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\S 1. Introduction and results.

Let $X$ be a compact Hausdorff spaoe and $E$ a complex Banach spaoe with the norm
$\Vert\cdot\Vert_{E}$ . By $C(X, E)$ we denote the Banach space of all continuous E-valued functions
on $X$ with the usual norm; $\Vert f\Vert=\sup\{\Vert f(x)\Vert_{E} : x\in X\}$ . When $E$ is the complex field $C$,
we use $C(X)$ in place of $C(X, C)$ . Let $A$ be a function algebra on $X$, that is, a closed
subalgebra of $C(X)$ which contains the constants and separates points of $X$. We define
the space $A(X, E)$ by

$A(X, E)=$ {$f\in C(X,$ $E):e^{*}\circ f\in A$ for all $e^{*}\in E^{*}$ } ,

where $E^{*}$ is the dual space of $E$. Clearly $A(X, E)$ is a Banach space relative to the same
norm. For example, as a generalization of the disc algebra $A(\overline{D})$ on the closed unit
disc 25, we may consider the space {$f\in C(\overline{D}, E):f$ is an analytic E-valued function on
the open unit disc $D$}. Here $f$ is said to be analytic on $D$ when it is differentiable at
each point of $D$ , in the sense that the limit of the usual difference quotient exists in the
norm topology. It is known that thi $s$ space coincides the following space;

{$f\in C(D,$ $E)$ : $e^{*}\circ f\in A(\overline{D})$ for all $e^{*}\in E^{*}$ }
(see [2, p. 126]). The above definition of $A(X, E)$ is abstracted from this property.

We investigate weighted composition operators on $A(X, E)$ . A weighted
composition operator on $A(X, E)$ is a bounded linear operator $T$ from $A(X, E)$ into
itself, which has the form;

$Tf(x)=w(x)f(\varphi(x))$ , $x\in X,$ $f\in A(X, E)$ ,

for some selfmap $\varphi$ of $X$ and some map $w$ from $X$ into $B(E)$ , the space of bounded
linear operators on $E$. We write $wC_{\varphi}$ in place of $T$.

Weighted composition operators or composition operators on $C(X, E)$ were studied
in [3] and [6], and the case of $E=C$ was considered by Kamowitz [4], Uhlig [8],
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and others. In particular, Theorem 2 of [3] gave the necessary and sufficient conditions
for a weighted composition operator on $C(X, E)$ to be compact. In this paper we shall
prove an analogue for compact weighted composition operators on $A(X, E)$, which
includes results of [7] in the function algebra setting. At the same time, we remove one
condition given in [3, Theorem 2]. We also see that there is no compact composition
operator on $A(X, E)$ , if $E$ is infinite dimensional.

We begin with some notation and terminology on a function algebra $A$ . By $M_{A}$

we denote the maximal ideal space of $A$ . For each $f\in A$ , we put $ f(m)=m\omega$ for all
$m\in M_{A}$ . We consider $X$ as acompact subset of $M_{A}$ and aselfmap of $X$ as amap from
$X$ into $M_{A}$ . Also we note that $M_{A}$ is decomposed into (Gleason) parts $\{P_{\lambda}\}$ for $A$ such
that $M_{A}=\bigcup_{\lambda}P_{\lambda}$ , and $P_{\lambda}\cap P_{\mu}=\emptyset(\lambda\neq\mu)$ . For a non-trivial (not a one-point) part $P$,
we consider the following condition;

$(\alpha)$ for any $x$ in $P$, there are an open neighborhood $V$ of $x$ relative to $P$ and
a homeomorphism $\rho$ from a polydisc $D^{N}$ ($N$ depends on x) onto $V$ such that
$ f\circ\rho$ is analytic on $D^{N}$ for all $f\in A$ (cf. [5]).

If every non-trivial part for $A$ satisfies the above condition, we say that the associated
space $A(X, E)$ has the property $(\alpha)$ . See [1] for the details on function algebras.

The main result of this paper is the following theorem.

