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\S 1. The uniformization theorem.

A smooth m-dimensional orbifold (briefly, an m-orbifold) is a $\sigma$-compact Hausdorff
space $M$ which is locally modelled on a quotient space of a finite group action on a
smooth m-dimensional manifold ([Sa], [Th]). More precisely, an m-orbifold $M$ is cover-
$edbyanatlasoffoldingcharts\{(\tilde{U}_{i}, G_{i}, f_{i}, U_{i})\}_{ieI}$ , each chart consisting ofa smooth
connected m-manifold $\tilde{U}_{i}$ , a finite group $G_{i}$ acting on $\tilde{U}_{i}$ smoothly and effectively, an
open set $U_{i}$ of $M$ and afolding map $f_{\iota}$ : $\tilde{U}_{i}\rightarrow U_{i}$ which induces a natural homeomorphism
$G_{i}\backslash \tilde{U}_{i}\rightarrow U_{i}$ . These charts must satisfy a certain compatibility condition. In a simplified
version due to Bonahon and Siebenmann [BS], the condition states the following: for
every $x\in\tilde{U}_{i}$ and $y\in\tilde{U}_{j}$ such that $f_{j}(x)=f_{j}(y)\in U_{i}\cap U_{j}$, there exists a diffeomorphism
$\psi:\tilde{V}_{x}\rightarrow\tilde{V}_{y}$ from an open neighborhood of $x$ in $\tilde{U}_{i}$ to an open neighborhood of $y$ in $\tilde{U}_{j}$

such that $\psi(x)=y$ and $f_{j}\psi=f_{i}$ . (For an explanation of this compatibility condition, see
Appendix A.)

Two atlases on an m-orbifold give the same orbifold structure iff their union is
again a compatible atlas.

For instance, let $\Gamma$ be a group acting on a manifold $\tilde{U}$ smoothly, effectively and
properly discontinuously. Then the quotient space $\Gamma\backslash \tilde{U}$ has the structure of a smooth
orbifold. This type of an orbifold is said to be good.

The notion of being good is defined more formally in terms of orbifold coverings
as follows. Let $h:N\rightarrow M$ be a continuous map of a connected orbifold $N$ onto another
orbifold M. $h$ is called an orbifold covering of $M$ if $M$ admits an atlas of folding charts
$\{(\tilde{U}_{i}, G_{i},f_{i}, U_{i})\}_{ieI}$ such that, for each component $V$ of $h^{-1}(U_{i})$, there exists a folding
chart $k:\tilde{U}_{i}\rightarrow V$ in the maximal atlas of $N$ so that $f_{i}=hk$ .

DEFINITION ([Th]). A connected orbifold $M$ is good if there exists an orbifold
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covering $h:N\rightarrow M$ in which $N$ is a manifold.

Now suppose that we are given a geometry $(G, X)$ consisting of a smooth connected
manifold $X$ and a subgroup $G$ of Diff(X). Here Diff(X) denotes the group of all
diffeomorphisms of $X$ onto itself. Note that in our definition $X$ need not be a Rieman-
nian manifold. Then assuming, for each folding chart $(\tilde{U}_{i}, G_{i}, f_{i}, U_{i})$ , that $G_{i}$ is a finite
subgroup of $G$ and $\tilde{U}_{i}$ is a $G_{i}$-invariant open set of $X$, and also that each gluing map
$\psi:\tilde{V}_{x}\rightarrow\tilde{V}_{y}$ (that appeared in the compatibility condition) is the restriction of a
member of $G$, we obtain the notion of a geometric orbifold modelled on $(G, X)$, or
simply, a $(G, X)$-orbifold. Clearly a $(G, X)$-orbifold has the same dimension as $X$.

In \S 13 of his lecture notes [Th], Thurston stated a proposition (Proposition 13.3.2)
that if $G$ is an analytic group ofdiffeomorphisms ofa real analytic manifold $X$, then every
$(G, X)$-orbifold is good. Thurston did not give a detailed proof of this “uniformization
theorem” of geometric orbifolds.

As far as we know, there is no published proof of this theorem in the literature,
though it is tacitly assumed in some articles (cf. [Du]).

The purpose of this paper is to give a proof of this theorem of Thurston. In order
to clarify the essential point, we will prove a slightly more general statement than the
original one, in which we will impose the following condition $(*)$ to our geometry $(G, X)$

instead of its analyticity:

$(*)$ If two diffeomorphisms belonging to $G$ coincide on a non-empty open
set of $X$, then they coincide identically on $X$.

Of course, a real analytic geometry $(G, X)$ satisfies condition $(*)$ . As another
example, if $G$ is a finite group of diffeomorphisms of $X,$ $(G, X)$ satisfies condition $(*)$ ,
([Nw], [Dr]).

The uniformization theorem to be proved in. this paper is as follows:

THEOREM 1.1. If $(G, X)$ satisfies condition $1*$ ), then every $(G, X)$-orbifold is good.

This theorem will be proved in \S 5 after some preliminary observations made in
\S 2-\S 4. In \S 6 we will give an application. Appendix A indicates the proof of the fact
that Bonahon and Siebenmann’s compatibility condition assures the well-definedness
of the isotropy group attached to a point. Finally, Appendix $B$ sketches “silvered
covering” theory and the orientable double covering of an orbifold.

\S 2. Developing maps.

The proof of the uniformization theorem heavily depends on developing maps
which we will briefly review in this section, (see [Th, \S 3]). Unless otherwise stated, the
geometry $(G, X)$ will be assumed to satisfy condition $(*)$ of \S 1.

A $(G, X)$-manifold means a $(G, X)$-orbifold for which every $G_{i}$ is trivial, or
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equivalently, every folding chart $f_{i}$ : $\tilde{U}_{i}\rightarrow U_{i}$ is a homeomorphism. In this case, we will
simply call $f_{i}$ : $\tilde{U}_{i}\rightarrow U_{i}$ a chart.

DEFINITION. Let $M_{1}$ and $M_{2}$ be $(G, X)$-manifolds. $A$ map $D:M_{1}\rightarrow M_{2}$ is called
a $(G, X)$-map, if for every chart $f_{i}$ : $\tilde{U}_{i}\rightarrow U_{i}$ of $M_{1}$ and for every chart $g_{j}$ : $\tilde{V}_{j}\rightarrow V_{j}$ of
$M_{2}$ such that $ U_{i}\cap D^{-1}(V_{j})\neq\emptyset$ , the composition

$g_{J^{-1}}Df_{i}$ : $f_{i}^{-1}(U_{i}\cap D^{-1}(V_{j}))\rightarrow\tilde{V}_{j}$

extends to a diffeomorphism $X\rightarrow X$ which is a member of G. (Note that the sets
$f_{i}^{-1}(U_{i}\cap D^{-1}(V_{j}))$ and $\tilde{V}_{j}$ are both open sets of $X.$) In the special case when $M_{2}=X$,
a $(G, X)$-map $D:M_{1}\rightarrow X$ is called a developing map.

