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Abstract. An immersion of a differentiable manifold into an almost Hernitian manifold is called a
general slant immersion if it has constant Wirtinger angle ([3, 6]). A general slant immersion which is neither
holomorphic nor totally real is called a proper slant immersion. In the first part of this article, we prove that
every general slant immersion of a compact manifold into the complex Euclidean m-space $C$“ is totally real.
This result generalizes the well-known fact that there exist no compact holomorphic submanifolds in any
complex Euclidean space. In the second part, we classify proper slant surfaces in $C^{2}$ when they are contained
in a hypersphere $S^{3}$ , or contained in a hyperplane $E^{3}$ , or when their Gauss maps have rank $<2$ .

1. Introduction.

We follow the definitions and notations given in [1], [2], [3], and [6].
Let $E^{2m}=(R^{2m}, \langle, \rangle)$ and $C^{m}=(E^{2m}, J_{0})$ be the $Euclidean2m$-space and the complex

Euclidean m-space, respectively, with the canonical inner product $\langle$ $\rangle$ and the canonical
(almost) complex structure $J_{0}$ given by

(1.1) $J_{O}(x_{1}, y_{1}, \cdots, x_{m}, y_{m})=(-y_{1}, x_{1}, \cdots, -y_{m}, x_{m})$ .
Denote by $\Omega_{0}$ the Kaehler form of $C^{m}$ , i.e.,

(1.2) $\Omega_{O}(X, Y)=\langle X, J_{0}Y\rangle$ , $X$, Ye $E^{2m}$ , $\Omega_{0}\in\wedge^{2}(E^{2m})^{*}$ .
By an $\alpha$-slant immersion $[3, 6]$ we mean a general slant immersion $x:M\rightarrow C^{m}$ with slant
angle $\alpha\in[0, \pi/2]$ , i.e.,

(1.3) $\angle(J_{0}(x_{*}X), x_{*}(T_{p}M))=\alpha$ $\forall X\in T_{p}M-\{0\}$ , $\forall p\in M$ ,

where $\angle$ denotes the angle in $E^{2m}$ with respect to the inner product $\langle$ , $\rangle$ . A totally real
immersion [4] and a holomorphic immersion are nothing but a $\pi/2$-slant immersion
and a O-slant immersion, respectively. A proper slant immersion is an $\alpha$-slant immersion
with $\alpha\neq 0,$ $\pi/2$ .

In section 2 we prove the following
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THEOREM 1.1. Let $x$ be a general slant immersion of a differentiable manifold $M$

into the complex Euclidean m-space $C^{m}$ . If $M$ is compact, then $x$ is totally real.

This theorem shows that there exist no compact proper slant submanifolds in $C^{m}$

as in the case of holomorphic submanifolds. We note that one may construct compact
proper slant surfaces in a (flat) complex torus via a proper slant plane in $C^{2}$ (cf. Example
3 of [3]). We also note that there exist many compact totally real submanifolds in $C^{m}$ .

Next, we consider a slant immersion $x$ from a noncompact oriented surface $M$ into
$C^{2}$ . As in [6] we may extend the slant angle by defining it as

(1.4) $\alpha=\cos^{-1}(-\Omega_{O}(X, Y))\in[0, \pi]$ ,

where {X, $Y$} is a local positive orthonormal frame field on $M$.
Now we assume that the image of $x$ is contained in a hypersphere $S^{3}$ of $C^{2}$ . Since

the slant angle is invariant under the parallel translations and homotheties in $C^{2}$ , we
can assume, without loss of generality: that $S^{3}$ is the unit hypersphere centered at the
origin of $C^{2}$ . Let $\eta$ denote the unit outer normal vector of $S^{3}$ in $C^{2}$ and $\xi$ the unit
positive normal vector of $x(M)$ in $S^{3}$ . It is known that $S^{3}$ is the Lie group of unit
quatemions which can be regarded as a subgroup of $O(4)$ in a natural way (cf. [7, $p$ .
142]). Let 1 denote the identity element of the Lie group $S^{3}$ given by

(1.5) $1=(1,0,0,0)\in S^{3}\subset E^{4}$

We put

(1.6) $X_{1}=(0,1,0,0)$ , $X_{2}=(0,0,1,0)$ , $X_{3}=(0,0,0,1)\in T_{1}S^{3}$

We denote by $\tilde{X}_{i},$ $i=1,2,3$ , the left-invariant extensions of $X_{i},$ $i=1,2,3$ , on $S^{3}$ ,
respectively (cf. [7, p. 145]). Let $\phi:S^{3}\rightarrow S^{3}$ be the orientation-reversing isometry
defined by

(1.7) $\phi(a, b, c, d)=(a, b, d, c)$ .

We define two maps $g_{+}$ and $g_{-}$ from $M$ into the unit sphere $S^{2}$ in $T_{1}S^{3}$ by

(1.8) $g_{+}(p)=(L_{\phi\{x(p))}.)^{-1}(\phi_{*}\xi(p))$ , $g_{-}(p)=(L_{x(p)}.)^{-1}(\xi(p))$

for $p\in M$. In. fact, $g_{+}$ and $g_{-}$ are the analogous of the classical Gauss map of a surface
in $E^{3}$ in which the parallel translations in $E^{3}$ are replaced by the left-translations $L_{q}$

on $S^{3}$ . We also define a circle $S_{\alpha}^{1}$ for $\alpha\in[0, \pi]$ on the unit sphere $S^{2}$ in $T_{1}S^{3}$ by

(1.9) $S_{a}^{1}=\{X\in T_{1}S^{3}|\Vert X\Vert=1, \langle X, X_{1}\rangle=-\cos\alpha\}$ .

Finally, let $\Gamma_{0}$ denote the complex structure on $E^{4}$ defined by

(1.10) $J_{0}^{-}(x, y, z, w)=(-y, x, w, -z)$ .
In section 3 we prove the following result which characterizes spherical slant sur-

faces in $C^{2}$ .
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PROPOSITION 1.2. Let $x:M\rightarrow S^{3}\subset E^{4}$ be an immersion of an oriented surface $M$.
Then we have

(i) $xis\alpha- slantwithrespecttoJ_{0}$ ifand only if
(1.11) $g_{+}(M)\subset S_{\alpha}^{1}\subset T_{1}S^{3}$

(ii) $x$ is $\alpha$-salnt with respect to $J_{O}$ if and only if
(1.12) $g_{-}(M)\subset S_{n-\alpha}^{1}\subset T_{1}S^{3}$

This proposition provides us the spherical version of Proposition 4.1 of [6].

In order to describe slant surfaces in $S^{3}$ geometrically, we give the following

DEFINITION 1.3. Let $c(s)$ be a curve in $S^{3}$ parametrized by arclength and let

(1.3) $c^{\prime}(s)=\sum_{i=1}^{3}f_{\iota}(s)\tilde{X}_{i}(c(s))$ .

We call the curve $c(s)$ a helix in $S^{3}$ with axis vector field $X_{1}$ if

(1.14) $f_{1}(s)=b,$ $f_{2}(s)=a\cos(ks+s_{0}),$ $f_{3}(s)=a\sin(ks+s_{O})$

for some constants $a,$ $b,$ $k$ , and $s_{0}$ satisfying

(1.15) $a^{2}+b^{2}=1$ .

We call the curve $c(s)$ a generalized helix in $S^{3}$ with axis vector field $X_{1}$ if

(1.16) $\langle c^{\prime}(s),\tilde{X}_{1}(c(s))\rangle=constant$ .

The helices in $S^{3}$ defined above are the analogues of Euclidean helices in $E^{3}$ .