THEOREM. Let $wC_{\varphi}$ be a weighted composition operator on $A(X, E)$ .
(a) If $wC_{\varphi}$ is compact, then

(i) for each connected component $C$ of $S(w)=\{x\in X;w(x)\neq O\}$ , there exist an open
set $U$ containing $C$ and a part $P$ for $A$ such that $\varphi(U)\subset P$;

(ii) the map $w:X\rightarrow B(E)$ is continuous in the uniform operator topology, that is,
$\Vert w(x_{\lambda})-w(x)\Vert_{B\langle E)}\rightarrow 0$ as $x_{\lambda}\rightarrow x$;

(iii) $foranyx\in S(w),$ $Xx$) isa compact operator on E.
(b) In addition, we assume that $A(X, E)$ has the property $(\alpha)$ . If $wC_{\varphi}$ satisfies the above
conditions $(i)-(iii)$ , then $wC_{\varphi}$ is compact.

Before proving the theorem, we make a few remarks on a weighted
composition operator $wC_{\varphi}$ on $A(X, E)$ . For each $e\in E$, let $f_{e}$ be the constant $e$

function, i.e., $f_{e}(x)=e$ for all $x\in X$. Since $wCJ_{e}$ belongs to $A(X, E)$, it follows that
$\sup\{\Vert w(x)e\Vert_{E} : x\in X\}=\sup\{\Vert wCJ_{e}(x)\Vert_{E} : x\in X\}=\Vert wCJ_{e}\Vert<+\infty$ . By the uniform
boundedness principle, we have

$\Vert|w\Vert|=\sup\{\Vert w(x)\Vert_{B\langle E)} : x\in X\}<+\infty$ .
Moreover, if $\{x_{\lambda}\}$ is a net in $X$ with $x_{\lambda}\rightarrow x$, then we have

$\Vert w(x_{\lambda})e-M^{\chi})e\Vert_{E}=\Vert wCJ_{e}(x_{\lambda})-wCJ_{e}(x)\Vert_{E}\rightarrow 0$ ,

as $x_{\lambda}\rightarrow x$ . It means that the map $w:X\rightarrow B(E)$ is continuous in the strong operator
topology. (Note that $w$ is not necessarily continuous in the uniform operator



WEIGHTED COMPOSITION OPERATORS 123

topology. See [3] for example.) This continuity of $w$ shows that $S(w)=\{x\in X$ ;

$w(x)\neq 0\}$ is open in $X$. Also, we see that $\varphi$ is continuous on $S(w)$ . This is the
consequence of the fact that $wC_{\varphi}f$ is continuous on $X$ for all $f\in A(X, E)$ . But
$\varphi$ is not necessarily continuous on $X\backslash S(w)$ , because $wC_{\varphi}f$ is zero on $X\backslash S(w)$

even if $\varphi$ is anyhow defined.

\S 2. Proof of the theorem.

Let $wC_{\varphi}$ be a weighted composition operator on $A(X, E)$ . We may assume that $w$

is not identically zero, otherwise there is nothing to prove.
We first show the part (a) of the theorem. Suppose that $wC_{\varphi}$ is compact. Since the

proof of (ii) and (iii) is similar to that of the same part of [3, Theorem 2], we only
show (i). For this purpose, we observe that for each $x\in S(w)$ , there are a neighborhood
UofxandapartP forA such that $\varphi(U)\subset P$ .

If not, there exist a point $x_{0}$ in $S(w)$ and a part $P_{0}$ containing $\varphi(x_{0})$ such that
$\varphi(U)\not\subset P_{0}$ for any neighborhood $U$ of $x_{0}$ . Choose $e\in E$ so that $\delta=\Vert w(x_{0})e\Vert_{E}>0$ , and
let $U_{1}=\{x\in X:\Vert w(x)e\Vert_{E}>\delta/2\}$ . Since $U_{1}$ is an open neighborhood of $x_{0}$ , it follows that
$\varphi(U_{1})\not\subset P_{O}$ . Hence we find $x_{1}\in U_{1}$ with $\varphi(x_{1})\not\in P_{O}$ , and we have $F_{1}\in A$ such that

$\Vert F_{1}\Vert\leq 1$ , $F_{1}(\varphi(x_{0}))=0$ , $F_{1}(\varphi(x_{1}))>\frac{3}{4}$ .

Next put $U_{2}=\{x\in U_{1} : |F_{1}(\varphi(x))|<1/4\}$ . Since $U_{2}$ is an open neighborhood of $x_{0}$ , it
follows that $\varphi(U_{2})\not\subset P_{0}$ . So we find $x_{2}\in U_{2}$ with $\varphi(x_{2})\not\in P_{0}$ and $F_{2}\in A$ such that

$\Vert F_{2}\Vert\leq 1$ , $F_{2}(\varphi(x_{0}))=0$ , $F_{2}(\varphi(x_{2}))>\frac{3}{4}$ .