REMARK. To check if $D:M_{1}\rightarrow M_{2}$ is a $(G, X)$-map, it is only necessary to check
for a set of charts covering $M_{1}$ and $M_{2}$ (not for all) due to the compatibility condition
of charts in the definition of orbifold modelled on $(G, X)$ .

Given a $(G, X)$-manifold $M$, a developing map $D:M\rightarrow X$ does not always exists.
However, we have the following:

LEMMA 2.1. The universal covering $\tilde{M}$ ofa $(G, X)$-manifold $M$ admits a developing
map $D:\tilde{M}\rightarrow X$.

Take a point $p\in M$, and let $f_{i}$ : $\tilde{U}_{i}\rightarrow U_{i}$ be a chart with $U_{i}$ containing $p$ . Then
$f_{i}^{-1}$ : $U_{i}\rightarrow\tilde{U}_{i}\subset X$ is a developing map of $U_{i}$ . One can extend this map along paths in
$M$ to obtain the required developing map $D:\tilde{M}\rightarrow X$. Condition $(*)$ imposed to our
geometry $(G, X)$ assures the well-definedness of this construction. Compare [Th, \S 3].

LEMMA 2.2. If $D:M\rightarrow X$ is a developing map and $h:N\rightarrow M$ is an unbranched
covering, then the composition $Dh:N\rightarrow X$ is a developing map.

Whenever we speak of an unbranched covering $h:N\rightarrow M$ of a $(G, X)$-manifold $M$,

the $(G, X)$-manifold structure on $N$ will be the one inherited from $M$. Thus $h$ is always
a $(G, X)$-map. Lemma 2.2 would be self-evident.

LEMMA 2.3. If $M$ is a connected $(G, X)$-mamfold, two developing maps $D,$ $D^{\prime}$ :
$M\rightarrow X$ differ only by an element of $G$, namely, there exists a diffeomorphism $g:X\rightarrow X$

which belongs to $G$ so that $D^{\prime}=gD$ .

PROOF. Let $p\in M$ be a point, $f_{i}$ : $\tilde{U}_{i}\rightarrow U_{i}$ a chart containing $p$ . By the definition
of a developing map, the maps $Df_{i},$ $D^{\prime}f_{i}$ : $\tilde{U}_{i}\rightarrow X$ extend to diffeomorphisms $g_{i},$

$g_{i}^{\prime}$ :
$X\rightarrow X$ which belong to $G$ . Define $g:=g_{i}^{\prime}g_{i}^{-1}\in G$ . Then $D^{\prime}=gD$ holds on $f_{i}(\tilde{U}_{i})$ . Let
$f_{j}$ : $\tilde{U}_{j}\rightarrow U_{j}$ be another chart with $U_{j}$ having non-empty intersection with $U_{i}$ . Condition
$(*)$ assures that $D^{\prime}=gD$ also holds on $f_{j}(\tilde{U}_{j})$ . Proceeding in this way, we can prove
$D‘=gDonXbytheconnectivityofM$. $\square $

Let $D$ : $\tilde{M}\rightarrow X$ be a developing map of the universal covering $\tilde{M}$ ofa $(G, X)$-manifold
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$M$. Let $l\in\pi_{1}(M)$ be an element of the fundamental group of $M$, and $T_{l}$ : $\tilde{M}\rightarrow\tilde{M}$ the
corresponding covering translation. Then, by Lemma 2.2, $DT_{l}$ : $\tilde{M}\rightarrow X$ is a developing
map, and by Lemma 2.3, $D$ and $DT_{l}$ differ by an element of $G$ :

$DT_{l}=gD$ , $geG$ .
The correspondence $l\vdash\rightarrow g$ gives a holonomy homomorphism

$H:\pi_{1}(M)\rightarrow G$ .
If $D^{\prime}$ : $\tilde{M}\rightarrow X$ is a different developing map, then, by Lemma 2.3, there exists he $G$ such
that

$D^{\prime}=hD$ .
Then

$D^{\prime}T_{l}=hDT_{l}=hgD=hgh^{-1}D^{\prime}$

and therefore $H$ is uniquely defined up to conjugation in $G$ .
LEMMA 2.4. Let $M_{\Gamma}$ be the covering of a ($G,$ $ X\succ$-manifold $M$ corresponding to the

subgroup $\Gamma\leq\pi_{1}(M)$ . Then $M_{\Gamma}$ admits a developing map $D:M_{\Gamma}\rightarrow X$ if and only of
$\Gamma\leq Kernel(H:\pi_{1}(M)\rightarrow G)$ .

$PR\infty F$ . We will prove the “if” part. Let $h:\tilde{M}\rightarrow M_{\Gamma}$ be the covering between the
universal covering $\tilde{M}$ of $M$ and the covering $M_{\Gamma}$ . Let $D;\tilde{M}\rightarrow X$ be a developing map
given by Lemma 2.1. Then $D$ preserves fibers of $h$ . In fact, let $x,$ $ye\tilde{M}$ be points such
that $h(x)=h(y)$ . Then $x,$ $y$ correspond to two paths $l.,$ $l$, based at $peM$ ending at $qeM$
and such that $l_{x}l_{y}^{-1}\in\Gamma\leq Kemel(H:\pi_{1}(M)\rightarrow G)$ . This means that the developing
$D:\tilde{M}\rightarrow X$ along $l_{x}$ and $l_{y}$ coincide at their ends. Therefore, $D(x)=\alpha y)$ . This means
that $M_{\Gamma}$ admits a developing map $D:M_{\Gamma}\rightarrow X$.

The converse is proved also easily by the definition of a developing map. $\square $

COROLLARY 2.4.1. $A(G, X)$-manfold $M$ admits a developing map $D:M\rightarrow X\iota f$and
only of the holonomy $H:\pi_{1}(M)\rightarrow G$ is trivial.

\S 3. Orbifold coverings as branched coverings.

In this section, we will investigate the relationship between orbifold coverings and
Fox’s branched coverings [F]. The results will be valid for general orbifolds which are
not necessarily geometric.

Let $M$ be an m-orbifold, $p$ a point $eM$. Let $(\tilde{U}_{i}, G_{i}, f_{i}, U_{i})$ be a folding chart
containing $p$ . Then for a point $x\in\tilde{U}_{i}$ which is projected onto $p$ by $f_{i}$, the isomorphism
class of the isotropy group $(G_{i})_{x}:=\{geG_{i}|g(x)=x\}$ depends only on $p$ (see Appendix
A). We will call this isomorphism class the isotropy group of $p$ and denote it by $G_{p}$ .
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The set $\Sigma M:=\{p\in M|G_{p}\neq\{1\}\}$ is called the singular set of $M$. Its complement
$M-\Sigma M$ is called the non-singular part of $M$ and is denoted by $M_{*}$ .