DEFINITION 1.4. We call an immersion $x:D\rightarrow S^{3}$ of a domain $D$ around the origin
$(0,0)$ of $R^{2}$ into $S^{3}$ ahelical cylinder in $S^{3}$ if

(1.18) $x(s, t)=\gamma(t)\cdot c(s)$ ,

for some helix $c(s)$ in $S^{3}$ with axis $X_{1}$ satisfying $k=-2/b$ and $ab<0$ and for some curve
$\gamma(t)$ in $S^{3}$ which is either a geodesic or a curve of constant torsion 1 parametrized by
arclength such that (i) $c(O)=\gamma(0)$ , and (ii) the osculating planes of $c(s)$ and of $\gamma(t)$ coincide
at t $=s=0$ . We note that the binormal of c(s) is normal to x(D) $inS^{3}byLemma4.2in$

section 4 and [7, pp. 149-157]. Here we orient the curve $c$ in such a way that the
binormal of $c(s)$ is the positive unit normal of $x(D)$ .

In section 4 we prove the following classification theorem for spherical slant sur-
faces.

THEOREM 1.5. Let $x:M\rightarrow S^{3}\subset C^{2}=(E^{4}, J_{0})$ be a spherical immersion of an
oriented surface $M$ into the complex 2-plane $C^{2}=(E^{4}, J_{0})$ . Then $x$ is a proper slant
immersion if and only if $x(M)$ is locally of the form $\{\phi(\gamma(t)\cdot c(s))\}$ where $\phi$ is the isometry
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on $S^{3}$ defined by (1.7) and $\{\gamma(t)\cdot c(s)\}$ is a helical cylinder in $S^{3}$ (cf. Definition 1.4).

For an immersion $x:M\rightarrow C^{m}$, the Gauss map $v$ of the immersion $x$ is given by
(cf. [5])

$v$ : $M\rightarrow G(l, 2m)\equiv D_{1}(l, 2m)\subset S^{N-1}\subset\wedge^{i}(E^{2m})$ ,
(1.18)

$v(p)=e_{1}(p)\wedge\cdots\wedge e_{l}(p)$ , $p\in M$ ,

where $l=\dim M,$ $N=t_{i}^{2m}$), $D_{1}(l, 2m)$ is the set of all unit decomposable l-vectors in
$\wedge^{i}E^{2m}$ , identified with the real Grassmannian $G(l, 2m)$ in a natural way, and $S^{N-1}$ is
the unit hypersphere $of\wedge^{\iota}(E^{2m})$ centered at the origin, and $\{e_{1}, \cdots, e_{2m}\}$ is a local
adapted orthonormal tangent frame along $x(M)$ .

In section 5 we prove the following classification theorem.

THEOREM 1.6. If $x:M\rightarrow C^{2}=(E^{4}, J_{0})$ is a general slant immersion such that the
rank of its Gauss map is less than 2, then the image $x(M)$ of $x$ is a union of some flat
ruled surfaces in $E^{4}$ . Furthermore,

(i) A cylinder in $C^{2}$ is a general slant surface ifand only ifit is oftheform $\{c(s)+te\}$ ,
where $e$ is a fixed unit vector and $c(s)$ is a (Euclidean) generalized helix with axis $J_{O}e$

contained in a hyperplane of $E^{4}$ and with $e$ as its hyperplane normal.
(ii) A cone in $C^{2}$ is a general slant surface if and only if, up to translations, it is

of theform $\{t4s)\}$ , where $(\phi\circ cXs)$ is a generalized helix in $S^{3}$ with axis $X_{1}$ (cf. Definition
1.3).

(iii) A tangential developable surface $\{c(s)+(t-s)c^{\prime}(s)\}$ in $C^{2}$ is a general slant
surface if and only if, up to rigid motions, $(\phi\circ c^{\prime})(s)$ is a generalized helix in $S^{3}$

with axis $ff_{1}$ .
In the last section we prove the following
THEOREM 1.7. Let $x:M\rightarrow C^{2}=(E^{4}, J_{0})$ be a proper slant immersion ofan oriented

surface $M$ into $C^{2}$ . If $x(M)$ is contained in a hyperplane $W$ of $E^{4}$, then $x$ is a doubly
slant immersion (in the sense of [6]) and $x(M)$ is a union of some flat ruled surfaces in
W. Furthermore,

(i) A cylinder in $W$ is a proper slant surface with respect to a complex structure $J$

on $E^{4}$ if and only if it is a portion of a 2-plane.
(ii) A cone in $W$ is a proper slant surface with respect to a complex structure $J$ on

$E^{4}$ if and only if it is a circular cone.
(iii) A tangential developable surface in $W$ is a proper slant surface with respect to

a complex structure $J$ on $E^{4}$ if and only if it is a tangential developable surface obtained
from a generalized helix $c$ in $W$.

In the classifications of slant surfaces given in Theorems 1.5, 1.6, and 1.7, we avoid
the messy argument of gluing.
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2. Compact slant submanifolds.

The following two lemmas follow easily from direct computation.

LEMMA 2.1. For $X_{1},$ $\cdots,$ $X_{2n}\in E^{2m}(n<m)$ , we have

(2.1)
$(2n)!\Omega_{0}^{n}(X_{1}\wedge\cdots\wedge X_{2n})=\sum_{\sigma eS_{2n}}sign(\sigma)\Omega_{0}(X_{\sigma\langle 1)}, X_{\sigma(2)})\cdots\Omega_{0}(X_{\sigma\langle 2n-1)}, X_{\sigma(2n)})$ ,

where $S_{2n}$ is the permutation group oforder $2n$ , sign denotes the signature ofpermutations
and $\Omega_{0}^{n}\in\wedge^{2n}(E^{2m})^{*}\equiv(\wedge^{2n}E^{2m})^{*}$ .

LEMMA 2.2. Let $V\in G(l, 2m)$ and $\pi_{V}$ : $E^{2m}\rightarrow V$ be the orthogonal projection. If $V$

is $\alpha$-slant in $C^{m}\equiv(E^{2m}, J_{0})$ with $\alpha\neq\pi/2$ , then the linear endomorphism $J_{V}$ of $V$ defined by

(2.2) $J_{V}=(\sec\alpha K\pi_{V}\circ J_{O}|_{V})$

is a complex structure compatible with the inner product $\langle, \rangle|_{V}$ . In particular, $l$ is even.

Let $\zeta_{0}$ be the metrical dual of $(-\Omega_{0})^{n}$ with respect to the inner product $\langle$ $\rangle$ natural-
ly defined $on\wedge^{2n}E^{2m}$ , i.e.,

(2.3) $\langle\zeta_{0}, \eta\rangle=(-1)^{n}\Omega_{O}^{n}(\eta)$ for $\forall\eta\in\wedge^{2n}E^{2m}$ ,

then we have the following

LEMMA 2.3. Let $V\in G(2n, 2m)$ . If $ V\dot{i}\alpha$-slant in $C^{m}$ with $\alpha\neq\pi/2$ , then

(2.4) $\langle\zeta_{0}, V\rangle=\mu_{n}\cos^{n}\alpha$ ,

where $\mu_{n}$ is a nonzero constant depending only on $n$ .
$PR\infty F$ . Let $J_{V}$ be the complex structure on $V$ defined by Lemma 2.2. For a unit

vector $X\in V$, we put $Y=J_{V}X\in V$. Then we have

(2.5) $\Omega_{0}(X, J_{V}X)=\langle-J_{V}Y, J_{0}Y\rangle=-\cos\alpha$ .
If $X,$ $Z\in V$ and $Z$ is perpendicular to $J_{V}X$, then

(2.6) $\Omega_{0}(X, Z)=\cos\alpha\langle X, J_{V}Z\rangle=0$ .
Therefore, if we choose an orthonormal $J_{V}$-basis $\{e_{1}, \cdots, e_{2n}\}$ on $V$, i.e.,

(2.7) $e_{2k}=J_{V}e_{2k-1}$ , $k=1,$ $\cdots,$ $n$ ,

and

(2.8) $V=e_{1}\wedge\cdots\wedge e_{2n}$ ,

via the natural identification of $G(2n, 2m)$ with $D_{1}(2n, 2m)$ , then we have

