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0. Introduction.

In order to understand the bordism classification of finite group actions on oriented
manifolds, it is useful to consider some notion of manifolds with equivariant Wall
structures. In [8], C. Kosniowski and E. Ossa studied the bordism theory W (Z,; All)
of Wall manifolds with unrestricted involutions and determined completely the bordism
theory Q,(Z,; All) of oriented involutions, especially its torsion part as the image of
the Bockstein homomorphism f:W (Z,; All)>Q,(Z,; All). In this paper, we treat an
almost free Z,. action on Wall manifold, i.e., one for which only the Z, < Z,. may
possibly fix points on manifold. From the viewpoint of action, such object is exactly
Wall manifold with action of type (Z,x, 1) in [13].

In section 1, we study the bordism theory W (Z,; Af) of these objects. By the map
which ignores Wall structures, the theories W, (Z,«; Free) and W, (Z,«; Af, Free) are
derived from the corresponding unoriented theories as usual (Propositions 1.4 and 1.8).
In particular, we have that W (Z,«; Af, Free) is the sum of three parts; the images Im(t)
of two kinds of extensions from Z, actions and another part L,. Using these results,
we obtain the exact sequence for the triple (Af, Free, &) (Proposition 1.11), and the
W, -module structure of W (Z,.; Af) (Theorem 1.19). There the classes {¥(0, 2n+2)}
(Definition 1.17) are useful to describe the part K, which lies in Im(t) = W (Z,«; Af, Free),
while the part L, is isomorphic to L, naturally.

In section 2, we describe the image 9 of the map f: W (Z,«; Af)—> Q. (Z,x; Af);
the bordism module of orientation preserving almost free Z,. actions, and describe the
torsion part of order 2 (Theorem 2.3). As an application, we study the image of
I,: Q(Z,; Free)>Q (Z,; Af); the forgetful homomorphism by using the result of
principal Z,. actions in [5] (Theorem 2.9).

The author would like to thank the referee for his many valuable comments.

Received January 13, 1992
Revised August 7, 1992



462 TAMIO HARA

1. Wall manifolds with almost free Z,. actions.

Let G be a finite abelian group, and let a pair of G space (X, 4, o) be fixed. Then

DerFINITION 1.1 (cf. [6] [13]). A Wall manifold with G action in (X, A, o) is a
4-tuple (M, ¢, a, f) where:

(i) M is a compact smooth unoriented manifold with G action ¢: Gx M—> M,

(ii) a Wall structure map a: M—RP(1)= RP(0) (i.e., one which classifies the
determinant bundle detz,, of the tangent bundle 7,, of M) which is equivariant with
respect to @, i.e., xo @(g, —)=o for each ge G,

(iii) a bundle map & covering « such that a-detd,, _,=a& for each ge G where
detd,,,, —,: detty,—dett,, is the map induced by ¢(g, —), and

(iv) f:(M, M, p)—(X, A, o) is an equivariant map.

We identify (M, ¢, a, f) and (M’, ¢’, &', f’) if and only if there is a diffeomorphism
M ~ M’ which is equivariant underaand a’, f and f”, ¢(g, —)and ¢’(g, —)foreachgeG.

ExampLE 1.2. Let (M, @) be an orientation-preserving G action on an oriented

" manifold M. Then (M, ¢) may be a Wall manifold with the trivial structure a =1. When

such M admits an orientation-reversing involution R such that ¢(g, —)° R=Ro° ¢(g, —)
for each geG,S'xyM=S!'xM/—1x R is a Wall manifold with the non-trivial
structure map a([z, w])=[z] € RP(1) for each ze S! and me M, and the induced G action
id x . We treat these types after all, and may omit the map a if no confusion can arise.

Suppose that #' = # are families in G. We say that such action (M, @) is (¥, #')-free
if for each xe M the isotropy subgroup G, € % and if for each xe oM, G.e #'. Using
these objects gives, in the usual way, a singular bordism group W, (G; ¥, #'(X, A, o) of
n-dimensional Wall manifolds of (¥, %')-free G actions in (X, A, ¢), in which every
element has order 2 (cf. [13]). Thus we have a graded abelian group

W(G; F, F\X, A, 0)= Y. W(G;F, F¥X, A,0),

nz0

which has a natural module structure over the Wall cobordism ring W, (cf. [12; p.
163]). We may denote that W (G; #, #')(pt, pt, id)= W (G; F, F') and W (G, ¥, O)
(X, &, 6)= W (G; F)X, o) as usual.

Let G, = Z,. denote the cyclic group of order 2%, k>2 and T its generator. Let Af
be the family {Z,, {1}} of subgroup of G,, then we say that a G, action T: M—>M is
almost free if it is Af-free. We always denote by (S2"*1, T, the standard G, action on
the (2n+ 1)-sphere.

DEeFINITION 1.3. For k>1, let e and s: W (Z,; #, F)-> W (G; ¥, F’) be the
extension maps defined by e([M, A])=[G; x z, M, Txid] and s([M, AD)=[S"x 2z, M,
Txid] for each class [M, Ale W (Z,; ¥, #') respectively. The extensions e, and s,
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from N, (Z,; #, F') are similarly defined in the unoriented case. When k=1, we denote
the map s by d for convenience.

We first consider the principal G, actions.

PrROPOSITION 1.4. For k>1,

(i) W, (G,; Free) is freely generated over W, by the classes e(X(2n)) and [S****, T]
for n>0, where X(2n)=[S* x g S?"~ !, A=id x — 1] with the reflection R: S*"~1—»§2"~1
defined by R(xqy, X1, """, Xan—1)=(—Xgs X1, " * s Xan—1) if n=1, and X(0)=[Z,, —1].