Obviously, Misamanifold if and only if $\Sigma M=\otimes$ . The singular set $\Sigma Madmitsa$

natural stratification $\mathscr{S}=\{S_{\alpha}\}_{\alpha\in A}$ with the following properties:
(i) Each stratum $S_{\alpha}$ is a smooth connected manifold of dimension $\leq m-1$ ,
(ii) for any two points $p,$ $q\in S_{\alpha}$ , the isotropy groups $G_{p}$ and $G_{q}$ are the same, in

other words, the isotropy group is “constant” along a stratum, and
(iii) $S_{\alpha}-S_{a}$ consists of strictly lower dimensional strata, where $S_{\alpha}$ denotes the

closure of $S_{\alpha}$ in $M$.
The stratification $\mathscr{S}=\{S_{\alpha}\}_{\alpha eA}$ is easily constructed starting from the stratification

of the singular set $\Sigma U_{i}$ according to the orbit types of the action of $G_{i}$ on $\tilde{U}_{i}$ , and
patching them together by the compatibility condition of charts, cf. [Ka].

The isotropy group corresponding to a stratum ofcodimension 1 or 2 is particularly
simple:

(1) $\dim S_{\alpha}=m-1$ , iff the isotropy group $G_{p}(p\in S_{\alpha})$ is a group of order 2 acting
on $\tilde{U}_{i}$ as a reflection with respect to an $(m-1)$-submanifold (a “mirror”). The union of
codimension 1 strata is called the silvered boundary.

(2) If $\dim S_{\alpha}=m-2$ , then the isotropy group $G_{p}(p\in S_{\alpha})$ is a dihedral or a cyclic
group. If $M$ has no silvered boundary, it is necessarily a cyclic group of order $b_{\alpha}>1$ ,
say. The integer $b_{\alpha}$ is called the order of the codimension 2 stratum $S_{\alpha}$ .

In the rest of this section, we will assume that $M$ is connected and without silvered
boundary. Let $\mu_{\alpha}$ be a ”meridian” around a codimension 2 stratum $S_{\alpha}$ of order $b_{\alpha}>1$ .
Define a subgroup $\langle\mu^{b}\rangle_{M}$ of $\pi_{1}(M_{*})$ to be the subgroup which is normally generated
by the totality of the elements of the form $(\mu_{\alpha})^{b_{\alpha}}$ , the $b_{\alpha}$-th power of $\mu_{\alpha}$, where $\alpha$ runs
over all the indices of the codimension 2 strata of $\Sigma M$. We will call $\langle\mu^{b}\rangle_{M}$ the character-
istic subgroup of $\pi_{1}(M_{*})$ .

For an orbifold covering $h:N\rightarrow M$ (or more generally, for a branched covering
along $\Sigma M$), we denote $N-h^{-1}(\Sigma M)$ by $N_{0}$ . Thus $N_{0}$ is the part of $N$ which spreads
over the non-singular part $M_{*}$ . Generally speaking, $N_{0}$ is contained in the non-singular
part $N_{*}(=N-\Sigma N)$ of $N$, but may not coincide with $N_{*}$ . These notations $N_{0}$ and $N_{*}$

will sometimes be used without further comments.
The image of $\pi_{1}(N_{0})$ under the induced homomorphism $(h|N_{0})$, : $\pi_{1}(N_{0})\rightarrow\pi_{1}(M_{*})$

is called the subgroup of $\pi_{1}(M_{*})$ associated with the, orblfold covering (or the branched
covering) $h:N\rightarrow M$.

THEOREM 3.1. Let $M$ be a connected $m$-orblfold without silvered boundary. $A$

branched covering $h:N\rightarrow M$ branched along $\Sigma M$ is an orbifold covering $lf$and only if the
associated subgroup $(h|N_{0})_{l}(\pi_{1}(N_{0}))$ contains the characteristic subgroup $\langle\mu^{b}\rangle_{M}$ .

REMARK. Conversely, an orbifold covering $h:N\rightarrow M$ is always a branched cover-
ing of $M$ branched along $\Sigma M$.



186 YUKIO MATSUMOTO AND J. M. MONTESINOS-AMILIBIA

Before proving Theorem 3.1, let us examine the local situation. Let $M$ be as in
Theorem 3.1. Fix any folding chart $(\tilde{U}_{i}, G_{i}, f_{i}, U_{i})$ of $M$, and suppose that $\tilde{U}_{i}$ is
l-connected. Let $\langle\mu^{b}\rangle_{U_{i}}$ be the characteristic subgroup of $\pi_{1}(U_{i*})$, where $U_{i*}=U_{i}-\Sigma U_{i}$ ,
the non-singular part of $U_{i}$ .

LEMMA 3.2. Let $h:V\rightarrow U_{i}$ be a branched covering branched along $\Sigma U_{i}$ . Suppose
that the associated subgroup $(h|V_{0}),\pi_{1}(V_{0})(\leq\pi_{1}(U_{i*}))$ contains the characteristic sub-
group $\langle\mu^{b}\rangle_{U_{i}}$ for $U_{i}$ , where $V_{0}=V-h^{-1}(\Sigma U_{i})$ as usual. Then there exists a folding map
$k:\tilde{U}_{i}\rightarrow V$ so that the diagram

$\tilde{U}_{i}\rightarrow^{k}V$

$\searrow^{f}$ $\downarrow h$

$U_{i}$

commutes.

$PR\infty F$ . As an m-orbifold, $U_{i}(\cong G_{i}\backslash \tilde{U}_{i})$ has a natural stratification $\mathscr{T}=\{T_{\beta}\}_{\beta\epsilon B}$

of its singular set $\Sigma U_{i}$ . Let $T_{\beta}$ be any codimension 2 stratum, $F_{\beta}$ a lift of $T_{\beta}$ to $\tilde{U}_{i}$ . Then
we can find an element of $G_{i}$ which acts on $\tilde{U}_{i}$ as a rotation around $T_{\beta}$ through angle
$2\pi/b_{\beta},$ $b_{\beta}$ being the order of $T_{\beta}$ . Thus for a meridian loop $\mu_{\beta}$ of $T_{\beta}$ , its $b_{\beta}$-th power $(\mu_{\beta})^{b_{\beta}}$

lifts to a meridian loop $\tilde{\mu}_{\beta}$ of $\tilde{T}_{\beta}$ . This together with the l-connectivity of $\tilde{U}_{i}$ implies
that the subgroup $(f_{i}|\tilde{U}_{i0})\pi_{1}(\tilde{U}_{i0})$ of $\pi_{1}(U_{i*})$ coincides with the characteristic subgroup
for $U_{i},$ $\langle\mu^{b}\rangle_{U_{i}}$ , where $\tilde{U}_{iO}:=\tilde{U}_{l}-f_{i}^{-1}(\Sigma U_{i})$ .