(2.9) $\Omega_{0}(e_{a}, e_{b})=-\delta_{ab}\cos\alpha$ for $a<b$ ,
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where

(2.10) $(2k)^{*}=2k-1$ , $(2k-1)^{*}=2k$ for $k=1,$ $\cdots,$ $n$ .
By (2.8), Lemma 2.1, and (2.9) we find

$(2n)!\Omega_{0}^{n}(V)=(2n)!\Omega_{0}^{n}(e_{1}\wedge\cdots\wedge e_{2n})$

$=\sum_{\sigma eS_{2n}}sign(\sigma)\Omega_{0}(e_{\sigma\langle 1)}, e_{\sigma(2)})\cdots\Omega_{0}(e_{\sigma\langle 2n-1)}, e_{\sigma(2n)})$

$=\ldots\sum_{a_{2n}1\cdot\cdot=1}^{2n}\delta_{a_{1}a_{2n}}^{12.\cdot.\cdot.\cdot(2n)}\Omega_{0}(e_{a_{1}}, e_{a_{2}})\cdots\Omega_{0}(e_{a_{2n- 1}}, e_{a_{2n}})$

(2.11) $=\sum_{a_{1},\cdots,a_{n}=1}^{2n}\delta:_{1}^{2\cdots\cdots(2n)}a|\cdots a_{n}a_{\dot{n}}\Omega_{O}(e_{a_{1}}, e_{a|})\cdots\Omega_{O}(e_{a_{n}},$
$e_{a}*J$

$=2^{n}\sum_{a_{1}<a|an}\cdots\sum_{<a_{n}^{*}}\delta^{12\cdots\cdots\langle 2n)}a_{1}a_{n}a_{\dot{n}}\Omega_{0}(e_{a_{1}}, e_{a})\cdots\Omega_{0}(e_{a_{n}},$
$e_{a}J$

$=2^{n}(-\cos\alpha)^{n}\sum_{aa_{1}<ain}\cdots\sum_{<a_{n}}.\delta_{a_{1}a\{\cdots a_{n}a_{\dot{n}}}^{12\cdots\cdots(2n)}$

$\simeq 2^{n}(-\cos\alpha)^{n}n!$ .
Hence, by (2.3) and (2.11) we obtain (2.4) with $\mu_{n}=2^{n}n!/(2n)!$ . Q.E.D.

PROOF OF THEOREM 1.1. Assume $x$ is $\alpha$-slant with $\alpha\neq\pi/2$ . Then, by Lemma 2.2,
$l$ is even. Put $l=2n$ . Since $M$ is compact, it is known that the Gauss image $v(M)$ is
mass-symmetric in $S^{N-1}$ (cf. Lemma 3.1 of [5]). Therefore

(2.12) $\int_{peM}\langle v(p), \zeta\rangle dV_{M}=0$

for any fixed $2n$-vector $\zeta\in\wedge^{2n}(E^{2m})$ , where $dV_{M}$ is the volume element of $M$ with respect
to the metric induced from the immersion $x$ . Let $\zeta=\zeta_{0}$ . Then Lemma 2.3 and (2.12)
imply

(2.13) $\mu_{n}vol(M)\cos^{n}\alpha=0$ .

But this contradicts the assumption $\cos\alpha\neq 0$ . Hence $\alpha=\pi/2$ and $x$ is a totally real
immersion. Q.E.D.

3. Characterization of spherical slant surfaces.

The main purpose of this section is to prove Proposition 1.2. To do so we recall
that the left-translation $L_{p}$ and the right-translation $R_{p}$ on $S^{3}$ are isometries which are
analogous to the parallel translations on $E^{3}$ and they are given by
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(3.1) ${}^{t}(L_{p}q)=(bcda-b-cad$ $-d-cba-b-dac)\left(\begin{array}{l}x\\y\\Z\\w\end{array}\right)$ ,

(3.2) ${}^{t}(R_{p}q)=(bcad-b-dac-b-cda$ $-d-bac)\left(\begin{array}{l}x\\y\\Z\\w\end{array}\right)$

forp $=(a, b, c, d),$ $q=(x, y, z, w)\in S^{3}\subset E^{4},$ where ${}^{t}AdenotesthetransposeofA$ .
Let $\eta$ denote the unit outer normal of $S^{3}$ in $E^{4}$ and $J_{0}$ and $J_{0}$ the complex struc-

tures on $E^{4}$ as defined by (1.1) and (1.10), respectively.
By direct computation we have the following

LEMMA 3.1. For any $q\in S^{3}$ , we have

(3.3) $(J_{0}\eta Xq)=R_{q}.X_{1}$ ,

(3.4) $(J_{O}\eta)(q)=L_{qi}X_{1}=\tilde{X}_{1}(q)$ .
Hence $ J_{O}\eta$ and $ J_{O}\eta$ are right- and left-invariant vector fields on $S^{3}$ , respectively.

We denote by $\mathscr{J}$ the set of all complex structures on $E^{4}$ compatible with the inner
product $\langle$ , $\rangle$ . For each fixed $J\in \mathscr{J}$ an orthonormal basis $\{e_{1}, \cdots, e_{4}\}$ of $E^{4}$ is called a
J-basis if $Je_{1}=e_{2},$ $Je_{3}=e_{4}$ . Two J-bases have the same orientation. By using the natural
orientation of $E^{4}$ we can divide $\mathscr{J}$ into two disjoint subsets:

$\mathscr{J}^{+}=$ { $J\in \mathscr{J}|$ J-bases are positive} ,

$\mathscr{J}^{-}=$ { $J\in \mathscr{J}|$ J-bases are negative}.

Thus we have $\mathscr{J}=\mathscr{J}^{+}u\mathscr{J}^{-}$ (cf. section 3 of [6]).

LEMMA 3.2. Let We $G(3,4)$ and $VeG(2,4)$ such that $V\subset W$. Then $V$ is $\alpha$-slant
with respect to a complex structure $J\in \mathscr{J}^{+}$ (respectively, $J\in \mathscr{J}^{-}$ ) if and only if
(3.5) $\langle\xi_{V}, J\eta_{W}\rangle=-\cos\alpha$ (respectively, $\langle\xi_{V},$ $ J\eta_{W}\rangle=+\cos\alpha$) ,

where $\xi_{V}$ and $\eta_{W}$ are positive unit normal vectors of $V$ in $W$ and of $W$ in $E^{4}$ , respectively.

PROOF OF LEMMA 3.2. We choose an orthonormal J-basis $\{e_{1}, \cdots, e_{4}\}$ of $E^{4}$ such
that

(3.6) $e_{1},$ $e_{2}eW\cap JW$ , $e_{4}=Je_{3}=\eta_{W}$ .
We also choose a positive orthonormal basis $\{X_{1}, X_{2}\}$ of $V$. Let $\zeta_{J}$ be the 2-vector
defined as the metrical dual $of-\Omega_{J}\in(\wedge^{2}E^{4})^{*}$ , i.e., $\langle\zeta_{J}, X\wedge Y\rangle=-\Omega_{J}(X, JY)$ for any



108 BANG-YEN CHEN AND YOSHIHIKO TAZAWA

$X,$ $Y\in E^{4}$ . Then by formula (1.4) we see that the slant angle $\alpha_{J}(V)$ of $V$ with respect to
$J$ satisfies

$\cos\alpha_{J}(\eta=\langle\zeta_{J}, X_{1}\wedge X_{2}\rangle=\langle e_{1}\wedge e_{2}+e_{3}\wedge e_{4}, X_{1}\wedge X_{2}\rangle$

$=\langle e_{1}\wedge e_{2}, X_{1}\wedge X_{2}\rangle=\langle\pm e_{3}, \xi_{V}\rangle=\mp\langle J\eta_{W}, \xi_{V}\rangle$

$forJ\in \mathscr{J}^{\pm}$ . This proves the lemma. Q.E.D.