(i) The generators {[S*"**, T]} may be replaced by {s(X(2n))} for n=0 and the
following relation holds:

m

1.5) [s*"*1, T]= ) [CP(2j)1s(X(2n—4j))

ji=

for n=2m or n=2m+1 with m=>0.

ProoFr. Let F: W, (G,; Free) s RN, (G,; Free) be the embedding which forgets Wall
structures (cf. [12: p. 163]). Since e,([S?", —1]) and [S?"*1, T] generate N (G,; Free)
freely (cf. [5; Prop. 1.7]) and the relation [S", —1] =) 7-0 [RP(2n—2j)] X(2j) holds (cf.
[14; Prop. 3.1]), these implies the result (i) in the unoriented case hence in W (G,; Free)
via the map F. Next, we have that

[S**1, T]= 20 [RP(2p))s([S?"~2?, —1]) by [5; Theorem 1.17, Lemma 1.10 (ii)]

= Y [RPQ2p)I[RP(2g)ls(X(2n—2p—2g)) by [14; Prop. 3.1]

O<p+g=<n

M=

( 2 [RP(ZP)][RP(2q)])S(X(2n—2i))

i=0 \pt+tgqg=i
2

[n

~

]
[RP(2))]*s(X(2n—4j))

It
S
i
o

N

[n/

] [CP2j)]s(X (gn —4j)) by [16; Lemma 7] .

.v j=0
Hence the above relation (1.5) holds. See [4: Theorem 2.5] about the class X(2n)
represented by the Wall manifold as mentioned above. q.e.d.

Next we study the relative theory W,(G,; Af, Free) by using a standard fixed point
construction. Suppose that (M, T, «) is an n-dimensional Wall manifold with (4f, Free)-G;
action. We note that if F*~¢ is the (n—i)-dimensional fixed point set of Z, in M, then
G._1=G,/Z, acts freely on F" ! while Z, acts on its normal bundle v; by multiplication
by —1. Here dett, |[F~detv; ® dett, with Z, acting as (— 1)! in the fibers. Thus the
fixed point set F has even codimension by the definition 1.1 (iii). For such v,;—F"~%,
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lety,;=7,;(C®, k)= BO,;=BO,;(C*, k) be its classifying space and universal bundle (cf.
[2]). Now let g,;: F*~?/>BO0,; be the classifying map. By taking the determinant
bundles of v,; and y,; respectively, we have the map detg3;: (D(detv,)), S(detv,;)—
(D(dety,;), S(dety,;)) naturally where D(—) and S(—) denote the associated disk and
sphere bundles respectively. Such D,;=D(detv, ;) possesses the Wall structure &=
aci,: dettpxi, detty,—»RP(1) for the embedding i: F*"2’c M, and the induced
detTeG,_,=~G,/Z, acts on it freely. Hence we have an isomorphism:

[%/2]

(1.6) h: W (Gy; Af, Free)= 'Zo W*—2j+ 1((D(det?2j), S(det'}'zj)) X Gr-, EGi—y)
j=

assigning to [M, T, «] the sum of pairs (p,, g,;) where p, j=detg3; and g,; classifies
the orbit D,;—D,;/Gy ;. Let Y, ,=(D(dety,), S(dety,)) x g, _, EG,_, - X;x=BO;xg, _,
EG,_, in general, then the above h induces the embedding F: W (G,; Af, Free)
RN (Gy; Af, Freey=) ' R, _{X,,) through the maps We-2i+1(Y250 & Ry 1 1(Y250=
N, _2;(X3;,) in the usual way.

DEFINITION 1.7 (cf. [8; Sec. 4]). For each n>0, let &,, be the normal bundle
of RP(2n) in RP(2n+ 1) equipped with the orientation on its total space induced from
the standard orientation on RP(2n+1). Now ¢&,, admits an involution R: Ean—Esn
obtained by reflection in the fiber. Since this involution changes the orientation of its
total space, we put &,,, ;=S x g £,, with non-trivial Wall structure.

Then N, (Z,; All, Free) is the free N,-module with basis &,=¢ iy X 0 X &, J=
(1), - - -, j(n)) with (1)> - - - >(n) =0 and W (Z,; All, Free) is the free W ,.-module with
basis &;, J=(j(1), - - -, j(2n)) with even length by considering the embedding W (Z,; All,
Free) o M, (Z,; All, Free) (cf. [8; Theorem 4.2]).

Using these results, we have

ProPOSITION 1.8. Fork>2, W (G,; Af, Free)=Im(e) ® Im(s)® L, as W,-modules,
where e and s are two extensions from W (Z,; All, Free) and L, is freely generated
by the following;

(i) OQRp+1,2K)=[S?P*1 x D(y,x), T x T] and

(i) Q(2p, 2K)=e([X(2p) x D(n2x), A xi]), where p=1 and nx=1n, % - X
N2k~ CPRK)= CP(2k(1)) x - - - x CP(2k(n)), the product of the canonical complex line
bundles over the complex projective spaces CP(2k(j)) for each 2K =(2k(1), - - - 2k(n)) with
k(1)= - - - =k(n)>0. The group G, acts on S**** by TeG,/Z,=G,_, and each fiber of
N2k by T naturally. Further the map & is the extension from W (Z,; Af, Free) defined by
&M, i))=[G, x z, M, T xid] where i=./—1€ Z,.