By the general theory of covering spaces, the group of covering translations of the
(regular) unbranched covering $f_{i}|\tilde{U}_{i0}$ : $\tilde{U}_{i0}\rightarrow U_{i*}$ is isomorphic to $\pi_{1}(U_{i*})/(f_{i}|\tilde{U}_{i0})_{l}\pi_{1}(\tilde{U}_{i0})$,

but by the observation above, the latter group is isomorphic to $\pi_{1}(U_{i*})/\langle\mu^{b}\rangle_{U_{i}}$ . On the
other hand, the same group of covering translations of $f_{i}|\tilde{U}_{iO}$ : $\tilde{U}_{iO}\rightarrow U_{i*}$ is isomorphic
to $G_{i}$, because $G_{i}$ acts on $\tilde{U}_{i0}$ freely and the orbit space is $U_{i*}$ .

Comparing these isomorphisms, one obtains $G_{i}\cong\pi_{1}(U_{i*})/\langle\mu^{b}\rangle_{U_{i}}$ .
Now let $h:V\rightarrow U_{i}$ be a branched covering satisfying the assumption of Lemma

3.2, namely, it is a branched covering branched along $\Sigma U_{i}$ such that the associated
subgroup $(h|V_{0})_{\$}\pi_{1}(V_{0})(\leq\pi_{1}(U_{i*}))$ contains $\langle\mu^{b}\rangle_{U_{1}}$ . Recall that $\langle\mu^{b}\rangle_{U_{1}}=(f_{i}|\tilde{U}_{i0})_{\$}\pi_{1}(\tilde{U}_{i0})$ .
Then $(h|V_{0})_{l}\pi(V_{0})$ turns out to contain $(f_{i}|\tilde{U}_{i0}),\pi_{1}(\tilde{U}_{i0})$ . This implies, by the usual
covering space theory, that there exists an (unbranched) covering map $k_{0}$ : $\tilde{U}_{iO}\rightarrow V_{0}$ so
that the diagram

$\tilde{U}_{i0}\rightarrow^{k_{O}}V_{0}$

$f_{i}|0_{o}\searrow\downarrow h|V_{0}$

$U_{i*}$
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commutes. Moreover, $k_{0}$ : $\tilde{U}_{iO}\rightarrow V_{O}$ is a regular covering whose covering translation
group $K$ is isomorphic to $(h|V_{0})_{\#}\pi_{1}(V_{0})/\langle\mu^{b}\rangle_{U}:$ . Note that $K$ is identified with a sub-
group of $G_{i}$ , because

$K\cong(h|V_{0})_{t}\pi_{1}(V_{0})/\langle\mu^{b}\rangle_{U_{i}}\leq\pi_{1}(U_{i*})/\langle\mu^{b}\rangle_{U_{i}}\cong G_{i}$ .
What we have proved so far is the fact that the unbranched covering $h|V_{0}$ : $V_{0}\rightarrow U_{i*}$

is isomorphic to the natural quotient $K\backslash \tilde{U}_{i0}\rightarrow G_{i}\backslash \tilde{U}_{iO}$ . Now by Fox [F], $h:V\rightarrow U_{i}$ is
the completion of the spread $V_{O}\rightarrow U_{i*}\subset U_{i}$ , while $K\backslash \tilde{U}_{i}\rightarrow U_{i}$ is the completion of the
spread $K\backslash \tilde{U}_{i0}\rightarrow G_{i}\backslash \tilde{U}_{i0}\subset U_{i}$ which was seen to be isomorphic to the spread $V_{O}\rightarrow U_{i*}\subset U_{j}$ .
By the uniqueness of a completion of a spread ([Fox; see Hunt, p. 149]), $h:V\rightarrow U_{i}$ and
$K\backslash \tilde{U}_{i}\rightarrow U_{i}$ are isomorphic branched coverings. In particular, $V\cong K\backslash \tilde{U}_{i}$ , and we have a
required folding map $k:\tilde{U}_{i}\rightarrow V$. $\square $

PROOF OF THEOREM 3.1. Let $M$ be as in Theorem 3.1. Let $h:N\rightarrow M$ be a branched
covering branched along $\Sigma M$ whose associated subgroup $(h|N_{0})\pi_{1}(N_{0})$ contains the
characteristic subgroup $\langle\mu^{b}\rangle_{M}$ . We will show that $N$ is an m-orbifold and that $h:N\rightarrow M$

is an orbifold covering.
To make the argument precise, let us take base points $p_{0}\in M_{*}$ and $q_{0}\in N_{0}$ for the

fundamental groups $\pi_{1}(M_{*}, p_{0})$ and $\pi_{1}(N_{0}, q_{0})$ , respectively, so that $p_{0}=h(q_{0})$ .
Let $p$ be any point in $M,$ $(\tilde{U}_{i}, G_{i}, f_{i}, U_{i})$ a small folding chart with $U_{i}$ containing

$p$ . We may assume that $\tilde{U}_{i}$ is l-connected. Let $V(\subset N)$ be any component of $h^{-1}(U_{i})$ .
We will first prove that the image of $(h|V_{0})$ : $\pi_{1}(V_{0})\rightarrow\pi_{1}(U_{i*})$ contains the characteristic
subgroup $\langle\mu^{b}\rangle_{U_{i}}$ for $U_{i}$ .

Take a path $\tilde{c}$ in $N_{0}$ joining $q_{0}$ and a point $q_{1}$ in $V_{0}(=V\cap N_{0})$ . Let $c:[0,1]\rightarrow M_{*}$

be the image of $\tilde{c}$ projected down to $M_{*}$ by $h$ . Then the starting point $c(O)$ of $c$ is $p_{0}$ ,
and its terminal point $p_{1}(=c(1)=h(q_{1}))$ belongs to $U_{i*}(=U_{i}\cap M_{*})$ . We regard the
points $p_{1}$ and $q_{1}$ as the base points of $\pi_{1}(U_{i*},p_{1})$ and $\pi_{1}(V_{0}, q_{1})$ .