Let $x:M\rightarrow S^{3}\subset E^{4}$ be a spherical immersion of an oriented surface $M$ into $S^{3}$

and $\xi$ the positive unit normal of $x(M)$ in $S^{3}$ . Then we have

LEMMA 3.3. The following three statements hold.
(i) $xis\alpha- slantwithrespecttoJ_{0}$ ifand only if

(3.7) $\langle\xi(p), J_{0}\eta(x(p))\rangle=-\cos\alpha$ for $\forall p\in M$ .
(ii) $ X\dot{i}\alpha$-slant with respect to $J_{0}$ if and only if

(3.8) $\langle\xi(p),\tilde{X}_{1}(x(p))\rangle=+\cos\alpha$ for $\forall p\in M$ .
(iii) $xis\alpha- slantwithrespecttoJ_{0}ifandonlyif\phi\circ xis\alpha- slantwithrespecttoJ_{0}$ .
PROOF OF LEMMA 3.3. Statement (i) follows from Lemma 3.2. Statement (ii) fol-

lows from Lemma 3.1 and Lemma 3.2. Finally, the last statement follows from state-
ments (i) and (ii) and from the fact that $\phi$ is an isometric involution reversing the ori-
entation of $E^{4}$ . Q.E.D.

$PR\infty F$ OF PRoPoemoN 1.2. Proposition 1.2 follows from Lemma 3.1, Lemma 3.3
and the definitions of $g_{+}$ and $g_{-}$ . Q.E.D.

Concerning the images $ofg_{+}$ and $g_{-}$ we give here the following two simple examples.

EXAMPLE 3.1. If $M=S^{1}\times S^{1}$ is the flat torus in $E^{4}$ defined by

$x(u, v)=\frac{1}{\sqrt{2}}(\cos u, \sin u, \cos v, \sin v)$ ,

then the images of $g_{+}$ and $g_{-}$ are the great circle perpendicular to $X_{1}=(0,1,0,0)$ .
EXAMPLE 3.2. If $M=S^{2}$ is the totally geodesic 2-sphere of $S^{3}$ parametrized by

$x(u, v)=(\cos u\cos v, \sin u\cos v, \sin v, 0)$ ,

then

$g_{+}(u, v)=(0, -\sin v, -\sim\cos u\cos v, \sin u\cos v)$ ,

$g_{-}(u, v)=(0, \sin v, \sin u\cos v, -\cos u\cos v)$ .
Hence, both $g_{+}$ and $g_{-}$ are isometries.



SLANT SUBMANIFOLDS 109

4. Classification of spherical slant surfaces.

The main purpose of this section is to prove Theorem 1.5 which classifies spherical
proper slant surfaces in $C^{2}$ . In order to do so we need several lemmas.

First, we note that curves in $S^{3}$ can be described in terms of the orthonormal
left-invariant vector fields $\{X_{1},\tilde{X}_{2},\tilde{X}_{3}\}$ (cf. \S 1 or chapter 7 of [7]). Let $I$ be an open
interval containing $0$ and $c:I\rightarrow S^{3}$ a curve parametrized by arclength $s$ . Let $t(s),$ $n(s)$ ,
$\mu s),$ $\kappa(s)$ , and $\tau(s)$ be the unit tangent vector, the unit principal normal vector, the unit
binormal vector, the curvature, and the torsion of $c$ in $S^{3}$ , respectively. We put

(4.1) $t(s)=\sum_{i=1}^{3}f_{i}(s)\tilde{X}_{i}(c(s))$ .

Then

(4.2) $(f_{1}(s))^{2}+(f_{2}(s))^{2}+(f_{3}(s))^{2}=1$ .
Conversely, we have the following

LEMMA 4.1. Let $f_{i}(s),$ $i=1,2,3$ , be $d\iota fferentiable$ functions on I satisfying (4.2).
Then, for any point $p_{0}\in S^{3}$ , there exists a curve $c(s)$ in $S^{3}$ defined on an open subinterval

$I^{\prime}$ of I containing $0$ and satisfying (4.1) and $c(O)=p_{0}$ .

PROOF. Considering the curve $L_{po}^{-1}\circ c$ instead if necessary, we can assume without
loss of generality that $p_{0}=1$ . The solution of the following system of the first order
linear differential equations

(4.3) $\left(\begin{array}{l}x^{\prime}\\y^{\prime}\\z^{\prime}\\w^{\prime}\end{array}\right)=(yzwx$ $-y-zwx$ $-w-zyx$ $-w_{1\left(\begin{array}{l}0\\f_{1}\\f_{2}\\f_{3}\end{array}\right)}-yxz$

with the initial condition $(x(O), y(O),$ $z(O),$ $w(0))=(1,0,0,0)$ satisfies $xx^{\prime}+yy^{\prime}+zz^{\prime}+$

$ww^{\prime}=0andthecurvec(s)=(x(s), y(s),$ $z(s),$ $w(s))$ is in fact the desired one. Q.E.D.

Lemma 4.1 guarantees the existence of helices in $S^{3}$ .

LEMMA 4.2. The following two statements are equivalent:
(i) The curve $c(s)$ is a helix in $S^{3}$ with axis vector $\tilde{X}_{1}$ of the form

(4.4) $f_{1}(s)=b$ ,

(4.5) $f_{2}(s)=a\cos(-\frac{2}{b}s+s_{O})$ ,

(4.6) $f_{3}(s)=a\sin(-\frac{2}{b}s+s_{0})$ ,
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(4.7) $a^{2}+b^{2}=1$ , $ab<0$ .
(ii) The curve $c(s)$ satisfies

(4.8) $\tau(s)\equiv-1$ ,

(4.9) $\langle\alpha s),\tilde{X}_{1}(c(s))\rangle\equiv a$ ,

(4.10) $a\neq\pm 1,0$ .
PROOF. $(ii)\Rightarrow(i)$ : We apply the theory of curves in $S^{3}$ mentioned in [7, pp.

145-148].
Suppose $c$ is a curve in $S^{3}$ parametrized by arclength and let the unit tangent vector

$t$ of $c$ be given by (4.1). Let $g_{1}=f_{2}f_{3}^{\prime}-f_{3}f_{2}^{\prime},$ $g_{2}=f_{3}f_{1}^{\prime}-f_{1}f_{3}^{\prime},$ $g_{3}=f_{1}f_{2}^{\prime}-f_{2}f_{1}^{\prime}.$ By
Frenet-Serret formulas and (4.8) we have

(4.11) $(\frac{g_{i}}{\kappa})^{\prime}=\frac{2f_{i}^{\prime}}{\kappa}$ , $i=1,2,3$ .

By using (4.9) and the identity $t=t\times n$, we may obtain

(4.12) $a=\frac{g_{1}}{\kappa}$ .

Hence, we find $2f_{1}^{\prime}/\kappa=a^{\prime}=0$ . Let $b$ denote $f_{1}$ which is a constant. Then, from (4.12)
and $t=t\times n$ , we may find

(4.13) $t=a\tilde{X}_{1}-(\frac{bf_{3}^{\prime}}{\kappa})\tilde{X}_{2}+(\frac{bf_{2}^{\prime}}{\kappa})\tilde{X}_{3}$ ,

(4.14) $\kappa^{2}=(f_{2}^{\prime})^{2}+(f_{3}^{\prime})^{2}$ ,

(4.15) $n=(\frac{f_{2}^{\prime}}{\kappa})\tilde{X}_{2}+(\frac{f_{3}^{\prime}}{\kappa})\tilde{X}_{3}$ .

Since $\Vert b||=1,$ $\Vert n\Vert=1,$ $(4.13)$ and (4.15) imply $a^{2}+b^{2}=1$ . Thus, from $\Vert t\Vert=1$ and (4.1)
we get $f_{2}^{2}+f_{3}^{2}=a^{2}$ . So we may put

(4.16) $f_{2}=a\cos\theta,$ $ f_{3}=a\sin\theta$ , $\theta=\theta(s)$ .
Thus by applying the definition of $g_{1},$ $g_{2},$ $g_{3}$ we have

(4.17) $ g_{1}=a\kappa$ , $g_{2}=-bf_{3}^{\prime}$ , $g_{3}=bf_{2}^{\prime}$ .
By using (4.10), (4.14), (4.16), and $\tau\neq 0$ , we get

(4.18) $\kappa=|a\theta^{\prime}|\neq 0$ .

