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On the Galois Group of $x^{p}+ax+a=0$
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\S 1. Introduction.

Let $p(p>3)$ be a prime number, and let $a$ be a rational integer with $(p, a)=1$ such
that

$f(x)=x^{p}+ax+a$

is irreducible over the rational number field $Q$ . In the present paper we discuss the
following problem: Is the Galois group of $f(x)=0$ over $Q$ the symmetric group $S_{p}$ ?
Our results will be stated in Theorem 1 and Theorem 2.

We require the following lemma of van der Waerden:

LEMMA 1 ([4]). Let $K$ be an algebraic number field of degree $n$ , and let $\overline{K}$ denote
the Galois closure of $K$ over Q. If the discriminant $d$ of $K$ is exactly divisible by a prime
number $q$ (i.e. $q|d,$ $q^{2},\{\prime d$), then the Galois group of $\overline{K}/Q$ contains a transposition (as a
permutation group on $\{1, 2, \cdots, n\}$).

\S 2. The case $p\equiv 3$ or 5 or 7 $(mod 8)$ .
THEOREM 1. Let a denote a rational integer, and let $p$ denote a prime number with

the following properties:
1. $p\equiv 3$ or 5 or 7 $(mod 8),$ $p\neq 3$ ;
2. $(p, a)=1$ ;
3. $f(x)=x^{p}+ax+a$ is irreducible over $Q$ .

Then the Galois group of $f(x)=0$ over $Q$ is the symmetric group $S_{p}$ .
PROOF. Let $\alpha bearootoff(x)=0$, and let K $=q\alpha$), $\delta=f^{\prime}(\alpha),$ $ D=norm\delta$ (in K).

Then ([1], Theorem 2)

$D=a^{p-1}\{(p-1)^{p-1}a+p^{p}\}$ .
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Now let

$D_{0}=(p-1)^{p-1}a+p^{p}$ .

Then $|D_{0}|$ cannot be a square. In fact, if $|D_{0}|=m^{2}$ with an integer $m$ , then

$D_{0}\equiv p^{p}\equiv p\equiv\pm m^{2}$ $(mod 8)$ .
This implies that $p\equiv 7(mod 8)$ , and $D_{0}=-m^{2}$ . Since

$\frac{p-1}{2}\equiv 3$ $(mod 4)$ ,

there is at least one prime factor $p_{0}$ of $(p-1)/2$ such that $p_{0}\equiv 3(mod 4)$ . Now

$-m^{2}=D_{0}\equiv p^{p}\equiv 1$ $(mod p_{0})$ ,

since $p\equiv 1(mod p_{0})$ . We see that $-1$ is a quadratic residue $mod p_{0}$ . However, this is
impossible, since $p_{0}\equiv 3(mod 4)$ . A contradiction shows $that|D_{0}|$ is not a square. Hence
there exists a prime number $q$ such that $(D_{0})q$ is an odd integer, where the symbol $(D_{0})q$

means the largest integer $M$ such that $D_{0}$ is divisible by $q^{M}$ (cf. [1]). Since $(p, a)=1$ ,

we have

$q\neq p$ , $(q, a)=1$ , $(q,p-1)=1$ .

Let $d$ denote the discriminant of $K$. Then $d$ is exactly divisible by $q$ ([1], Theorem 2),

since $D_{q}$ is odd. It follows from Lemma 1 that the Galois group $G$ of $f(x)=0$ over $Q$

contains a transposition. Since $p$ is a prime, $G$ is primitive. Hence $G=S_{p}$ ([5], Theorem
13.3).

REMARK. If $p=3$ , the Galois group of $x^{p}+ax+a=0$ is not always symmetric.
For example, the Galois group of

$x^{3}-7x-7=0$

is cyclic, since its discriminant is
$-4(-7)^{3}-27(-7)^{2}=7^{2}$

\S 3. The case $p\equiv 1(mod 8)$ .
THEOREM 2. Let $p\equiv 1(mod 8)$ be a prime number and let $a$ be a rational integer

with $(p, a)=1$ such that

$f(x)=x^{p}+ax+a$

is irreducible over Q. Then the Galois group $G$ of $f(x)=0$ over $Q$ is the symmetric group
$S_{p}$ if and only if $(p-1)^{p-1}a+p^{p}$ is not a square. If $(p-1)^{p-1}a+p^{p}$ is a square, then $G$
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is a non-cyclic simple group, and the minimal splittingfield of $f(x)=0$ is unramified (with
respect to thefiniteprime spots) over $\mathfrak{g}\alpha$), where $\alpha$ denotes an arbitrary root off$(x)=0$ .

PROOF. Since $p^{p}\equiv p\equiv 1(mod 8),$ $(p-1)^{p-1}a+p^{p}=-m^{2}$ is impossible. Hence, if
$(p-1)^{p-1}a+p^{p}$ is not a square, there exists a prime number $q$ such that the discriminant
$d$ of $ K=\mathfrak{g}\alpha$) is exactly divisible by $q$, and so $G=S_{p}$ (See the proof of Theorem 1). The
second half of Theorem 2 is proved in [2] (pp. 123-125; $(p, d)=1$ , and every prime
factor of $d$ is completely ramified in $K$).

REMARK. We proved in [2] (Theorem 5 and its proof) that, for every prime num-
ber $p\equiv 1(mod 8)$ , there exist infinitely many integers $a$ with the following properties:

1. $f(x)=x^{p}+ax+a$ is irreducible over $Q$;
2. $(p, a)=1$ ;
3. $(p-1)^{p-1}a+p^{p}$ is a square.
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