PROOF. We consider the embedding F: W, (G,; Af, Free)s N, (Gy; Af, Free)
through the isomorphism 4 (cf. 1.6). We see that )" R, _ , (X, ) =Im(e,) ® Im(s,;) ® L, ,
where Im(e,) (or Im(s,)) is generated by e,(£,) (or 5,5(&,)) for J with even length respectively,
and L, , is given in [2; Prop. 3.12] as the sum of parts (iii)) and (iv) there. We note
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that F(Q(2p, 2K)) differs from the element of type (iii) by 9t,-decomposables by the
relation in the proof of the proposition 1.4, while Q(2p + 1, 2K)) is appeared in the part (iv).
Thus L, , is generated by the classes {Q(q, 2K) | =2} over R,, and so is L, over W, by
restricting the coefficient ring R, to W,. Note that the classes {Q(q, 2K) | g=>2} is
linearly independent over W, (cf. [2], [7; Theorem 3.3.5]). We see that
Q(0, 2K)=e(n,5) € Im(e) and Q(1, 2K)=s(n,x) € Im(s). q.ed.

Let d: W (Z,; All, Free)»W, ,,(Z,; All, Free) be the map mentioned in the
definition 1.3. Note that d>=d-d=0 and we have

LEMMA 1.9. For the polynomial generators {¢,} of W, (Z,; All, Free) in the
definition 1.7, the following properties hold:

(1) d&,=&5,41,dE5,+1=0 by definition and d acts on &; =&y Ejan) bY the
derivation in general,

(ii) the homology H, of the complex (W (Z,; All, Free), d) is isomorphic to the
free W -algebra on the squares &,;* (cf. [1; Lemma 7)), and

(iii) the sequence

W (Zy; All, Free)—%s W (Zy; All, Free)—— W (G,; Af, Free)
is exact for t=e or s.

The above properties hold in the unoriented case hence in our case via the embedding
W (Z,; All, Free) c N (Z,; All, Free) as usual. In particular, the property (i) is obtained
from [1; Theorem 3] and [14; Prop. 3.3]. Further the exactness of the sequences (d, t)
in (iii) are proved in [2; Prop. 5.4] simultaneously. In other words, this means that
[SY, TI1® g, —: Im(e) = Im(s) in W (G,; Af, Free).

LemMMA 1.10 (cf. [8; Theorem 6.2]). As a set of generators of W, we can choose
as follows; w,=[CP(2)] and for n>4w,=[RP({;)]; the projective space bundle asso-
ciated to &y, for some sequence I,=(a, b, 0, 0) with a+b+3=n. Let E, be the ideal of
those Wall manifolds M which has even Euler characteristic. Then E, is generated by
{w, | n>4}, and W_|E, =~ Z,[[CP(2)]], a polynomial ring generated by w,=[CP(2)].

Using this coefficient ring, we have

PrOPOSITION 1.11. The long exact sequence for the triple (Af, Free, &) induces the
following one;

() 00— P —2> W (G,; Af) 2> W (Gy; Af, Free)—— Imd —— 0,
* *

where P=W,[/E {{[G\, T1,[S*, T1}}, the free W,/E,-module generated by the classes
{---}, and ,
(i) Imo=W,{{e(X(2n+2), (X2n+2)| n=0}} ® E{{[Gy T1, [S*, T1}} .

COROLLARY 1.12. The kernel of F is isomorphic to P for the forgetting
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homomorphism F: W (G,; Af)>N(G; Af).

PROOFs OF PROPOSITION 1.11 AND COROLLARY 1.12. When G, =Z,, there is the
exact sequence;

i* j‘
(1.13) 0—— W, /E{{[Z,, —11}} — W (Zy; All) 2
W (Z,; All, Free)—+ W (BZ,)® E, — 0,

where W, (BZ,) is the kernel of the augmentation map e, : W (Z,; Free)» W, (cf. [8;
Corollary 7.5]), and this is freely generated by X(2n+2) and [S?"*!, —1] for n>0 by
the proposition 1.4. Using the fact that W,(G,; Af, Free)=Im(e) ® Im(s)® L, as
mentioned in the proposition 1.8, we have that d(Im(n)= W, {{{(X(2n+2))|n>0}} @
E,{{#(X(0))}} (t=e or s) and &(L,)={0}. The former is derived from the commutative
diagram (0|Im(r))ot=109 starting from W,(Z,; All, Free) and the fact that f[S2"*!,
—11)=0 in W(G;; Free) (cf. [5; Prop. 1.7 (ii)]), while it is easy to see that d(L,)= {0}
in W,(G,; Free) by the definition of L,. Thus the proposition 1.11 follows by Prop.
1.4 (ii). Next we consider the exact sequence;

(1.14)  0—— N,(Gy; Af) 2 N,(Gy; Af, Free)—2— RN, _,(Gy; Free)—— 0,

which has a splitting homomorphism 6 for @ defined by ([ M, A])=[M x z, I, Txid]
for each [M, A]eN, _,(G,; Free)), (I; the unit interval) (cf. [2; Sect. 2]). Joining this
and the exact sequence (i) in the above proposition by the forgetting map F, we have
the corollary 1.12. q.e.d.

CoROLLARY 1.15. [S*"*1 T]=[CP()J"[S!, T1#0 and [S*"*3, T]=0 in
W (Gi; Af) for m>0.

PrOOF. Using the relation (1.5), we see that [S*™*3 T]eImd in the above
proposition, while [S*"*!, T]=[CP2m)][S!, T]=[CP(2)]"[S", T]#0. Here we note
that [CP(2m)] =[CP(2)]™ (mod E,) from the definition of E, (cf. Lemma 1.10). q.e.d.

