On the Galois Group of $x^p + ax + a = 0$

Kenzo KOMATSU

Keio University

§1. Introduction.

Let p(p>3) be a prime number, and let a be a rational integer with (p, a)=1 such that

$$f(x) = x^p + ax + a$$

is irreducible over the rational number field Q. In the present paper we discuss the following problem: Is the Galois group of f(x)=0 over Q the symmetric group S_p ? Our results will be stated in Theorem 1 and Theorem 2.

We require the following lemma of van der Waerden:

LEMMA 1 ([4]). Let K be an algebraic number field of degree n, and let \overline{K} denote the Galois closure of K over \mathbb{Q} . If the discriminant d of K is exactly divisible by a prime number q (i.e. $q \mid d$, $q^2 \nmid d$), then the Galois group of \overline{K}/\mathbb{Q} contains a transposition (as a permutation group on $\{1, 2, \dots, n\}$).

§ 2. The case $p \equiv 3$ or 5 or 7 (mod 8).

THEOREM 1. Let a denote a rational integer, and let p denote a prime number with the following properties:

- 1. $p \equiv 3 \text{ or } 5 \text{ or } 7 \pmod{8}, p \neq 3$;
- 2. (p, a) = 1;
- 3. $f(x) = x^p + ax + a$ is irreducible over Q.

Then the Galois group of f(x)=0 over **Q** is the symmetric group S_p .

PROOF. Let α be a root of f(x) = 0, and let $K = Q(\alpha)$, $\delta = f'(\alpha)$, $D = \text{norm } \delta$ (in K). Then ([1], Theorem 2)

$$D = a^{p-1} \{ (p-1)^{p-1} a + p^p \} .$$

Now let

$$D_0 = (p-1)^{p-1}a + p^p$$
.

Then $|D_0|$ cannot be a square. In fact, if $|D_0| = m^2$ with an integer m, then

$$D_0 \equiv p^p \equiv p \equiv \pm m^2 \pmod{8}.$$

This implies that $p \equiv 7 \pmod{8}$, and $D_0 = -m^2$. Since

$$\frac{p-1}{2} \equiv 3 \pmod{4},$$

there is at least one prime factor p_0 of (p-1)/2 such that $p_0 \equiv 3 \pmod{4}$. Now

$$-m^2 = D_0 \equiv p^p \equiv 1 \pmod{p_0},$$

since $p \equiv 1 \pmod{p_0}$. We see that -1 is a quadratic residue mod p_0 . However, this is impossible, since $p_0 \equiv 3 \pmod{4}$. A contradiction shows that $|D_0|$ is not a square. Hence there exists a prime number q such that $(D_0)q$ is an odd integer, where the symbol $(D_0)q$ means the largest integer M such that D_0 is divisible by q^M (cf. [1]). Since (p, a) = 1, we have

$$q \neq p$$
, $(q, a) = 1$, $(q, p-1) = 1$.

Let d denote the discriminant of K. Then d is exactly divisible by q ([1], Theorem 2), since D_q is odd. It follows from Lemma 1 that the Galois group G of f(x)=0 over Q contains a transposition. Since p is a prime, G is primitive. Hence $G=S_p$ ([5], Theorem 13.3).

REMARK. If p=3, the Galois group of $x^p+ax+a=0$ is not always symmetric. For example, the Galois group of

$$x^3 - 7x - 7 = 0$$

is cyclic, since its discriminant is

$$-4(-7)^3-27(-7)^2=7^2$$
.

§ 3. The case $p \equiv 1 \pmod{8}$.

THEOREM 2. Let $p \equiv 1 \pmod{8}$ be a prime number and let a be a rational integer with (p, a) = 1 such that

$$f(x) = x^p + ax + a$$

is irreducible over Q. Then the Galois group G of f(x)=0 over Q is the symmetric group S_p if and only if $(p-1)^{p-1}a+p^p$ is not a square. If $(p-1)^{p-1}a+p^p$ is a square, then G

is a non-cyclic simple group, and the minimal splitting field of f(x)=0 is unramified (with respect to the finite prime spots) over $Q(\alpha)$, where α denotes an arbitrary root of f(x)=0.

PROOF. Since $p^p \equiv p \equiv 1 \pmod 8$, $(p-1)^{p-1}a + p^p = -m^2$ is impossible. Hence, if $(p-1)^{p-1}a + p^p$ is not a square, there exists a prime number q such that the discriminant d of $K = Q(\alpha)$ is exactly divisible by q, and so $G = S_p$ (See the proof of Theorem 1). The second half of Theorem 2 is proved in [2] (pp. 123-125; (p, d) = 1, and every prime factor of d is completely ramified in K).

REMARK. We proved in [2] (Theorem 5 and its proof) that, for every prime number $p \equiv 1 \pmod{8}$, there exist infinitely many integers a with the following properties:

- 1. $f(x) = x^p + ax + a$ is irreducible over Q;
- 2. (p, a) = 1;
- 3. $(p-1)^{p-1}a+p^p$ is a square.

References

- [1] K. Komatsu, Integral bases in algebraic number fields, J. Reine Angew. Math., 278/279 (1975), 137-144.
- [2] K. Komatsu, Discriminants of certain algebraic number fields, J. Reine Angew. Math., 285 (1976), 114-125
- [3] K. Komatsu, Square-free discriminants and affect-free equations, Tokyo J. Math., 14 (1991), 57-60.
- [4] B. L. VAN DER WAERDEN, Die Zerlegungs- und Trägheitsgruppe als Permutationsgruppen, Math. Ann., 111 (1935), 731-733.
- [5] H. WIELANDT, Finite permutation groups, Academic Press, 1964.

Present Address:

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND TECHNOLOGY, KEIO UNIVERSITY HIYOSHI, KOHOKU-KU, YOKOHAMA 223, JAPAN