From (4.1), (4.16), (4.17) and (4.18) we find $(be’+2)\sin\theta=0$ . Since $\sin\theta(s)$ has only
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isolated zeros by (4.18), $b\theta^{\prime}+2=0$ . Thus, $b\neq 0$ . So $\theta=-(2/b)s+s_{0},$ $s_{0}=const$ . Hence,

by (4.12) and $\kappa>0$ , we get $ab<0$ .
$(i)\Rightarrow(ii)$ follows from straight-forward computation. Q.E.D.

LEMMA 4.3. A helical cylinder $x(M)=\{\gamma(t)\cdot c(s)\}$ in $S^{3}$ is a proper slant surface
with respect to $J_{0}^{-}$ with the slant angle equal to $\cos^{-1}a$ , where $a$ is the constant given
by (1.14) of Definition 1.3.

PROOF. Let $\xi$ be the positive unit normal of $x(M)$ in $S^{3}$ and $b$ the binormal
vector ofc in S3. Then we have

(4.19) $\xi(\gamma(t)\cdot c(s))=L_{\gamma\langle t)}*u_{S})$ .

Lemma 4.3 then follows from Lemma 3.3 and Lemma 4.2. Q.E.D.

LEMMA 4.4. For any point $p_{0}\in S^{3}$ and any oriented 2-plane $P_{0}\subset T_{po}S^{3}\subset E^{4}$ which
is proper slant with respect to $J_{\overline{o}}$ , there exist helical cylinders in $S^{3}$ passing through $p_{0}$

and whose tangent planes at $p_{0}$ are $P_{0}$ .

PROOF. Let $\xi$ be the positive unit normal of $P_{0}$ in $T_{po}S^{3}$ and $\alpha$ the slant angle of
$P_{0}$ with respect to $J_{0}^{-}$ . Put

$a=\cos\alpha(\neq 0, \pm 1)$ , $b=\pm(1-a^{2})^{1/2}$ ,

where $\pm is$ chosen so that $ab<0$ . Pick $ s_{0}\in[0,2\pi$) such that

$\cos s_{0}=-\frac{1}{b}\langle\xi,\tilde{X}_{2}(p_{0})\rangle$ , $\sin s_{0}=-\frac{1}{b}\langle\xi,\tilde{X}_{3}(p_{0})\rangle$ .

We define $f_{i}$ by $(4.4)-(4.6)$ . Then they satisfy (4.2) and we can choose a curve $c(s)$

satisfying the conditions mentioned in Lemma 4.1.
Let $\gamma(t)$ be either a geodesic in $S^{3}$ satisfying

$\gamma(0)=p_{0}$ , $\gamma^{\prime}(0)eP_{0}$ , $\gamma^{\prime}(0)\neq c^{\prime}(0)$ ,

or a curve in $S^{3}$ satisfying this condition and the condition $\tau\equiv 1$ (see Theorem 3 of [7,

p. 35] for the existence of such curves). Then we can verify that $\{\gamma(t)\cdot c(s)\}$ is a desired
surface. Q.E.D.

PROOF OF THEOREM 1.5. First, we note that the isometry $\phi$ of $S^{3}$ has the follow-
ing properties:

(4.20) $\phi(p\cdot q)=\phi(q)\cdot\phi(p)$ , for $\forall p,$ $q\in S^{3}$ ,

$X\in \mathscr{X}(S^{3})$ is left-(respectively, $right-$)$invariant$
(4.21)

$=\phi_{*}X$ is right-(respectively, $left-$)$invariant$ ,

(4.22) $\tau_{\phi\circ c}=-\tau_{c}$ for a curve $c$ in $S^{3}$ ,
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(4.23) $tisthebinormalofacurvecinS^{3}\Leftrightarrow-\phi_{*}bisthebinormalof\phi\circ cinS^{3}$ ,

where $\tau_{c}$ denotes the torsion of the curve $c$ in $S^{3}$ .
Let $\alpha$ be the slant angle of $x(M)$ with respect to $J_{0}$ . Since $x(M)$ is spherical, the

normal curvature $R^{D}$ of the slant immersion $x$ vanishes. Thus, by Lemma 4.1 of [3],
$M$ is a flat surface in $S^{3}$ . Therefore, $x(M)$ is locally a flat translation surface
$x(M)=\{c(s)\cdot\gamma(t)\}$ (cf. [7, pp. 149-157]), where $c$ and $\gamma$ are curves in $S^{3}$ parametrized
by arclength satisfying one of the following conditions:

(i) $\tau_{c}\equiv+1$ and $\tau_{\gamma}\equiv-1$ ,

(ii) $\tau_{c}\equiv+1$ and $\gamma$ is a geodesic,

(ii’) $c$ is a geodesic and $\tau_{\gamma}\equiv-1$ ,

(iii) $c$ and $\gamma$ are distinct geodesics.

Cases (i) and (ii): Let $t$ be the binormal of $c$ . With a suitable choice of orientations,
$t$ is the positive unit normal of $x(M)$ in $S^{3}$ . By Lemma 3.3, Lemma 4.2, (4.22), and
(4.23), $\phi\circ c$ is a helix in $S^{3}$ with $a$ and $b$ in $(4.4)-(4.7)$ determined by

(4.24) $ a=\cos\alpha$ , $ b=\pm\sin\alpha$ , $ab<0$ ,

and either $\tau_{\phi\circ\gamma}\equiv+1$ or $\phi\circ\gamma$ is a geodesic. So, by (4.20), $(\phi\circ xKM)$ is a helical cylinder
in $S^{3}$ .

The converse is given by Lemma 4.3. Moreover, Lemma 4.4 guarantees the exis-
tence of such surfaces.

Next, we want to show that both cases (ii’) and (iii) do not occur. Without loss
of generality we can assume
(4.25) $c(0)=\gamma(0)=1\in S^{3}$ ,

because Lemmas 3.1 and 3.3 imply that the slantness of a surface in $S^{3}$ with respect
to $J_{0}$ is right-invariant, i.e., if $x$ is $\alpha$-slant with respect to $J_{0}$ , so is $R_{q}\circ x$ for any $q\in S^{3}$ ,
and hence we can replace $x,$ $c$ and $\gamma$ by $R_{c\langle 0)\cdot\gamma\langle 0)}\circ x,$ $R_{c\langle 0)}\circ c$ and $ L_{c\langle 0)}\circ R_{\gamma\langle 0)^{-1}\cdot c\langle 0)^{-1}}\circ\gamma$ ,
respectively, if necessary.

Case (ii’): Let $t$ be the binormal of $\gamma$ . We can choose the orientation so that

(4.26) $\xi(c(s)\cdot\gamma(t))=L_{c\langle s)}.\mu t)$ , for $\forall s,$ $t$ .
So, by Lemmas 3.1 and 3.3, and (4.25), we have

(4.27) $\langle L_{c(s)}.t(0), R_{c(s)}.X_{1}\rangle=-\cos\alpha$ for $\forall s$ .
Put

(4.28) $c^{\prime}(O)=(0, a_{1}, a_{2}, a_{3})$ , $u0$) $=(0, b_{1}, b_{2}, b_{3})\in T_{1}S^{3}\subset E^{4}$
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Then

(4.29) $c(s)=(\cos s, a_{1}\sin s, a_{2}\sin s, a_{3}\sin s)$ .