Let $l$ be a loop representing an element of $\langle\mu^{b}\rangle_{U_{i}}(\leq\pi_{1}(U_{i*},p_{1}))$ . The loop $clc^{-1}$

belongs to $\langle\mu^{b}\rangle_{M}$ , which is contained in $(h|N_{0})_{t}(\pi_{1}(N_{0}, q_{0}))$ by the hypothesis. Thus
$clc^{-1}$ can be lifted to a loop $l^{\prime}$ in $N_{0}$ based at $q_{0}=\tilde{c}(0)$ . Since the path $c$ does lift to $\tilde{c}$

and $V_{0}$ is a connected component of $h^{-1}(U_{i*}),$ $l^{\prime}$ must be of the form $\tilde{c}l\tilde{c}^{-1}\sim$ , where $ lis\sim$

a loop in $V_{0}$ based at $q_{1}=\tilde{c}(1)$ . This means that $l$ is lifted to 7 that is, $l$ belongs to the
image of $(h|V_{O})_{\$}$ : $\pi_{1}(V_{0})\rightarrow\pi_{1}(U_{i*})$ .

The loop $l$ was arbitrarily chosen in $\langle\mu^{b}\rangle_{U;}$ . Hence the image $(h|V_{O})_{\$}\pi_{1}(V_{O})$ contains
the characteristic subgroup $\langle\mu^{b}\rangle_{U_{i}}$ for $U_{i}$ as asserted.

Now by Lemma 3.2, there exists a folding map $k:\tilde{U}_{i}\rightarrow V$ so that the diagram
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commutes.
This means that $N$ is an orbifold covering of $M$ with the projection $h:N\rightarrow M$,

because $(\tilde{U}_{i}, G_{i}, f_{i}, U_{i})$ is arbitrarily chosen and $V$ is any component of $h^{-1}(U_{i})$ . This
completes the “if” part of Theorem 3.1.

The “only if” part is proved similarly. .The details will be left to the reader.

Let $M$ be a connected orbifold without silvered boundary. Let $h:\tilde{M}\rightarrow M$ be an
orbifold covering such that $(h|\tilde{M}_{0}),\pi_{1}(\tilde{M}_{0})=\langle\mu^{b}\rangle_{M}$ . By Theorem 3.1 such an orbifold
covering certainly exists, and by Fox [F], its isomorphism class as a branched covering
is unique. In this paper, we will adopt the following definition for convenience.

DEFINITION. The orbifold covering $h$ : $\tilde{M}\rightarrow M$ satisfying $(h|\tilde{M}_{0})_{l}\pi_{1}(\tilde{M}_{0})=\langle\mu^{b}\rangle_{M}$ is
called the universal $orb\iota fold$ covering of $M$.

This is equivalent to Thurston’s definition [Th, \S 13] of the universal covering of
an orbifold, at least for an orbifold without silvered boundary. See [Ka, Theorem 1]

and. also Appendix $B$ of the present paper.

REMARK. If $M$ has no silvered boundary, then the orbifold fundamental group
$\pi_{1}^{orb}(M)$ in Thurston’s sense is isomorphic to $\pi_{1}(M_{*})/\langle\mu^{b}\rangle_{M}$ . See [Ka, Theorem 1].

\S 4. Lemmas on geometric orbifolds.

Let $(G, X)$ be a geometry satisfying condition $(*)$ of \S 1.

LEMMA 4.1. Let $f:\tilde{U}\rightarrow U$ be a folding map mo&lled on $(G, X),$ $j:\tilde{U}\rightarrow X$ the
inclusion. Let $h:V^{\prime}\rightarrow U_{*}(=U-\Sigma U)$ be an unbranched covering, where $V^{\prime}$ is a connected
$(G, X)$-manofold. Suppose that there exists $a$ &veloping map $D:V^{\prime}\rightarrow X$. Then the covering
projection $h:V^{\prime}\rightarrow U_{*}$ factors through $f|\tilde{U}_{0}$ :

$V^{\prime}\rightarrow^{\exists l^{\prime}}\tilde{U}_{0}$

$\backslash h$ $\downarrow f|O_{o}$

$U_{*}$

PROOF. Let $f;Z\rightarrow\tilde{U}_{O}$ be the universal covering of $\tilde{U}_{O}$ $(: =0-f^{-1}(\Sigma U))$ . By
Lemma 2.2, $\tilde{j}:=(j|\tilde{U}_{0})$;is a developing map making the following diagram com-
mutative:
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$Z\rightarrow^{j^{\tilde}}$
$X$

$ f\downarrow$

$\tilde{U}_{0}$

$ f\downarrow$

$U_{*}$

DIAGRAM (A)

Since $ff$ : $Z\rightarrow U_{*}$ is the universal covering of $U_{*}$ , there exists a covering map
$F:Z\rightarrow V^{\prime}$ so that the diagram commutes:

DIAGRAM (B)

We have two developing maps $f$ and Dff of $Z$ into $X$; see diagrams (A) and (B).
By Lemma 2.3, we can find a diffeomorphism $g:X\rightarrow X$ belonging to $G$ such that

$\tilde{j}=gDff$ .
Put $D^{\prime}=gD$ . Then $\tilde{j}=D^{\prime ff}$ and we have the following commutative diagram:

$Z\rightarrow^{j^{\tilde}}X$

$fI(V^{\prime}U_{*}\nearrow^{D}$

DIAGRAM (C)
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From diagrams (A) and (C), we obtain

hfi \langle $C$)
$=ff=f(i|\tilde{U}_{0})^{-1}\tilde{j}=\{C)f(i|\tilde{U}_{0})^{-1}D^{\prime}K$ .

Here $\pi;Z\rightarrow V^{\prime}$ is surjective. Thus

$h=f(i|\tilde{U}_{0})^{-1}D^{\prime}$

Putting $l^{\prime}:=(i|\tilde{U}_{0})^{-1}D^{\prime}$ : $V^{\prime}\rightarrow\tilde{U}_{0}$ , we have the desired splitting $h=fl^{\prime}$ .
This completes the proof of Lemma 4.1. $\square $

LEMMA 4.2. Let $M$ be a connected geometric orbifold without silvered boundary,
modelled on $(G, X)$ . Let $h;\tilde{M}\rightarrow M$ be the universal $orb\iota fold$ covering. Then there exists
a developing map $\tilde{D}:\tilde{M}_{0}\rightarrow X$, where $\tilde{M}_{0}=\tilde{M}-h^{-1}(\Sigma M)$ .

PROOF. We will show that the holonomy $H:\pi_{1}(\tilde{M}_{0})\rightarrow G$ is trivial. This will imply
the existence of a developing map $\tilde{D}:\tilde{M}_{0}\rightarrow X$, (see Corollary 2.4.1).