To study the module W,_(G;: Af), we define that

DEFINITION 1.16. K, ={xe W (G}; Af)|j(x)€ Im(?) in W (G,; Af, Free)} for each
t=e or s.

DEerFINITION 1.17. For each n>0, let ¥(0, 2n+2) be an element in K, such that
J«(V(0,2n+2))=e(£2"*?) in W,,,,(G,; Af, Free). Such V(0, 2n+2) exists and non-zero
since d(e(£3"* %) =e([S*"*', —1])=0 in W,,,(G,; Free) and [¢2"*2]#0 in H,, the
homology in the lemma 1.9 (ii). We define similarly an element ¥(1, 2n+2) in K, such
that j,(V(1, 2n+2))=s(£3"*2).

REMARK 1.18. For the above element (0, 2n+2), let A be an involution on
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G, xRP2n+2)/—1x A with the induced almost "free G, action Txid. Then
J([M, Txid])=e(£5"" %)+ e(4) in the exact sequence (1.14) where A is the canonical line
bundle over RP2n+1). Since e(1)=0, j,([M, T xid])=(j, ° FYV(0,2n+2))=e((3"*?).
Hence F(V(0, 2n+2))=e,([RP(2n+2), A]) in N, (G); Af).

Using these, we have

THEOREM 1.19. For k>2, W (G; Af)=(K.+K,)® L, as W,-modules, where

(i) K2(W/EN{S, T1, V0,2)}} ®(Q+Imle),

(ii) K,=(W,/E){{[G: T], V(1,2)}} ® Im(s) where e and s are two extensions from
W (Z,; All) and Q is a Z, vector space generated by the classes {[CP2)]*W, (0, 2)} with
u>0 and n=3 (mod 4). '

Further K, K,=2 by the definition of K,, and

(iii) L, isisomorphic to L, and freely generated by the following (iii-1) and (iii-2);

(iii-1) Vp+1,2K)=D?**2 x S(n,5) U —(S***! x D(n,x)) with an orientation-
preserving action Ty=TxTuTxT,

({ii-2) V2)(2p, 2K)=S" x g V(5(2p—1, 2K)) with the action id x Ty, where R is an
orientation-reversing involution on V ,(2p—1, 2K) obtained by the reflection in the first
coordinate of D?? if k=2, and V 4(2p, 2K)=&(V 5)(2p, 2K)) where & is the extension from
G,=2Z, actions if k=3.

In the above, p>1 and {n,x} are appeared in the proposition 1.8.

We may omit the subscript number (k) of V after this, if no confusion can arise.

REMARK 1.20. When p=0, we note that W(1,2K)eK, since j,(V(1, 2K))=
0(1, 2K)=3s(n,x), while we have an element V(0,2K)eK, such that j (V(0, 2K))=
0(0, 2K)=e(n,x). In particular, we see that V(e, 2n+2)=V(e, 2K) with 2K=(0, - - -, 0);
(n+ 1)-times of 0 for e=0 or 1. Both V(g, 2K) are related by the map [SY, T]®g,— as
V{1, 2K)=[S", T1®4, V0, 2K) (mod &) in general by the proposition 1.11 (i). Hence
V(e, 4m+2) (m=0) are uniquely determined in particular and W1, 4m+2)=[S', T]
® 6, V0, 4m+2). Further V)0, 4m+2)=&(V-1)(0, 4m+ 2)); the extension from G, _,
action.

ProOF OF THEOREM 1.19. The sequence (1.14) has a splitting map p for j, defined
by p(IM, T])=[RP(v® R), T xid] for the normal bundle v in M over the fixed point
set of Z, in G, (cf. [7; Lemma 4.2.4]). We note that 6: N, _ (G Free)=MN (X, ) and
p: Y MK ) ZN(Gy; Af) = Im(e,) @ Im(s,) ® L, , where e, and s, are the two
extensions from N (Z,; 4l and L, ,=p(L, ,) (cf. the proof of Proposition 1.8). Here
we see that j,(V(g, 2K))=0(g, 2K) by definition hence p(Q(q, 2K))=V(q, 2K). Thus the
above classes (iii-1) and (iii-2) generate L, , freely over R, via the isomorphism

p|Ly2: Ly =L, ,. Let L, be a submodule in W, (Gy; Af) generated by these classes.
Then the map p,: L,—L,, po(Q(g, 2K))=V(g, 2K ), is an isomorphism py L .=>~L, with
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Po ' =Ju|r.- Now for each xe W, (Gy; Af), put j(x)=y, +y, (v, € Im(e)® Im(s), y, eL,)
in the proposition 1.11 (i), then j,(x — po(y,)) =y, € Im(e) ® Im(s) since JxPo(¥2)) =y, as
mentioned above, and x— po(y,) € K, +,=/, '(Im(e€) ® Im(s)). For any element ze K, |,
put j(2)=e(l)+s(n) for some ¢ and ne W, (Z,; All, Free). Then e(d(¢))=s(d(n)) in
W .(G; Free) since 0(j,(2))=0. Note that Im(e) N Im(s)= {0} here by the proposition
1.4 (i) (i) and [5; Prop. 1.7 (ii)], so e(0(£))=s(d(1))=0 in W ,(G,; Free) and there is an
element z,e K, for t=e or s such that j,(z,)=e(¢) or j,(z,)=s(n) by the definition of K,
Therefore, z=z,+z, (mod#) and zeK,+K, since <K,+K,, so we have that
K.,s=K.+K,. Thus W (G,; Af)=(K,+K,)® L, in such a way that the sequence;
(1.21) 00— P~ K, + K,—* Im(e) ® Im(s) —— Imd —— 0

is exact and j,: L,~L, in the proposition 1.11. To complete the theorem, we prove
the following lemmas for the parts K,. These imply the result. q.e.d.