Putting $s=0$ in (4.27), we find

(4.30) $b_{1}=-\cos\alpha\neq 0,$ $\pm 1$ ,

since $x(M)$ is properly slant. On the other hand, by (3.1), (3.2), (4.20), and (4.21), we
have

(4.31) $\langle L_{c\langle s)^{*}}\mu 0), R_{c\langle s)}.X_{1}\rangle=b_{1}\cos 2s+(-a_{3}b_{2}+a_{2}b_{3})\sin 2s$ .
So, from (4.27) and (4.31), we get $b_{1}=0$ which contradicts (4.30). Consequently,
case (ii’) cannot occur.

Case (iii): Let $\{c(s)\cdot\gamma(t)\}$ be defined by using two distinct geodesics $c$ and $\gamma$ and
assume
(4.32) $x:I_{1}\times I_{2}\rightarrow S^{3}$ ; $(s, t)-\rangle$ $c(s)\cdot\gamma(t)$

is properly slant. Since the geodesics $c$ and $\gamma$ can be extended for all $s,$ $t\in R$, we can
extend the immersion $x$ to a global mapping:

(4.33) $y:R^{2}\rightarrow S^{3}$ ; $(s, t)-\rangle$ $c(s)\cdot\gamma(t)$ .
Now, we claim that $y$ is in fact an immersion and properly slant. To see this, we recall
(4.25) and put

(4.34) $c^{\prime}(0)=(0, a_{1}, a_{2}, a_{3})$ , $\gamma^{\prime}(0)=(0, b_{1}, b_{2}, b_{3})\in T_{1}S^{3}$

Let $\tilde{X},\tilde{Y}$ be the vector fields along $y(R^{2})$ defined by

(4.35) $\tilde{X}(s, t)=R_{\gamma(t)}.c^{\prime}(s)$ , $\tilde{Y}(s, t)=L_{c(s)}.\gamma^{\prime}(t)$ .
Then it follows from (3.1) and (3.2) that

(4.36) $\langle\tilde{X}(s, t), F(s, t)\rangle$ is a polynomial of $\sin s,$ $\cos s,$ $\sin t$ and $\cos t$ .
On the other hand, since s-curves and t-curves on $x(I_{1}\times I_{2})$ intersect at a constant

angle (cf. [7, p. 157]),

(4.37) $\langle\tilde{X}(s, t),\tilde{Y}(s, t)\rangle=const.\neq\pm 1$ , for $\forall(s, t)eI_{1}\times I_{2}$ .
From (4.36), we see that (4.37) holds for all $(s, t)\in R^{2}$ and hence $y$ is an immersion. Since

$\xi(c(s)\cdot\gamma(t))=\Vert\tilde{X}(s, t)\times\tilde{Y}(s, t)\Vert^{-1}(\tilde{X}(s, t)\times\tilde{Y}(s, t))$ ,

where $\times denotes$ the usual vector product in $T_{c\langle s)\cdot\gamma\langle t)}S^{3}$ determined by the metric and
the orientation, so, by (3.1), (3.2) and (3.3), we know that $\langle\xi(c(s)\cdot\gamma(t)), J_{0}\eta(c(s)\cdot\gamma(t))\rangle$ is
a polynomial of $\sin s,$ $\cos s,$ $\sin t$ and $\cos t$ . By Lemma 3.3 we conclude that this
polynomial is a constant on $I_{1}\times I_{2}$ and hence $y$ is a proper slant immersion defined
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globally on $R^{2}$ . Now, by the double periodicity, $y$ induces a proper slant immersion:

$\tilde{y}$ : $T^{2}=(R/2\pi Z)\times(R/2\pi Z)\rightarrow C^{2}=(E^{4}, J_{O})$

of a torus into $C^{2}$ , which contradicts Theorem 1.1. Conseqeuntly, case (iii) cannot
occur. This completes the proof of the theorem. Q.E.D.

5. Slant surfaces with rank$(v)<2$ .
In this section we prove Theorem 1.6.
Assume $x:M\rightarrow C^{2}=(E^{4}, J_{O})$ is a general slant immersion of an oriented surface

$M$ into $C^{2}$ with Gauss map $v$ .
Let $*be$ the Hodge star operator $*:\wedge^{2}E^{4}\rightarrow\wedge^{2}E^{4}$ induced from the natural

orientation and the canonical inner product of $E^{4}$ . Denote by $\bigwedge_{+}^{2}E^{4}$ and $\bigwedge_{-}^{2}E^{4}$ the
eigenspaces $of*with$ eigenvalues $+1$ and $-1$ , respectively. Then it is well-known that
both eigenspaces are of dimension 3. We denote by $S_{+}^{2}$ and $S^{2}$-the 2-spheres centered
at the origin with radius $1/\sqrt{2}$ in $\bigwedge_{+}^{2}E^{4}$ and $\bigwedge_{-}^{2}E^{4}$ , respectively. Then we have
$D_{1}(2,4)=S_{+}^{2}\times S_{-}^{2}$ . Let

$\pi_{+}$ : $D_{1}(2,4)\rightarrow S_{+}^{2},$ $\pi_{-}$ : $D_{1}(2,4)\rightarrow S_{-}^{2}$

denote the natural projections. We define two maps $v_{+}$ and $v$ -respectively by

$v_{+}=\pi_{+}\circ v$ and $v_{-}=\pi_{-}\circ v$ .
Suppose that the slant immersion $x:M\rightarrow C^{2}=(E^{4}, J_{0})$ satisfies rank$(v)<2$ . Then we
have rank$(v_{\pm})<2$ . Hence, $x(M)$ is a flat surface in $E^{4}$ (cf. Lemma 6.2 of [6]). Further-
more, we have

LEMMA 5.1. If $x$ is a general slant immersion with rank$(v)<2$ , then $x(M)$ is a union
offlat ruled surfaces in $E^{4}$ .

PROOF. Since the normal curvature $R^{D}\equiv 0$ , we can choose $\{e_{1}, e_{2}\}$ such that the
second fundamental form $\{h_{jj}^{r}\}$ is simultaneously diagonalized, i.e., we have

(5.1) $(h_{jj}^{3})=\left(\begin{array}{ll}b & 0\\0 & c\end{array}\right)$ , $(h_{jj}^{4})=\left(\begin{array}{ll}d & 0\\0 & e\end{array}\right)$ .

Put

(5.2) $M_{1}=\{p\in M|H(p)\neq 0\}$ , $M_{0}=Interior$ of $(M-M_{1})$, $M=M_{0}\cup\partial M_{1}\cup M_{1}$ ,

where $H$ is the mean curvature vector.
Since $x(M)$ is flat and $H=0$ on $M_{0},$ $x(M_{0})$ is a union of portions of 2-planes in

$E^{4}$ with the same slant angle.
On $M_{1}$ , we put $ e_{3}=H/\Vert H\Vert$ . Sinoe rank$(v)<2$ , we have $bc=0$ and $d=e=0$ . We

may choose $\{e_{1}, e_{2}\}$ such that $b\neq 0,$ $c=d=e=0$ on $M_{1}$ . From these we may prove that
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the integral curves of $x_{*}e_{2}$ are open portions of straight lines and therefore $x(M_{1})$ is a
union of flat ruled surfaces. Consequently, $x(M)$ is a union of flat ruled surfaces possibly
glued along $\partial M_{1}$ . Q.E.D.

We recall that a flat ruled surface in $E^{4}$ is “in $ge$neral” a cylinder, a cone or a
tangential developable surface (cf. [7]).

PROOF OF THEOREM 1.6. The first part of the theorem is given in Lemma 5.1. Now,
we prove the remaining part of the theorem.

Case (i): If$x(M)$ is a slant cylinder, then we may assume that $x(M)$ is ofthe form:

(5.3) $x(M)=\{c(s)+te\}$ ,

where $e$ is a fixed unit vector in $E^{4}$ and $c(s)$ is a curve parametrized by arclength which
lies in the orthogonal complement (up to sign), say $W\in G(3,4)$ , of $e$ . Since $\{c^{\prime}(s), e\}$ is
a positive orthonormal basis of $T_{c\langle s)+te}M,$ $\cos\alpha=\langle c^{\prime}(s), -J_{0}e\rangle$ by (1.4). Hence, $c(s)$ is
a generalized helix in $W(\equiv E^{3})$ whose tangents make a constant angle $\alpha with-J_{0}e\in W$.