Let $ l\sim$ be a loop in $\tilde{M}_{0}$ based at a point $\tilde{p}_{0}e\tilde{M}_{0}$ . Since $h:\tilde{M}\rightarrow M$ is a universal
orbifold covering, the associated subgroup $(h|\tilde{M}_{0})_{1}\pi_{1}(\tilde{M}_{0})$ coincides with the
characteristic subgroup $\langle\mu^{b}\rangle$ for $M$. Thus the projected loop $ h_{1}(l\gamma$ can be expressed as

$(**)$
$h_{\$}(l)=\prod_{\alpha}c_{\alpha}(\mu_{a})^{b_{\alpha}}c_{\alpha}^{-1}\in\pi_{1}(M_{*},p_{0})$ ,

where $p_{0}=h(\tilde{p}_{0})$ and $c_{\alpha}$ is a path in $M_{*}$ joining $p_{0}$ and a point near the codimension
2 stratum $S_{\alpha}$ . If the meridian $\mu_{\alpha}$ of $S_{\alpha}$ is small enough, we can find a folding chart
$(\tilde{U}_{i}, G_{i}, f_{i}, U_{i})$ containing $\mu_{\alpha}$ . By the definition of the order $b_{\alpha}$ , the $b_{\alpha}$-th power $(\mu_{\alpha})^{b_{\alpha}}$

can be lifted to a loop $ l_{\alpha}\sim$ in $\tilde{U}_{i}$ . Since $\tilde{U}_{i}$ is an open set of $X$, the holonomy along the
loop $l_{\alpha}\sim(\subset\tilde{U}_{i})$ is the identity of $X$. Hence the holonomy along $(\mu_{a})^{b_{\alpha}}$ is the identity. By
the expression $(**)$ above, the holonomy of $M_{*}$ along $ h_{l}(\iota\gamma$ is again the identity
of $X$. Since the $(G, X)$-structure on $\tilde{M}_{0}$ is inherited from $M_{*}$ , the holonomy along
the loop $ lis\sim$ trivial. This completes the proof. $\square $

COROLLARY 4.2.1. Let $M$ be as in Lemma 4.2. Then the holonomy $H:\pi_{1}^{orb}(M)\rightarrow G$

is well-defined up to conjugation in $G$ .
PROOF. By Lemma 4.2, the holonomy $H:\pi_{1}(M_{*})\rightarrow G$ is trivial on $\langle\mu^{b}\rangle_{M}$ . Thus

it factors through $\pi_{1}^{orb}(M)=\pi_{1}(M_{*})/\langle\mu^{b}\rangle_{M}$ . (See Remark at the end of \S 3.) $\square $

\S 5. Proof of Theorem 1.1.

Let $M$ be a connected geometric orbifold modelled on $(G, X)$ satisfying condition
$(*)$ of \S 1. We assume that $M$ has no silvered boundary, otherwise we take its double
along the silvered boundary, [Th]. Let $h:\tilde{M}\rightarrow M$ be the universal orbifold covering.
We will show that $\tilde{M}$ is a manifold.

By Lemma 4.2, there is a developing map $\tilde{D}:\tilde{M}_{0}\rightarrow X$.
Now letp be any point of M, $(\tilde{U}_{i}, G_{i}, f_{i}, U_{i})$ afolding chart containing p. We may
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assume as before that $\tilde{U}_{i}$ is l-connected. Let $V(\subset\tilde{M})$ be any component of $h^{-1}(U_{i})$ .
Then $V_{O}(=V\cap\tilde{M}_{0})$ can be developed on $X$ via $\tilde{D}|V_{0}$ .

By Lemma 4.1, $h|V_{0}$ : $V_{O}\rightarrow U_{i*}$ factors through $f_{i}|\tilde{U}_{i0}$ :

$V_{0}\rightarrow^{\exists l^{\prime}}\tilde{U}_{i0}$

$h\backslash |V_{O}$ $I^{f_{i}|\tilde{U}_{iO}}$

$U_{i*}$

On the other hand, by the definition of an orbifold covering, there exists a folding
map $k:\tilde{U}_{i}\rightarrow V$ which gives a factorization in the direction opposite to $l^{\prime}$ in the above
diagram:

$\tilde{U}_{i}\rightarrow^{k}V$

$\backslash _{f_{j}}\downarrow h|V$

$U_{i}$

These two diagrams show that the unbranched coverings associated to the branched
coverings $\tilde{U}_{i}\rightarrow U_{i}$ and $V\rightarrow U_{i}$ are isomorphic. Thus the folding map $k:\tilde{U}_{i}\rightarrow V$ is in fact
a $(G, X)$-diffeomorphism and $V$ has no singular point. Since $V$ is any component of
$h^{-1}(U_{i}),\tilde{M}$ is a manifold.

The proof of Theorem 1.1 is complete. $\square $

\S 6. An application.

In this section, $X$ and $G$ will be a connected real analytic Riemannian manifold which
is complete and a group ofanalytic isometries of $X$. Clearly $(G, X)$ satisfies condition $(*)$ .

Let $M$ be a connected geometric orbifold modelled on $(G, X)$ . Let $C$ be a splitting
complex of $M$, namely a subcomplex of $M$ satisfying the three conditions below ([Nu],
[Mo]):

(i) $C$ has Lebesgue measure zero;
(ii) the restriction of $h:\tilde{M}\rightarrow M$ to $h^{-1}(M-C)$ is the trivial covering, i.e., a disjoint

union of copies of $M-C$, where $h;\tilde{M}\rightarrow M$ is the universal orbifold covering;
(iii) $M-C$ is connected.
Let $K$ be the adherence of any component of $h^{-1}(M-C)$ .
PROPOSITION 6.1. Suppose that $X$ is l-connected and $M$ is compact. Then the

development of $K$ in $X$ is a fundamental domain for the action of $H(\pi_{1})$ on X. Here
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$H:\pi_{1}=\pi_{1}^{orb}(M)\rightarrow G$ is the holonomy and $H(\pi_{1})$ is the image.

$PR\infty F$ . Clearly $K$ is a fundamental domain for the action of $\pi_{1}$ on $\tilde{M}$, but by
Theorem 1.1 $\tilde{M}$ coincides with $X$. Cf. [Th. \S 13]. $\square $

REMARK. This proposition gives a practical procedure to develop $M$ in $X$ if
$\pi_{1}(X)=\{1\}$ , which is particularly useful when $M$ is defined as a polyhedron $K\subset X$ with
identified faces by elements of $G$ . These identifications define the holonomy $H(\pi_{1})$ . When
$H(\pi_{1})$ acts upon $K$, we fill $X$ without overlappings (Poincar\’e’s Theorem [A], [Ma],
[Se]). The hypotheses of the Poincar\’e Theorem assure that $K\subset X$ self-identified by
elements of $G$ is a geometric orbifold modelled on $(G, X)$ .

Appendix A. Well-deflnedness of isotropy groups.