Here we note that $|F_{1}(\varphi(x_{2}))|<1/4$ . Continuing thi $s$ process, we obtain a sequence $\{x_{n}\}$

in $U_{1}$ and a sequence $\{F_{n}\}$ in $A$ such that

$\Vert F_{n}\Vert\leq 1$ , $F_{n}(\varphi(x_{O}))=0$ , $F_{n}(\varphi(x_{n}))>\frac{3}{4}$ ,

$|F_{k}(\varphi(x_{n}))|<\frac{1}{4}$ $(k=1, \cdots, n-1)$ .

Set $f_{n}(x)=F_{n}(x)e(x\in X, n=1,2, \cdots)$ . Since $\{f_{n}\}$ is a bounded sequence in $A(X, E)$, the
compactness of $wC_{\varphi}$ implies that $\{wCJ_{n}\}$ has a subsequence $\{wCJ_{n},\}$ converging
uniformly. But, for any $m^{\prime},$ $n^{\prime}(m^{\prime}<n^{\prime})$ ,

$\Vert wC_{\varphi}f_{m^{\prime}}-wCJ_{n^{\prime}}\Vert\geq\Vert w(x_{n^{\prime}})f_{m^{\prime}}(\varphi(x_{n^{\prime}}))-w(x_{n^{\prime}})f_{n^{\prime}}(\varphi(x_{n^{\prime}}))\Vert_{E}$

$=\Vert w(x_{n^{\prime}})F_{m^{\prime}}(\varphi(x_{n^{\prime}}))e-w(x_{n^{\prime}})F_{n^{\prime}}(\varphi(x_{n^{\prime}}))e\Vert_{E}$
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$=|F_{m^{\prime}}(\varphi(x_{n^{\prime}}))-F_{n^{\prime}}(\varphi(x_{n^{\prime}}))|\cdot\Vert w(x_{n^{\prime}})e\Vert_{E}>(\frac{3}{4}-\frac{1}{4})\cdot\frac{\delta}{2}=\frac{\delta}{4}$ .

This is a contradiction.
Now let $C$ be a connected component of $S(w)$ . If we fix $x_{0}\in C$, then $\varphi(x_{O})$ belongs

to some part $P$ for $A$ . Put $U=\{x\in S(w) : \varphi(x)\in P\}$ . Then the above observation shows
that $U$ is open and closed in $S(w)$, and the connectedness of $C$ implies that $C\subset U$. Thus
we obtain the condition (i).

Conversely, assume that $wC_{\varphi}$ satisfies the conditions $(i)-(iii)$ . Using the
property $(\alpha)$ , we must show that $wC_{\varphi}$ is compact. Let $\{f_{n}\}$ be a sequence in $A(X, E)$

with $\Vert f_{n}\Vert\leq 1$ , and $\epsilon>0$ given. Set $U_{0}=\{x\in X;\Vert w(x)\Vert_{B(E)}<\epsilon/2\}$ . Then, by (ii), $U_{0}$ is an
open set. For any $x\in U_{0}$ , and $m,$ $n=1,2,$ $\cdots$ ,

$\Vert wCJ_{m}(x)-wC_{\varphi}f_{n}(x)\Vert_{E}=\Vert w(xKf_{m}(\varphi(x))-f_{n}(\varphi(x)))\Vert_{E}$

(1) $\leq\Vert w(x)\Vert_{B(E)}(\Vert f_{m}(\varphi(x))\Vert_{E}+\Vert f_{n}(\varphi(x))\Vert_{E})$

$\leq 2\Vert mx)\Vert_{B\langle E)}<2\cdot\frac{\epsilon}{2}=\epsilon$ .

We next show that every $x\in X\backslash U_{0}$ has an open neighborhood $U(x)$ such that

(2) $\Vert wCJ_{n}(x)-wC_{\varphi}f_{n}(y)\Vert_{E}<\frac{\epsilon}{3}$ for all $y\in U(x)$ , and $n=1,2,$ $\cdots$

Let $P$ be the part containing $\varphi(x)$ . If $P$ is a one-point part, we take

$U(x)=\{y\in S(w):\varphi(y)=\varphi(x),$ $\Vert w\not\in x$) $-Wy$) $\Vert_{B(E)}<\frac{\epsilon}{3}\}$ .