Case (ii): If $x(M)$ is a slant cone, then, without loss of generality, we may assume
that the vertex of the cone is the origin of $E^{4}$ . So we can write

(5.4) $x(M)=\{tc(s)\}$ ,

where $c(s)$ is a curve in $S^{3}$ parametrized by arclength. Since $\{c^{\prime}(s), \eta(c(s))\}$ is a positive
orthonormal basis of $T_{tc\langle s)}M,$ $\cos\alpha=\langle c^{\prime}(s), -J_{0}\eta(c(s))\rangle$ for all $s$ . Thus, by Lemmas 3.1
and 3.3, we conclude that $(\phi\circ c)(s)$ is a generalized helix in $S^{3}$ with axis $X_{1}$ (cf. Defini-
tion 1.3).

Case (iii): If $x(M)$ is a slant tangential developable surface, the surface has the form:

(5.5) $x(M)=\{c(s)+(t-s)c^{\prime}(s)\}$ ,

where $c(s)$ is a curve parametrized by arclength. We put

(5.6) $v_{1}(s)=c^{\prime}(s)$ , $\kappa_{1}(s)=\Vert v_{1}^{\prime}(s)\Vert$ , $v_{2}(s)=(\frac{1}{\kappa_{1}(s)})v_{1}^{\prime}(s)$ .

Note that $\kappa_{1}\neq 0$ , since $c(s)$ generates a tangential developable surface. $\{v_{2}(s), v_{1}(s)\}$ forms
a positive orthonormal basis of $T_{c\langle s)+\langle t-s)c’\langle s)}M$, and so we have

$\cos\alpha=\langle v_{1}^{\prime}(s)/\Vert v_{1}^{\prime}(s)\Vert, -J_{0}v_{1}(s)\rangle$

for all $s$ . If we consider $v_{1}(s)$ as a curve in $S^{3}$ , then (5.6) means that

$\cos\alpha=\langle t(s), -J_{0}\eta(v_{1}(s))\rangle$ ,

where $t(s)$ is the unit tangent of $v_{1}(s)$ . So, as in case (ii), $(\phi\circ v_{1})(s)$ is a generalized helix
in $S^{3}$ with axis $\tilde{X}_{1}$ .

It is easy to verify that in each of the cases $(i)-(iii)$ , the converse is also true.
Q.E.D.
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6. Slant surfaces in $E^{3}$ .
In this section we assume that the slant surfaces are contained in a hyperplane $W$

$ofE^{4}$ .

LEMMA 6.1. Let $x:M\rightarrow C^{2}=(E^{4}, J_{0})$ be a general slant immersion of an oriented
surface. If $M$ is contained in some $W\in G(3,4)$, then rank$(v)<2$ and the immersion $x$ is
doubly slant with the same slant angle.

PROOF. As in the proof of Lemma 3.2, we choose a positive orthonormal $J_{0}$-basis
$\{e_{1}, e_{2}, e_{3}, e_{4}\}$ such that $e_{1},$ $e_{2}\in W\cap J_{O}W,$ $e_{4}=J_{0}e_{3}=\eta_{W}$, where $\eta_{\hslash^{r}}$ is the positive unit
normal vector of the hyperplane $W$ in $E^{4}$ . We put

(6.1) $G_{W}=G(2,4)\cap\wedge^{2}W\subset\wedge^{2}E^{4}$

Then $G_{W}$ is the unit 2-sphere in the 3-dimensional Euclidean $space\wedge^{2}W$. For $\alpha e[0, \pi]$

we put

(6.2) $G_{W,a}=G_{J_{0},a}\cap G_{W}$ ,

where $G_{J_{O}.a}$ is the set of all 2-planes in $E^{4}$ with slant angle $\alpha$ with respect to $J_{0}$ . We
recall that a 2-plane $V$ was identified with a unit decomposable 2-vector $e_{1}\wedge e_{2}in\wedge^{2}E^{4}$

with $\{e_{1}, e_{2}\}$ as a positively oriented orthonormal basis of $V$. From the proof of Lemma
3.2, we see that $G_{W,a}$ is the circle on $G_{W}=S^{2}\subset\wedge^{2}W$ defined by $G_{W,a}=\{V\in G_{W}|\langle V$,
$e_{1}\wedge e_{2}\rangle=\cos\alpha\}$ .

For each $J\in \mathscr{J}$ , we denote by $\zeta_{J}$ the 2-vector which is the metrical dual $of-\Omega_{J}$

as defined in section 3. Let $\zeta:\mathscr{J}\rightarrow\wedge^{2}E^{4}$ be the mapping defined by $\zeta(J)=\zeta_{J}$ . Then $\zeta$

gives rise to two bijections (cf. Lemma 3.1 of [6]):

$\zeta^{+}$ : $J^{+}\rightarrow S_{+}^{2}(\sqrt{2})$ and $\zeta^{-}$ : $\mathscr{J}^{-}\rightarrow S_{-}^{2}(\sqrt{2})$ .

For each 2-plane $V\in G(2,4)$ we define two complex structures $J_{V}^{+}\in \mathscr{J}^{+}$ and $J_{V}^{-}\in \mathscr{J}^{-}$

by

$J_{V}^{+}=(\zeta^{+})^{-1}(2\pi_{+}(\eta)$ and $J_{V}^{-}=(\zeta^{-})^{-1}(2\pi_{-}(\eta)$ .
Let $J_{1}=J_{e_{1}Ae_{2}}^{-}$ . Then we have

(6.3) $\pi_{+}(G_{W.a})=S_{J_{O}.a}^{+}\subset S_{+}^{2},$ $\pi_{-}(G_{W.a})=S_{J_{1},a}^{-}\subset S_{-}^{2},$

where $S_{J.a}^{\pm}$ are the circles (possibly singletons) on $S_{\pm}^{2}$ , respectively, consisting of all
2-vectors on $S_{\pm}^{2}which$ make constant angle $\alpha$ with $\zeta_{J}$ (cf. [6]). If $x$ is $\alpha$-slant with
respect to $J_{0}$ and $x(M)\subset W$, then $v(M)cG_{W}$,.. Therefore, rank$(v)<2$ and, by (6.3), $x$ is
also $\alpha$-slant with respect to $J_{1}$ . This proves the lemma. Q.E.D.

We note here that if we identify $\wedge^{2}W$ with the Euclidean 3-space $E^{3}\equiv W(W$

spanned by $\{e_{1}, e_{2}, e_{3}\}$ ) via the isometry XA $Y\rightarrow X\times Y$, then $v:M\rightarrow G_{\hslash^{r}}\subset\wedge^{2}W$ is
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nothing but the classical Gauss map $g:M\rightarrow S^{2}\subset E^{3}$ . Since $e_{1}\times e_{2}=e_{3}=-J_{0}\eta_{W},$ $x$ is
$\alpha$-slant if and only if

(6.4) $g(M)\subset S_{a}^{1}=\{Z\in S^{2}|\langle Z, -J_{0}\eta_{W}\rangle=\cos\alpha\}\subset S^{2}\subset W$ .
$PR\infty F$ OF THEOREM 1.7. Assume $x:M\rightarrow C^{2}=(E^{4}, J_{0})$ is a proper slant immersion

of an oriented surface $M$ such that $x(M)$ is contained in some $W\in G(3,4)$ . The first
part of Theorem 1.7 is given by Lemma 6.1. For the remaining part it suffices to check
the three cases of Theorem 1.6.