Let $M$ be a smooth m-orbifold, $(\tilde{U}_{i}, G_{i}, f_{i}, U_{i})$ a folding chart. Take a point $xe\tilde{U}_{i}$

and consider its isotropy group $(G_{i})_{x}:=\{g\in G_{i}|g(x)=x\}$ . Appendix A aims to prove
the basic fact that the isomorphism type of $(G_{i})_{x}$ depends only on the point $p:=f_{i}(x)\in M$,
but not on the choice of $(\tilde{U}_{i}, G_{i}, f_{i}, U_{i})$ nor $x\in f_{i}^{-1}(p)$ .

LEMMA A.1. Let $V_{x}$ be an open neighborhood of $x$ in $\tilde{U}_{i}$ . Then there exists a
connected open neighborhood $W_{x}$ of $x$ such that

(i) $\tilde{W}_{x}\subset\tilde{V}_{x}$;
(ii) $g(\tilde{W}_{x})\cap\tilde{W}_{x}\neq\otimes iffg\in(G_{i})_{x}$, and $\tilde{W}_{x}$ is $(G_{i})_{x}$-invariant;
(iii) $f_{i}(\tilde{W}_{x})(\subset U_{i})$ is homeomorphic to the quotient $(G_{i})_{x}\backslash \tilde{W}_{x}$ .
$PR\infty F$ . Let us fix a metric on $\tilde{U}_{i}$ for convenience, and choose a sequence of open

neighborhoods of $x$ in $\tilde{V}_{x},$ $\{\tilde{V}_{n}\}_{n=1}^{\infty}$ , with diameter$(\tilde{V}_{n})\leq 1/n$ for $n=1,2,3,$ $\cdots$ . Using
the fact that $G_{i}-(G_{i})_{x}$ is a finite set, we can find a $\tilde{V}_{n}$ such that $ g(\tilde{V}_{n})\cap\tilde{V}_{n}=\emptyset$ for
$g\not\in(G_{i})_{x}$ . Since $(G_{i})_{x}$ is also a finite set, the intersection

$\tilde{W}_{x}^{\prime}=\bigcap_{ge(G_{l})_{r}}g(\tilde{V}_{n})$

is a $(G_{i})_{x}$-invariant open neighborhood of $x$ . Let $W_{x}$ be the connected component of
$\tilde{W}_{x}^{\prime}$ which contains $x$ . Then $\tilde{W}_{x}$ is a required open neighborhood. $\square $

We will call $f_{i}|\tilde{W}_{x}$ : $\tilde{W}_{x}\rightarrow f_{i}(\tilde{W}_{x})$ a sub-folding chart of $f_{j}$ : $\tilde{U}_{i}\rightarrow U_{i}$ with center at $x$ .
Now recall Bonahon and Siebenmann’s compatibility condition [BS]. Let

$(\tilde{U}_{i}, G_{i}, f_{i}, U_{i}),$ $(\tilde{U}_{j}, G_{j}, f_{j}, U_{j})$ be two folding charts of $M$ with $ U_{i}\cap U_{j}\neq\emptyset$ . Take points
$x\in\tilde{U}_{i}$ and $y\in\tilde{U}_{j}$ such that $p:=f_{j}(x)=f_{j}(y)eU_{i}\cap U_{j}$ . Then the compatibility condition
states that there exists diffeomorphism $\psi:\tilde{V}_{x}\rightarrow\tilde{V}_{y}$ of an open neighborhood of $x$ in $\tilde{U}_{i}$

to an open neighborhood of $y$ in $\tilde{U}_{j}$ such that $\psi(x)=y$ and $f_{j}\psi=f_{i}$ .
LEMMA A.2. In the above situation, there exist sub-folding charts $f_{i}|\tilde{Z}_{x}$ : $\tilde{Z}_{x}\rightarrow f_{j}(\tilde{Z}_{x})$
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and $f_{j}|\tilde{Z}_{y}$ : $\tilde{Z},\rightarrow f_{j}(\tilde{Z}_{y})$ with center at $x$ and $y$ , respectively, such that
(i) $\tilde{Z}_{x}\subset\tilde{V}_{x},\tilde{Z}_{y}\subset\tilde{V},$ ; and
(ii) $\psi(\tilde{Z}_{x})=\tilde{Z}_{y}$ .
(We will say that these sub-folding charts are compatible.)

$PR\infty F$ . Let $f_{i}|\tilde{W}_{x}$ : $\tilde{W}_{x}\rightarrow f_{i}(\tilde{W}_{x})$ be a sub-folding chart of $f_{i}$ : $\tilde{U}_{i}\rightarrow U_{i}$ with center
at $x$ which is contained in $\tilde{V}_{x}$ (Lemma A. 1).

Since $\psi(\tilde{W}_{x})$ is an open neighborhood of $y$ in $\tilde{U}_{j}$, there exists, again by Lemma
A. 1, a sub-folding chart $f_{j}|\tilde{Z}$, : $2,\rightarrow f_{j}(\tilde{Z},)$ with center at $y$ such that $\tilde{Z}_{y}\subset\psi(\tilde{W}_{x})$ . Since
$f_{J}\psi=f_{i}$ , we have

$f_{j}(\tilde{Z}_{y})\subset f_{j}\psi(\tilde{W}_{x})=f_{i}(\tilde{W}_{x})(\approx(G_{i})_{x}\backslash \tilde{W}_{x})$ .
Define $2_{\chi}:=f_{i}^{-1}(f_{J}\langle\tilde{Z},))\cap\tilde{W}_{x}$ . Then $Z_{x}$ is $(G_{i})$-invariant, and $f_{i}|\tilde{Z}_{x}$ : $\tilde{Z}_{x}\rightarrow f_{j}(\tilde{Z}_{x})$ is

a desired sub-folding chart with $\psi(\tilde{Z}_{x})=\tilde{Z}_{y}$ . $\square $

Let $f_{i}|\tilde{Z}_{x}$ : $\tilde{Z}_{x}\rightarrow f_{j}(\tilde{Z}_{x})$ and $f_{j}|\tilde{Z}_{y}$ ; $\tilde{Z}_{y}\rightarrow f_{j}(\tilde{Z},)$ be compatible sub-folding charts
with center at $x$ and $y$ respectively. We will prove that $(G_{i})_{x}\cong(G_{j})_{y}$ .

A point $z\in\tilde{Z}_{x}$ is said to be admissible if $(G_{i})_{z}=\{1\}$ or $D_{2}$ (dihedral group of order
2). Here we remark that if $D_{2}$ is used instead of $C_{2}$ (cyclic group of order $2\cong D_{2}$), it is
to be understood that $D_{2}$ acts as reflection with respect to an $(m-1)$-submanifold,
and in this case $z$ is also called a mirror point.