By (i) and (ii), $U(x)$ is an open neighborhood of $x$, and we have

$\Vert wCJ_{n}(x)-wC_{\varphi}f_{n}(y)\Vert_{E}=\Vert \mathcal{M}x)f_{n}(\varphi(x))-n\langle y)f_{n}(\varphi(x))||_{E}$

$\leq\Vert Wx)-w(y)\Vert_{B(E)}\Vert f_{n}(\varphi(x))\Vert_{E}\leq\Vert mx)-ty)\Vert_{B(E)}<\frac{\epsilon}{3}$ ,

for all $y\in U(x)$, and $n=1,2,$ $\cdots$ .
On the other hand, if $P$ is non-trivial, then there are a neighborhood $V$ of $\varphi(x)$

and a homeomorphism $\rho$ from $D^{N}$ onto $V$ in the property $(\alpha)$ . Hence for any $e^{*}\in E^{*}$

with $\Vert e^{*}\Vert=1$ , $\{(e^{*}\circ f_{n})^{-}\circ\rho\}$ is a bounded sequence of analytic functions
on $D^{N}$, and so a normal family in the sense of Montel. Consequently, we find an
open neighborhood $W\subset D^{N}$ of $\zeta=\rho^{-1}(\varphi(x))$ such that

$|(e^{*}\circ f_{n})^{-}\circ\rho(\zeta)-(e^{*}\circ f_{n})^{-}\circ\rho(\eta)|<\frac{\epsilon}{6\Vert|w\Vert|}$ ,

for all $\eta\in W$ and $n=1,2,$ $\cdots$ . Now let
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$U(x)=\{y\in S(w)$ : $\varphi(y)\in\rho(W),$ $\Vert w(x)-w(y)\Vert_{B\langle E)}<\frac{\epsilon}{6}\}$ .

Using (i), (ii), and $(\alpha)$ , we can easily check that $U(x)$ is an open neighborhood of $x$ .
Furthermore, for any $y\in U(x)$ and $n=1,2,$ $\cdots$ , we have

$\Vert wC_{\varphi}f_{n}(x)-wC_{\varphi}f_{n}(y)\Vert_{E}=\Vert w(x)f_{n}(\varphi(x))-w(y)f_{n}(\varphi(y))\Vert_{E}$

$\leq\Vert w(x)-w(y)\Vert_{B\langle E)}\cdot\Vert f_{n}(\varphi(x))\Vert_{E}$

$+\Vert w(y)\Vert_{B\langle E)}\cdot\Vert f_{n}(\varphi(x))-f_{n}(\varphi(y))\Vert_{E}$

$\leq\Vert w(x)-w(y)\Vert_{B\langle E)}+\Vert|w\Vert|\cdot\Vert f_{n}(\varphi(x))-f_{n}(\varphi(y))\Vert_{E}$ .

Here we take $e_{n}^{*}\in E^{*}$ with $\Vert e_{n}^{*}\Vert\leq 1$ such that $\Vert f_{n}(\varphi(x))-f_{n}(\varphi(y))\Vert_{E}=|e_{n}^{*}(f_{n}(\varphi(x))-$

$f_{n}(\varphi(y)))|$ , and put $\eta=\rho^{-1}(\varphi(y))$ . Then we have

$\Vert f_{n}(\varphi(x))-f_{n}(\varphi(y))\Vert_{E}=|e_{n}^{*}(f_{n}(\varphi(x)))-e_{n}^{*}(f_{n}(\varphi(y)))|$

$=|e_{n}^{*}\circ f_{n}\circ\rho(\zeta)-e_{n}^{*}\circ f_{n}\circ\rho(\eta)|<\frac{\epsilon}{6\Vert|w\Vert|}$ ,

and so

$\Vert wC_{\varphi}f_{n}(x)-wC_{\varphi}f_{n}(y)\Vert_{E}\leq\frac{\epsilon}{6}+\Vert|w\Vert|\cdot\frac{\epsilon}{6\Vert|w\Vert|}=\frac{\epsilon}{3}$ .