LEMMA 1.22. We have that
K, =W, {{V0, 2)}}+Im(e)+ 2, and
K==W {{V(1,2)}}+Im(s)+ 2.

LEMMA 1.23.  For the classes {V(0,2n+2)| n=0} of K., we have that

(1) W(O,4m+4)eImle),

(i) W0, 4m+2)—[CPCm)]V(0, 2) € Im(e),

(iii) [CP2m)]V(0, 2)¢ Im(e) hence V (0, 4m+2) ¢ Im(e) in general, and

(iv) If xeE, with x#[CP(2)]*w, (=0, n=3(mod 4)), then x- V(0, 4m+2) € Im(e).
In particular, v+ V(0, 4m+2) € Im(e) for v=[CP(2u)] —[CP(2)]*€ E,. _

The same results hold for the classes {V(1,2n+2)} of K. In this case, the part (iv)
holds for each xe E,,.

LEMMA 1.24. We have that
(1) [CPI'[Gi, T1¢ Im(s), (i) [CPQ)]“[S*, T]¢ Im(e), and
(iii) [CP(2)1“V(e, 2)¢ Im(?) for e=0 or 1, and t=e or s.

To prove the above lemmas, we use the following

LEMMA 1.25. For the map 0: W (Z,; All, Free)— W;(BZ2)®E*{{[ZZ, —11}} in
(1.13), we have that d(Ker(e))=W ,{{dX(2n+2)|n=0}}® E {{[S*, —11}} in Ker(e)=~
W, {{dX(2n+2) | n=—1}} (cf. Prop. 1.4(ii)). The same result holds for the map s.

ProoF. Since Ker(e)=Im(d) at W (Z,; All, Free) (cf. Lemma 1.9 (iii)), d(Ker(e)) =
d(Im(d))=d(W (BZ,)® E,{{[Z,, —1]}}). This implies the result since d(W, (BZ))) is

freely generated by dX(2n+2) (n>0). q.e.d.

PROOF OF LEMMA 1.22. Take each xeK, and put j(x)=e(&,) for some
$x€ W (Z,; All, Free) (cf. Definition 1.16). Then &(¢,) belongs to the kernel of
e: W(BZ,)® E,— W (G,; Free), hence ()=, _  M,,,,d(X(2n+2)) (M,,,,eW,)
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and A(&)=) . o M2n+2d(X(2n+2)) for some € Ker(e) in W ,(Z,; All, Free) by the above
lemma. This implies that there is an element y € W ,(Z,; All) such that j (y)=¢,—(E+
MyEo?), and j (x—MoV(0,2)—e(y))=0 in W, (G,; Af, Free). Hence the result for K,
follows by the proposition 1.11 (i). For an element x € K|, the proof is similar by using
the lemma 1.9 (iii), so we omit it here. q.e.d.

ProorF OF LEMMA 1.23. First we prove the part (ii). See the relation (1.5) in
W, (Z,; All), then we note that an element [S*"*!, —1]—[CP(2m)] [S!, —1] has
a counter-image ¢ € Ker(e) in W,(Z,; All, Free) by the lemma 1.25. Let y be an element
in W,(Z,; All)such thatj (y)=&,*" 2 —(E+ [CP(2m)]&,?), then (j, o eXy) =7, (V(0, 4m+
2)—[CP(2m)]1V(0, 2)) in W;(Gk; Af, Free) by definition. This implies that e(y)—
(V(0, 4m +2)—[CP(2m)]¥(0, 2))=0 in # by the dimensional condition, and the result
holds. The proof of the part (i) is similar to this, so we omit it here. For part (iii), we
suppose that [CP2m)]V(0, 2)=e(y) for some y € W ,(Z,; All), then (e j, )N¥)=U °eX y)=
[CP2m)]e(Eo?) in W, (G Af, Free). This means that j,(y)— [CP(2m)]&,2 € Ker(e) in
W, (Z,; All, Free) and 0(j(»)—[CP2m)]1&o%) = — [CP2m)][S!, —1]€d(Ker(e)) in
W ,(Z,; Free). This is contrary to the lemma 1.25 since [CP(2m)] ¢ E,. Thus the part
(iii) follows. Finally we prove the part (iv). From the lemma 1.25 and the relation (1.5)
again, we see that x-[S*™*1, —1] has a counter-image ¢ € Ker(e) in W, (Z,; All, Free)
for each xe E,. Thus there is an element y in W (Z,; All) such that e(y)—xV(0, 4m+
2)e 2. When dim x=3 (mod 4), this difference may be a= [CPQ2)I'[S!, T] in general.
Then x¥(0, 4m+2) ¢ Im(e) by the next lemma 1.24. If x'=w, for n#3 (mod 4) and if
x'=w, w,, for n;=3 (mod 4), then x'V(0, 4m+ 2) € Im(e). Thus if x belongs to the ideal
in W, generated by these elements x’, we also have xV(0, 4m+2)e Im(e) in general.
Hence we admit the case that xV(0, 4m+2)=e(y)+a when x=[CP(2)]"w, with u>0
and n=3 (mod 4). The corresponding relations among the classes {¥(1, 2n+2)} and
Im(s) are proved by using the exactness of (d, s) in the lemma 1.9 (iii). For the part @iv),
we take an element y in W (Z,; All) such that s(y)—xV(1, 4m+2)e P for each x€E,
as above, and this difference may be b=¢e[CP(2)]*[G,, T] (¢=0 or 1) when dim x=1
(mod 4). However this implies that 0=[S?, T]®,b=¢a in W, (G,; Af) by the remark
1.20 (cf. [5: Theorem 2.22 (i)]) and £¢=0. Hence xV (1, 4m+2)e Im(s) for each xe E,,.
q.e.d.