With the definition of admissibility as above, it is easy to see that $z\in\tilde{Z}_{x}$ is admis-
sible iff $\psi(z)\in\tilde{Z}_{y}$ is admissible. Denote the set of admissible points in $\tilde{Z}_{x}$ by $\tilde{Z}_{x}^{ad}$ . Then
$\tilde{Z}_{x}^{ad}$ is connected and $\psi(\tilde{Z}_{y}^{ad})=\tilde{Z}_{y}^{ad}$ . Moreover, denote the open set $f_{i}(\tilde{Z}_{x}^{ad})=f_{j}(\tilde{Z}_{y}^{ad})$ of
$M$ by $Z^{ad}$ . We see that

$f_{i}|Z_{x}^{ad}$ : $\tilde{Z}_{x}^{ad}\rightarrow Z^{ad}$ and $f_{j}|\tilde{Z}^{ad}$ : $\tilde{Z}_{y}^{ad}\rightarrow Z^{ad}$

are regular silvered coverings (in the sense of Appendix B) whose group of covering
translations are $(G_{i})_{x}$ and $(G_{j})_{y}$ , respectively. But these silvered coverings are mutually
isomorphic via $\psi$ : $\tilde{Z}_{x}^{ad}\rightarrow\tilde{Z}^{ad}$ , so that $(G_{i})_{x}\cong(G_{j})_{y}$ as asserted.

In the case when no mirror points appear, we need only ordinary covering spaces.

Appendix B. Silvered coverings.

A “silvered covering” is a generalization of an ordinary covering and a special
case of an orbifold covering. However, it would be worthwhile to develop the theory
of silvered coverings independently, because it is used in the proof of well-definedness
of isotropy groups. (Appendix A)

DEFINITION. A silvered m-manifold $M^{s}$ is a pair $(M, S)$ of a smooth m-manifold
$M$ and an $(m-1)$-submanifold $S$ of the boundary $\partial M$, such that $S$ is a closed subset
of $\partial M$. $S$ is called the silvered boundary.
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Given a connected silvered manifold $M^{s}=(M, S)$ , fix a base point $p_{0}$ in Int$(M)$ .
We will define the fundamental group $\pi_{1}(M^{s})$ as follows:

A loop 1 in $M^{s}$ means a loop in $M$ based at $p_{0}$ which, whenever it meets $S$, meets
it transversely like this:

Two loops $l_{1}$ and $l_{2}$ in $M^{s}$ are homotopic ($l_{1}\simeq l_{2}$ in “silvered” sense), if $l_{1}$ is
transformed into $l_{2}$ by a finite sequence of operations 1) $and/or2$) below:

1) ordinary homotopy in $M$ which keeps the transversality of loops at $S$;
2) cancelation of successive two intersections with $S$ like this:

$\simeq$

DEFINITION. $\pi_{1}(M^{s}):=$ {$loops$ in $M^{s}$} $/\simeq$ .
DEFINITION. Let $M^{s}=(M, S_{M}),$ $N^{s}=(N, S_{N})$ be connected silvered manifolds.

Then $h:N^{s}\rightarrow M^{s}$ is called a silvered covering if
(i) $h$ is continuous and surjective;

(1i) $h(S_{N})\subset S_{M}$ ;
(iii) $\forall x\in M^{s}$ has an open neighborhood $U$ such that $h^{-1}(U)$ is a disjoint union

of (open) connected components $U_{i}$ , and $h|U_{i}$ is either a homomorphism or quotient
by an involution with codimension one fixed point set. In the latter case, the fixed point
set in $U_{i}$ has to be projected onto an open set of $S_{M}$ under $h$ .

A silvered covering $\kappa;\tilde{M}^{s}\rightarrow M^{s}$ is a universal silvered covering if for any silvered
covering $h:N^{s}\rightarrow M^{s}$ , there exists a silvered covering $k:\tilde{M}^{s}\rightarrow N^{s}$ so that $ff_{=}hk$ . A
universal silvered covering $\tilde{M}^{s}$ is constructed by using paths in $M^{s}$ as follows:

Fix a base point $p_{0}\in Int(M)$ . Two paths $c_{1},$ $c_{2}$ , based at $p_{0}$ and ending in a point,
correspond to the same point of $\tilde{M}^{s}$ iff the composition $c_{1}c_{2}^{-1}$ is a loop which is
homotopic (in the silvered sense) to a constant loop.

Let $N$ be a smooth connected manifold, $\Gamma$ a group acting on $N$ smoothly and
properly discontinuously. We assume that for $\forall x\in N$, the isotropy group $\Gamma_{x}$ is either
{1} or $D_{2}$ (dihedral group of order 2) and in the latter case, that $D_{2}$ acts as involution
with codimension one fixed point set. Then $\Gamma\backslash N$ is a silvered manifold and the projection
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$N\rightarrow\Gamma\backslash N$ is a silvered covering. Such a silvered covering is said to be regular, and $\Gamma$ the
group of covering translations.

PROPOSITION B. 1. Let $h:N\rightarrow M^{s}$ be a regular silvered covering with the group of
covering translations $\Gamma$ . Then $h_{\iota}\pi_{1}(N)$ is a normal subgroup of $\pi_{1}(M^{s})$ and $\Gamma\cong$

$\pi_{1}(M^{s})/h_{f}\pi_{1}(N)$ .
Silvered coverings over $M^{s}$ are in one to one correspondence with the conjugacy

class of subgroups of $\pi_{1}(M^{s})$ .
A silvered covering $h:N^{s}\rightarrow M^{s}$ is a spread in Fox’s sense [F]. Thus one can define

a branched silvered covering just as an ”ordinary” branched covering [F].
Finally, we will construct the orientable double covering $M_{O}$ for a given orbifold

$M$. Let $M$ be a connected orbifold. A point $p\in M$ is called admissible if there exists a
folding chart $(\tilde{U}_{i}, G_{i}, f_{i}, U_{i})$ containing $p$ so that $f_{i}$ : $\tilde{U}_{i}\rightarrow U_{i}$ is a silvered covering. Let
$M^{ad}$ denote the set of admissible points in $M$. Then $M^{ad}$ is a silvered manifold. Take
the subgroup Or $\pi_{1}(M^{ad})$ of index 2 composed of orientation preserving loops. (Note
that each time a loop intersects the silvered boundary, the orientation is understood to
be reversed.) Construct the silvered covering $M_{O}^{ad}\rightarrow M^{ad}$ associated to the subgroup $O$ .
Let $M_{O}$ be the completion of the spread $M_{O}^{ad}\rightarrow M^{ad}\subset M$. Then $M_{O}\rightarrow M$ is 2: 1 and $M_{O}$

is not silvered. Also the universal covering of $M_{O}$ coincides with the universal covering
of $M$ (in the sense of orbifolds).

In conclusion, the topological concept underlying an orbifold covering is a branch-
ed silvered covering.
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