto(ty, ., Dittia X), Xa,

= (Resét(a-X), No,=, g,=1 .

Thus a=1 and also the assertion follows.
(ii) Since P,/H,~G,, the second assertion follows from (i) and the
Frobenius reciprocity.

§3. Branching rules.

In this section we consider the decomposition of Res$»({) for every
Celrr G, and Resi»(X) for every X €Irr P,. By the Frobenius reciprocity,
this is equivalent to consider the decomposition of Ind%»(X) for every
X €Irr P, and the decomposition of Ind;»(0) for every p€lrrL,. For this
purpose, we firstly recall a parametrization of Irr G, due to J. A. Green
[2]. Let F, be an algebraic closure of F, and o be the automorphism of
F, defined by c(a)=a’ for all ac F,. Let % be the set of orbits of F,
under ¢ and so .2  naturally corresponds with & bijectively. Then
Irr G, can be parametrized by S,(97; P)={\: % =P | Jpex INMO)| |0|=n}.
For the details we refer the reader to [2]. For example, )\ € S,( 57, P)
corresponds to a cuspidal representation of G, if and onmly if A(0)=(1)
for an orbit Oe .2 such that |O|=n and AO)=(0) for O'-=0. We
denote the irreducible character corresponding to A by [A] and fix an
injective homomorphism ¢ F,*—C*, keeping it fixed throughout this
paper. For Oe 2 and )€ 8S,(%; P), let k(O) and e(\) be integers de-
termined by
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e( I;[oa) =exp(2ny —1k(0)/(g—1)), and
6(7\')’—‘0;7 INO)|-k(O) .

Notice that the integers k(O) and e(\) are determined only by mod g—1.
Then [\] takes the following value on the central element .1, of G,,
where ¢(§) =e=exp(2rV —1/(¢—1)):

3.1) [AIE-1,)=¢? deg[A] .

Next we recall a result of A.V. Zelevinsky [5], which plays a crucial
role.

DEFINITION 8.2. (i) For an=(,l, <-+,1l,)eP with r=7r(Q), A\ is
the partition ((,—1, [,—1, ---, [,—1).

(ii) For a=(, ++*), p=(m, +-:)e P, pC if and only if m,<l!; for
all ©=1,2,3, ---.

(iii) For A\, peS(%#; P)= U.enS.(2%, P), the relation g#—) holds if
and only if AM(O)~cCp(0O)cA\(O) for every Oe€ o7

THEOREM 3.3 [5; 18.5]. (i) Let n€S,(%; P). Then
Resfaln =3, 3% I5n((e]) ,

where ¢ runs over all S,( ¢, P) such that te—i\.
Gi) If pe S, (% P), 0<k<n, then
Resfz Liplul=3 M ,

where N\ runs over all S,( 27, P) such that p—\.
In particular, the restriction of any trreducible characters of G,
(resp. H,) to H, (resp. G,._,) 18 multiplicity free.

Using (8.3) we can prove the following theorem.

THEOREM 3.4. (i) Let An€ S, (%%, P). Then

Resfzln =3 3% Iz, (6]-[)) |

where the summation 18 over all 6 € S,(o7; P) and pe S, (5%, P), 0sk<mn,
such that p—x and e(\)=e(8)+e(y) (mod g—1).
(i) Let 6€8S,(27;, P) and pe S, (27, P), 0sk<n. Then
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Resi» Itz ([6]-[¢]) = ”Z‘; [71-[e],

where the summation i3 over all neS(>; P) and peS,_ (57 P) such
that p—po and e(0) +e()=e(m) +e(p) (mod g—1).

PrOOF. (i) Let e S,(2; P) and L€ S,(2%, P) for certain k such
that 0<k<n. Then we have

(ResZs[n], ml.g,r . o201 (D)5,

=(Resfz[\], Indf»1d[ 1)), (by (2.8.ii))
=(Resg2[\], I&r[])s, (by Frobenius reciprocity)
1, if pe—n,

- by (3.3.i
0, otherwise . (by (3.8.1))

Therefore if g\, then there exists one and only one ¢ € S,(_97; P) such
that

(8.8.1) (ResZa[\], IZz ([6]-[£D)s, =1 .
Now by (8.1), we have
Resz» Resgs[n]=Res{r[n]=deg[\] -« , |
where a € Irr Z, is defined by a(é-1,)=¢"?, Similarly by (2.6.1), we have
ResZz Iz, ([6]-[1]) = deg(I£z, (161 [4])- 8, |

where gelIrr Z, is defined by B(E-1,)=¢®+ Thus the condition of @
for (3.3.1) to hold is given by

e(\)=e(9) +e() (mod ¢—1) .

Hence we have proved (i).
The assertion (ii) can be proved similarly using (2.8.i) and

Inday lol= 5, [nl-le],
for pe S,_,(27; P). We omit the details.
Combining (3.8.i) and (8.3.ii), we have
COROLLARY 3.5. Let An€8S,(%; P). Then

Resfn[r] =2 f(n o)7]-[e]
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where 7 (resp. p) runs over all S,(22; P) (resp. S._.(5%, P)) such that
e(\)=e()+e(@) (mod ¢—1) and f(n, p) is the number of reS.(oz, P),
0<k<m, such that p—x and p-p.

REMARK 3.6. The result (3.5) in different form was obtained by
S. Nozawa [3], using fully the result of [2]. But one notices that by
virtue of a result of E. Thoma [4], one can prove directly (8.5) by an
argument used in the proof of (3.4) without going back to [2].
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