Proof of LEMMA 1.24. The proof of (i) is easy. For part (ii), we suppose that
e[CPQR))'[S!, T]1=e(y) for some ye W, (Z,; All). Since (ecj Ny)=(i,°e)ly)=0 in
W (G Af, Free), j(y)=d(&) for some &e W (Z,; All, Free) by the lemma 1.9 (iii).
We have that 0(&)=),., _; M.+ ,d(X(2n+2)) since 0(¢) € Ker(d) in W (BZ,)® E,{{[Z,,
—1]}}. By the lemma 1.25, there is an element &' in Ker(e)=Im(d) such that
AEN=Y 50 M3,42d(X(2n+2)) and an element z€ W . (Z,; All) such that j(z2)=¢—(&'+
M2 as usual. Then (j, o d)(z)=d(¢)=j,(y) implies that y=d(z) by the dimensional
condition (cf. (1.13)). Since eod=0, we see that e(y)=0 and ¢=0. This implies the
result. The proof of part (iii) is proved by using the lemma 1.25. q.e.d.
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REMARK 1.26. In the lemma 1.25, a conter-image ¢ € Ker(e) of dX(2n+2) under
the map 0 is constructed as follows. Since X(2n+2)=[S* x  $2"*1 id x —1] (n>0) (cf.
Prop. 1.4), we see that I[S" x p D?"*2,id x —1]=0(£,&,2"* )= X(2n+ 2) by considering
its fixed point data. Thus & =d(&,&,2"* )= &,2£,2" € Ker(e) maps to dX(2n+2) by 8. We
have another ¢ as follows. Let y,,, =[S(¢,&0)] (n=0) be a basis of W,(BZ,) in [8;
Lemma 7.1]. We note that A(y,,.,)=X(Q2n+1)=A4(X(2n+2)) in N (Z,; Free) by the
definition of ¢,,,; and [4; Theorem 2.5] where 4 is the Smith homomorphism. Since
4 X(2n+2)=0 too in N, for the augmentation map, this implies that y,,, ,=X(2n+2)
in N, (Z); Free) hence in W,(Z,; Free). Thus we may take that £=¢,,, &, € Ker(e)
in W,(Z,; All). Further, to find a counter-image &, for each xe E {{[S?, —11}}, it
is sufficient to consider the case that x=w,[S?, —1] (n>4) where w,=[RP(£, )] for
a suitable sequence I, (cf. Definition 1.10). Put (¢, )= >, soMzpi2X(2n+2)+
YusoMazns1[SPHY, —114w,[Z,, —1] in W,(Z,; All) formally, then the element
d(¢;,) € Ker(e) maps to ), o M,,,,d(X(2n+2))+x by 0. Hence the element ¢ =
d(&1)—Y s 0 Mans 26,2602 € Ker(e) is a desired counter-image of x for example.

REMARK. In the theorem 1.19, the part Q may be really contained in Im(e).
However, as far as an application to the oriented theory in the next section is concerned,
this is not at all serious.

2. Some applications.

Let Q.G A)=),.,2.(G:; Af) be the oriented bordism group of all
orientation-preserving almost free G, actions. We note that a torsion element in
Q,(G,; Af)is of order 2¢ for some 1 <i<k, and a torsion free element comes from that of
Q,(Z5; All) essentially by the extension map e: Q,(Z,; Al ® 211/2]2 Q2 (Gy; AN®
ZT1/2], where Z[1/2] is the subring of the rationals, generated by Z and 1/2 (cf. [10;
Prop. 42 and 2.2]). Now let B: W, (G,; Af)—>Q2,_,(G,; Af) be the Bockstein
homomorphism which sends [M, T] e W,(G,; Af) into [N, T| ~] €Q,_ (G,; Af), where
N is the invariant submanifold of M dual to dett,, (cf. [6; Sect. 6] for example). For
a typical type x=[S! x x M, id x T] in the example 1.2, we see that B(x)=[M, T] by
definition. Then = Im(p) is the subgroup of all elements of order 2 in Q,(G,; Af), and
there is a universal coefficient sequence:

@.1) 0—— 2,(G; AN ® Z, — W (G AN L7 —0

induced from the Wall exact sequence.

DEFINITION 2.2. Let A be the set of all unordered sequence consisting of distinct
even integers which are greater than 4 and not a power of 2. Then the classes
{(Wr=waiq) " " Way | I=(2i(1), - - -, 2it))e A} is a base of the free 2, ® Z, module of
W, (cf. [8; Sect. 11] for example).
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THEOREM 2.3. 7 is generated by the following (i) and (ii):

(i) 7 ,=B(K.+K) is the sum of Z,[2*"*[CPQ)]"[S", T1|m=0] as a Z, vector
space, e(TorQ,(Z,; All)) and s(TorQ(Z,; All)) (e, s: the two extensions from the torsion
part of Q (Z,; All)), and

(i) ZL,=BL,)=(Q,®Z){{Bw)V(2p+1, 2K), B(w,;V(2p, 2K)) | p=1,2K, and
IeA}} as a free Q, ® Z, module where the class { p, 2K} is appeared in the proposition
1.8. Further, 7, n &, ={0} except that k=2.