Thus we obtain an open neighborhood $U(x)$ of $x$ satisfying (2). Since $X$ is a
compact set, we can find a finite set $\{x_{1}, \cdots, x_{M}\}$ in $X\backslash U_{0}$ such that
$X=U_{0}\cup\bigcup_{i=1}^{M}U(x_{i})$ . For each $i,$ $\{f_{n}(\varphi(x_{i}))\}_{n=1}^{\infty}$ is a bounded sequence in $E$, and
$w(x_{i})$ is a compact operator on $E$ by (iii). Consequently we have a subsequence
$\{f_{n’}\}$ of $\{f_{n}\}$ such that

$\Vert wC_{\varphi}f_{m^{\prime}}(x_{i})-wCJ_{n^{\prime}}(x_{i})\Vert_{E}$

$=\Vert w(x_{i})f_{m^{\prime}}(\varphi(x_{i}))-w(x_{i})f_{n^{\prime}}(\varphi(x_{i}))\Vert_{E}<\frac{\epsilon}{3}$ ,

for all $m^{\prime},$ $n^{\prime}$ and $i=1,$ $\cdots,$ $M$. Hence, for any $x\in X\backslash U_{O}$ , taking $x_{i}$ so that $x\in U(x_{i})$ ,
we have

$\Vert wCJ_{m},(x)-wCJ_{n},(x)\Vert_{E}\leq\Vert wCJ_{m},(x)-wC_{\varphi}f_{m^{\prime}}(x_{i})\Vert_{E}$

$+\Vert wC_{\varphi}f_{m^{\prime}}(x_{i})-wC_{\varphi}f_{n^{\prime}}(x_{i})\Vert_{E}+\Vert wC_{\varphi}f_{n^{\prime}}(x_{i})-wC_{\varphi}f_{n^{\prime}}(x)\Vert_{E}$

$<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon$

for all $m^{\prime},$ $n^{\prime}$ . Together with (1), we see that $\{f_{n},\}$ is a subsequence of $\{f_{n}\}$ such that

(3) $\Vert wC_{\varphi}f_{m},-wC_{\varphi}f_{n’}\Vert<\epsilon$ for any $m^{\prime},$
$n^{\prime}$
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Now we choose a first subsequence $\{f_{1,n}\}$ of $\{f_{n}\}$ satisfying (3) as $\epsilon=1$ , and
inductively a $k+1$ -th subsequence $\{f_{k+1,n}\}$ of $\{f_{k.n}\}$ satisfying (3) as $\epsilon=1/k$ . The Cantor
diagonal process shows that the sequence $\{wC_{\varphi}f_{n}\}$ has a subsequence which is a Cauchy
sequence in $A(X, E)$ . Hence the completeness of $A(X, E)$ establishes the compactness
of $wC_{\varphi}$ , and the proof of the theorem is completed.

\S 3. Applications.

We here apply the theorem to various spaces. When $A=C(X)$ , then
$A(X, E)=C(X, E)$ . Notice that every part for $C(X)$ is one-point. Our theorem yields
the following corollary, which says that the condition (2.5) in [3, Theorem 2] is
removable.

COROLLARY 1. Let $wC_{\varphi}$ be a weighted composition operator on $C(X, E)$ . Then $wC_{\varphi}$

is compact $\iota f$ and only if (i) for each connected component $C$ of $S(w)=\{x\in X:w(x)\neq 0\}$ ,
there exists an open set $U$ containing $C$ such that $\varphi$ is constant on $U$; (ii) the map $w$ is
continuous in the uniform operator topology; and (iii) for each $x\in S(w),$ $w(x)$ is a compact
operator on $E$.

We next consider the case of E$=C$. Then the spaoe $A(X, C)$ isafunction algebra
$A$ on $X$, and the conditions (ii) and (iii) in the theorem are automatically satisfied.
Consequently we obtain results of [7].

Finally we remark on composition operators on $A(X, E)$ . Let $I_{E}$ be the identity
operator on $E$, and define $w$ by $w(x)=I_{E}$ for all $x\in X$. A weighted composition
operator $wC_{\varphi}$ on $A(X, E)$ induced by this map $w$ is said to be a composition operator.
If $E$ is an infinite dimensional Banach space, $I_{E}$ is not compact, and so the above map
$w$ does not satisfy the condition (iii) in the theorem. Hence the part (a) of the theorem
shows the following corollary (cf. [6]):

COROLLARY 2. If $E$ is infinite dimensional, then there is no compact
composition operator on $A(X, E)$ .
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