Suppose $x$ is properly slant with slant angle $\alpha$ . Denote by $\xi$ the local unit normal
of $x(M)$ in $W$. We put

(6.5) $ e_{1}=t\xi/\Vert t\xi\Vert$ , $e_{2}=(\sec\alpha)Pe_{1}$ , $e_{3}=(\csc\alpha)Fe_{1}$ , $e_{4}=(\csc\alpha)Fe_{2}$ ,

where $PX$ and $FX$ denote the tangential and the normal components of $J_{0}X$, respective-
ly, and $ t\xi$ is the tangential component of $ J_{0}\xi$ . Then $\{e_{1}, \cdots, e_{4}\}$ is an adapted ortho-
normal frame along $x(M)$ and it satisfies

(6.6) $e_{3}=unit$ normal of $x(M)$ in $W$ , $e_{4}\in W^{\perp}$ ,

(6.7) $te_{3}=-(\sin\alpha)e_{1}$ , $te_{4}=-(\sin\alpha)e_{2}$ , $fe_{3}=-(\cos\alpha)e_{4}$ , $fe_{4}=(\cos\alpha)e_{3}$ ,

where $fe_{3}$ is the normal component of $J_{0}e_{3}$ . Since $e_{4}$ is a constant vector in $E^{4}$ , Lemma
3.1 of [3] implies that the second fundamental form $(h_{ij}^{r})$ is of the following form:

(6.8) $(h_{ij}^{3})=\left(\begin{array}{ll}b & 0\\0 & 0\end{array}\right)$ , $(h_{ij}^{4})=0$ ,

which shows that our frame $\{e_{1}, \cdots, e_{4}\}$ coincides with that chosen in the proof of
Lemma 5.1 (up to orientations). Since $J_{0}e_{4}$ is also a constant vector in $E^{4}$ , from (6.7)
we have

(6.9) $-\sin\alpha\nabla_{X}e_{2}-\cos\alpha A_{e_{3}}X=0$ , for $X\in TM$ .
Hence, we get

(6.10) $\omega_{2}^{1}(e_{1})=-b\cot\alpha$ , $ e_{2}b=b^{2}\cot\alpha$ .
Case (i): In this case, the curve $c(s)$ of (5.3) lies in a 2-plane $W^{\prime}=\{e\}^{\perp}\cap W\subset W$

which is perpendicular to $e$ . So, $x(M)$ is totally real with respect to the complex structures
$\pm J_{W^{\prime}}^{\pm}$ defined above. If $v_{+}(M)$ is not a singleton, then $J_{0}$ is one of the complex structures
$\pm J_{W^{\prime}}^{\pm}$ according to Lemma 4.2 and Theorem 4.3 of [6]. Hence we get $\alpha=\pi/2$ , which
contradicts the assumption. So, $v_{+}(M)$ is a singleton and hence $x(M)$ is minimal (cf.
Theorem 4.3 of [6]). Thus, by (6.8), $x(M)$ is an open portion of an $\alpha$-slant 2-plane.

In Cases (ii) and (iii), we may assume $M=M_{1}$ according to the remark after
Theorem 1.7.

Case (ii): In this case the curve $c(s)$ in (5.4) lies in the unit 2-sphere $S^{2}=S^{3}\cap W$.
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Choose $\{e_{1}, \cdots, e_{4}\}$ according to (6.5) and let $t,$ $n,$ $t,$ $\kappa$ , and $\tau$ be the unit tangent, unit
principal normal, the unit binormal, the curvature, and the torsion of $c(s)$ in $W=E^{3}$ ,

respectively. We want to show that $\tau\equiv 0$ .
Since

(6.11) $e_{1}(s, t)=t(s)=\frac{1}{t}\frac{\partial}{\partial s}$ , $e_{2}(s, t)=c(s)=\frac{\partial}{\partial t}$ , $e_{3}(s, t)=e_{1}(s, t)\times e_{2}(s, t)$ ,

where $\times is$ the vector product in $W$, we have

(6.12) $ b=-(\frac{\kappa}{t})\langle t, c\rangle$ .

From $\Vert c\Vert=1$ , we get

(6.13) $\kappa\langle n, c\rangle=-1$ .

Differentiating (6.13) with respect to $s$, we get

(6.14) $\kappa^{2}\tau\langle t, c\rangle=\kappa^{\prime}$

From (6.12) we obtain

(6.15) $-t\tau\kappa b=\kappa^{\prime}$

Differentiating (6.15) with respect to $t$ and using (6.10) and (6.15), we obtain

(6.16) $\kappa^{\prime}(\tau\kappa\tan\alpha-\kappa^{\prime})=0$ .

By (6.12), (6.14) and $\langle t, c\rangle=0$ , we find

(6.17) $\kappa^{2}\tau c=-\kappa\tau n+\kappa^{\prime}t$ .
Since $\Vert c\Vert=1$ , we also get

(6.18) $\tau^{2}\kappa^{4}=\tau^{2}\kappa^{2}+(\kappa^{\prime})^{2}$

If $\kappa^{\prime}(s_{0})=0$ at a point $s=s_{0}$ , then, by (6.15), we have $\tau(s_{0})=0$, since $\aleph s,$ $t$) $\neq 0$ by
assumption and $\kappa(s)\neq 0$ because $c(s)$ is spherical.

If $\kappa^{\prime}(s_{0})\neq 0$ , we choose a neighborhood $U$ of $s_{0}$ on which $\kappa^{\prime}$ never vanishes. By
(6.16), (6.18) and $\kappa\neq 0$ , we get

(6.19) $(\tau(s))^{2}\{(\kappa(s))^{2}-1-\tan^{2}\alpha\}=0$ for $\forall s\in U$ .

If $\tau(s_{0})\neq 0$ in addition, we choose another neighborhood $U^{\prime}$ of $s_{0}$ contained in $U$ on
which $\tau$ never vanishes. Then, by (6.19), we get

$(\kappa(s))^{2}-1-\tan^{2}\alpha=0$

for all $s$ in $U^{\prime}$ . By continuity wet get $\kappa(s)=constant$ on $U^{\prime}$ which contradicts $\kappa^{\prime}(s)\neq 0$

on $U^{\prime}$ . So, again we have $\tau(s_{0})=0$ . Therefore, $\tau\equiv 0$ , which means that $c(s)$ is a circle on
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$S^{2}$ and thus $x(M)$ is a circular cone. According to the remark after the proof of Lemma
6.1, the axis of the cone is given by $-J_{0}e_{4}$ .

Case (iii): We assume the surface is given by (5.5) and $\{e_{1}, \cdots, e_{4}\},$ $t,$ $n,$ $t,$ $\kappa$ ,
and $\tau$ are given as in case (ii). We have

(6.20) $e_{1}(s, t)=n(s)=\frac{1}{(t-s)\kappa}\frac{\partial}{\partial s}$ , $e_{2}(s, t)=t(s)=\frac{\partial}{\partial t}$ , $e_{3}(s, t)=e_{1}\times e_{2}=-Xs)$ .

Hence

(6.21) $\nabla_{e_{1}}e_{1}=-\frac{1}{(t-s)}e_{2}-\frac{\tau}{(t-s)\kappa}e_{3}$ .

So, by (6.8), we find

(6.22) $b=-\frac{\tau}{(t-s)\kappa}$ .

By (6.20) and (6.22), we obtain

$e_{2}b=\frac{\tau}{\kappa(t-s)^{2}}$ .

This formula together with (6.10) and (6.21) implies that $\tau/\kappa=\tan\alpha$ is a constant.
This means that the curve $c(s)$ is a generalized helix in $W$. The axis of the helix is
$-J_{0}e_{4}$ .

In each of the cases $(i)-(iii)$ , the converse is easy to verify. For example, if $x(M)$

is a circular cone with the axis vector $e$ in a 3-plane $W$ perpendicular to a unit vector
$\eta$ in $E^{4}$ , then, by picking a complex structure $J$ such that $J=J_{eA}^{+}\pi’ x(M)$ is properly
slant with respect to $J$.

This completes the proof of the theorem. Q.E.D.
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