REMARK 2.4. In the above, an oriented manifold representing the class
B(w;V(2p, 2K)) is constructed by the method as mentioned in [8; Lemma 15.2].

First we prove the following lemmas.

LEMMA 2.5. In general, B(V(0, 2n+2))=2F"2[S?***1 T] and B(V(1, 2n+2))=0 in
Q.(Gy; Af).

ProorF. We have that j (V(0,2n+2)=e(¢,>"*?)=[Gyx z,D*"*?, Txid] in
W1+ 2(Gy; Af, Free) (cf. Definition 1.17). Since the composition eor=2xid: Q. (G,;
Free)—>Q . (G - ; Free)—Q (G,; Free) (r: the restriction) (cf. [10: Prop. 4.2]), we see that
O[Gy % z,D?"*2, Txid]=2*"1[S?"*!, T] in Q,(G,; Free) by induction. Hence we have
an oriented manifold V' (with an orientation-preserving almost free action 73) whose
boundary &V has 2¥~1 copies of (S2"*!, T) and Z, fixed point data is e(¢,2"*?). By
pasting these boundaries two by two, we obtain V(0, 2n+ 2) with the induced action T
and B(V(0, 2n+2))=2*"2[S2"*1 T7]. Further B(V(1, 2n+2))=2*"2[S*, T1®¢, [S!, T]=
0 since ¥(1,2n+2)=[S*, T]®g, V(0, 2n+2) (mod ) and B(#)={0} (cf. Remark 1.20).

q.e.d.

LEMMA 2.6. On the basis {V(q, 2K)} of L, we have that
B(V(2p, 2K))=2*"2V(2p—1,2K) and B(V(2p+1,2K))=0 (p=1).

PrROOF. From the theorem 1.19 (iii), we note that B(V,(2p, 2K))=é(V,(2p—1,
2K)=(@r(Va(2p—1, 2K))=2*"2V4,(2p—1,2K) by using the composition eor=
2xid: Q,(Gy; Af)=Q,(G -, : Af)—>Q,(Gy; Af) as above. q.e.d.

PrROOF OF THEOREM 2.3. Note that B maps the part Im(f) (in K,) onto
H(TorQ.(Z,; All)) for t=e or s since all torsion of Q,(Z,; All) has order 2 (cf. [9;
Theorem 3.4]). We note that w,eTorQ2, for n=3 (mod 4) hence B(w,V0,2))=
2%~2y,[S!, T] by the above lemma 2.5, which is zero if k>3. When k=2, the fact that
w,[Z,, —1]1=0 in Q(Z,; All) implies that w,[S*, T]1=0 in Q,(G,; Af) (cf. [9; Theorem
3.1]). Thus we have that f(Q)= {0} after all, and J, consists of three parts as mentioned
in (i). Note that

BwV(2p+1, 2K))=p(w)V(2p+1, 2K),
Bw V(2p, 2K))=Bw)V(2p, 2K) +w,-2*"2V(2p—1, 2K)

2.7
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in W, (G,; Af) from the lemma 2.6. Thus the linearly independence of the classes
{4, 2K) | g=2} over W, implies the result (ii) in particular by the definition 2.2. Next
we study the intersection part 7 | N . In case of k>3, we note that &, g L_ via the
embedding of the coefficient ring Q, ® Z, g W since f(w,;V(q, 2K))= B(w)V (g, 2K) for
all g>2 by the formula (2.7), while 7, lies in Im(e)+ Im(s) in W (G,; Af). Thus each
xeT n¥, lies in (Ime)+Im(s)) n L,={0} (cf. Theorem 1.19), hence x=0 in
Q,(G,; Af) by the embedding ¥, < L,. This implies that 7, n &, ={0} and the result
follows. q.e.d.

REMARK 2.8. In case of k=2, define by L;, the submodule of W, (Z,; Af)
generated by all element of L, and {¥{1, 2K) | 2K} for convenience. Including the latter
classes, we see that {V(g, 2K) | g=1, 2K} are also linearly independent over W, by using
the fact that j (¥(1, 2K)) =s(n1,x) = s(¢,x?) and the lemma 1.9 (ii) and (iii). Thus we have
that K, "L, ={0} and K,n L, >~ W {{¥(1, 2K)|2K}}. Then we note that 7, n &L,
lies in (K, + K;) n L, = W, {{V(1, 2K) | 2K }} by the formula (2.7). Now, for each torsion
element x=p(x) in Q,, xV(1, 2K)=B(xV (1, 2K))=f(xV (2, 2K)) which does not vanish
inJ ; nZ,. However we see that [CP(2u)]V(1,4m+2)e &, does not belong to 7, for
example by using the lemma 1.25. Hence 7, %, is properly contained in
(@, ® Z){{V1,2K) | 2K }}.

As an application, we study the image Im(l,) of the forgetful homomorphism
I, : Q(Z,:Free)-»Q (Z,; Af).

THEOREM 2.9. Im(l,)=(R,/TorQN{[Z,, i1}} ® C{[S", i1}, where C {[S*, i1} is
a C . x2Z,[CP2m) | m>1] module generated by [S?, i].

First we prove the following

PROPOSITION 2.10. As the elements in T,
@) [S**1,i]1=[CP2m)][S*, i]1#0 and (ii) [S*"*3,i]=0
in Q(Z,4; Af) for m=0.

PrROOF. We note that [S*"*!,i]#0 in Q,(Z,; Af) by the corollary 1.15. Now,
see the proof of the lemma 1.23 (ii). There an element y e W_(Z,; All) is chosen such
that j,(»)=&o*"* 2 — (X 71s [CPQRA)IE,*E* ™™~ 2 + [CP(2m)]¢,?) by using a counter-
image ¢ of d(X(2n+ 2)) mentioned in the remark 1.26. Thus j (B(»))=0 in W (Z,; All,
Free) in particular (cf. [8; Theorem 4.2]). Since B(y)e QP which is the submodule of
W (Z,; All) embedded in W, (Z,; All, Free) (cf. [8; Sec. 8]), we have that f(»)=0 in
W . (Z,; All) hence in Q,(Z,; All). Thus B(V(0, 4m +2)— [CP(2m)]V(0, 2))=[S*"*+1, i]—
[CPCm)][S?, i]1=e(B(¥))=0 in Q,,,. (Z,; Af) by the lemma 2.5. This implies the result
(i). We see that [S*"*3,i]1=0 in Q,(Z,; Af) as follows. Consider an orientation-
preserving Z, action T on CP(2m+2) given by
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(cf. [11; Sec. 3]).

We note that the only stationary point of 7 is [1:0:---:0]. Thus, deleting
neighborhood of this point gives a manifold V*4™*4 (with suitable orientation) whose
boundary is equivariantly diffeomorphic to [S4™*3, i]. q.e.d.

PROOF OF THEOREM 2.9. Consider that Q.(Z,; Free)=Q,{{[Z,,i]}} ® Q2 (Z,;
Free) as usual. Then Q,(Z,; Free)~$,® ®, where H, is generated by the classes
{[S*"*1,i]| n>0} of order 4 and G, is generated by the classes {e(E*"* 1 W(w))}, the
extension of suitable elements E2"*! W(w)e Q,(Z,; Free) of order 2 (cf. [5; Theorem
2.18]). Since e: Q,(Z,; All)® Z[1/2]=Q,(Z,; Af)® Z[1/2], we see that the kernel of
I from Q, {{[Z,, i1}}is(TorQ,){{[Z,, i1}} in particular. On the other hand (6 ,) = {0}
since ﬁ*(Zz; Free) vanishes in Q(Z,; All) (cf. [9; Theorem 3.1]). The image I($,) is
shown by the above proposition and the fact that C, =Q, /(Tor Q, +2Q,) is isomorphic
to the Z, polynomial algebra on the classes {{CP(2m)]} (cf. [12; p. 183]). q.e.d.

REMARK 2.11. We need to see the element x,(m)=2*"2[CPQ2)]"[S*, T] in I, is
really non-zero. The fact x,(m)#0 is mentioned in the corollary 1.15. Next we prove
that x3(m)#0 by using the theory of Wall manifolds only. Suppose that x;(m)=0 in
Qum+1(Zg; Af)and let v be anelementin W,,, , ,(Zs; Af)such that B(v)=[CPQ)]"[S*, T].
We write that v=¢g[ CP(2)]"¥ 5,(0, 2) + e(x) + s(») + ! for some x, y e W,(Z,; All) and [; a
sum of elements V(;)(g, 2K) (¢=>2) in L, (cf. Theorem 1.19). We consider the natural
restriction r: W (Zg; Af)> W, (Z,; Af). Then r(v)=s(y)+r(l) where r() is a sum of
elements Vi, (2p+1,2K) (p=1) since r(V 50, 2))=(ro e\ V20, 2))=2V,50, 2)=
0, (V(3)(2p, 2K))=0 for p>1 by the same reason (cf. Remark 1.20 and Theorem 1.19
(iii-2)) and (roe)(x)=2x=0. Hence we have that (Bor)v)=x,(m)=s(y’)+/ in
Qum+1(Z4; Af) where y' = B(y)e TorQ,(Z,; All) and I’=(B - r)(). Consider again this in
Wu(Z4s; Af), then I' is a sum of elements V,(2p+1,2K) (p=>1) over 2,827, In
particular, we see that x,(m)—s(y)=0'e(K,+K)nL,={0} and x,(m)=s(y’) in
Wam+1(Zy; Af). Letj (y)=¢, in Wo,(Z,; All, Free), then s(£,) = (s j X¥') =j,(x2(m)) =0
in Wami1(Zy; Af, Free). Hence (j, oe) Y)=e(l,)=0 by the lemma 1.9 (iii), and
e(y')=¢e[CPQ2)]"[Z,, i] (e=0 or 1) by the proposition 1.11 (i). Using the following
lemma 2.12 and Lemma 8.2 in [8], 0=y(y’)=¢ where y’ is the orbit space of y’ under
Z,. Hence x,(m)=s(y')=0 in W,, . ,(Z,; Af) which is contrary to x,(m)#0, and we
have that x3(m)#0in Q,,,, ,(Zg; Af). In other words, we see that [S*"*1, T is of order
41in Q,,,, 1(Zg; Af) by the same way as the proof of the proposition 2.10. However, this
method does not apply to the case k>4 since (B - r)(v) vanishes in W . (G, _; Af) from
the beginning, while it is easy to see that x,(0)#0 in general.

LEMMA 2.12. If X is a non-oriented manifold with almost free G, action T such that

the Z, fixed point set F of T has even codimension, then the Euler characteristic modulo
2, x of the orbit space 0X|T is zero.

The proof is entirely analogous to that in [8; Lemma 8.1], so we omit it here.
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