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$0$. Introduction.

In order to understand the bordism classification of finite group actions on oriented
manifolds, it is useful to consider some notion of manifolds with equivariant Wall
structures. In [8], C. Kosniowski and E. Ossa studied the bordism theory $W_{*}$($Z_{2}$ ; All)
ofWall manifolds with unrestricted involutions and determined completely the bordism
theory $\Omega_{*}$( $Z_{2}$ ; All) of oriented involutions, especially its torsion part as the image of
the Bockstein homomorphism $\beta:W_{*}(Z_{2};All)\rightarrow\Omega_{*}$($Z_{2}$ ; All). In this paper, we treat an
almost free $Z_{2^{k}}$ action on Wall manifold, i.e., one for which only the $Z_{2}\subset Z_{2^{k}}$ may
possibly fix points on manifold. From the viewpoint of action, such object is exactly
Wall manifold with action of type $(Z_{2^{k}}, 1)$ in [13].

In section 1, we study the bordism theory $W_{*}(Z_{2^{k}};Af)$ of these objects. By the map
which ignores Wall structures, the theories $W_{*}$ ($Z_{2^{k}}$ ; Free) and $W_{*}$ ($Z_{2^{k}};Af$, Free) are
derived from the corresponding unoriented theories as usual (Propositions 1.4 and 1.8).
In particular, we have that $W_{*}$ ($Z_{2^{k}};Af$, Free) is the sum of three parts; the images $Im(t)$

of two kinds of extensions from $Z_{2}$ actions and another part $L_{*}$ . Using these results,
we obtain the exact sequence for the triple ($Af$, Free, $\emptyset$) (Proposition 1.11), and the
$W_{*}$-module structure of $W_{*}(Z_{21c};Af)$ (Theorem 1.19). There the classes $\{V(O, 2n+2)\}$

(Definition 1.17) are useful to describe the part $K_{t}$ which lies in $Im(t)\subset W_{*}$($Z_{2^{k}};Af$, Free),
while the part $L_{*}$ is isomorphic to $L_{*}$ naturally.

In section 2, we describe the image $\mathcal{T}$ of the map $\beta:W_{*}(Z_{2^{k}};Af)\rightarrow\Omega_{*}(Z_{2^{lc}};Af)$ ;
the bordism module of orientation preserving almost free $Z_{2^{k}}$ actions, and describe the
torsion part of order 2 (Theorem 2.3). As an application, we study the image of
$I_{*}:$ $\Omega_{*}(Z_{4};Free)\rightarrow\Omega_{*}(Z_{4};Af)$ ; the forgetful homomorphism by using the result of
principal $Z_{2^{k}}$ actions in [5] (Theorem 2.9).
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1. $WaU$ manifolds with almost free $Z_{2^{k}}$ actions.

LetG bea finite abelian group, and leta pair ofG space (X, $A,$ $\sigma$) be fixed. $Th|$

DEFINITiON 1.1 (cf. [6] [13]). A Wall manifold with $G$ action in (X, $A,$ $\sigma$) is
4-tuple $(M, \varphi, \alpha,f)$ where:

(i) $M$ is a compact smooth unoriented manifold with $G$ action $\varphi:G\times M\rightarrow A_{\lrcorner}$
,

(ii) a Wall structure map $\alpha:M\rightarrow RP(1)\subseteq Rfl\infty)$ (i.e., one which classifies tl
determinant bundle $\det\tau_{M}$ of the tangent bundle $\tau_{M}$ of $M$) which is equivariant wi
respect to $\varphi$ , i.e., $\alpha\circ\varphi(g, -)=\alpha$ for each $g\in G$ ,

(iii) a bundle map ct covering $\alpha$ such that $\overline{\alpha}\circ\det d_{\varphi\langle g.-)}=\overline{\alpha}$ for each $g\in G$ whe
$\det d_{\varphi\{g.-)}$ : det $\tau_{M}\rightarrow\det\tau_{M}$ is the map induced by $\varphi(g, -)$ , and

(iv) $f:(M, \partial M, \varphi)\rightarrow(X, A, \sigma)$ is an equivariant map.

We identify ($M,$ $\varphi,$ $\alpha,$
$ f\gamma$ and $(M^{\prime}, \varphi^{\prime}, \alpha^{\prime}, f^{\prime})$ if and only if there is a diffeomorphis

$M\approx M^{\prime}$ which is equivariant under $\alpha$ and $\alpha^{\prime},f$ and $f^{\prime},$ $\varphi(g, -)$ and $\varphi^{\prime}(g, -)$ for each $g\in($

EXAMPLE 1.2. Let $(M, \varphi)$ be an orientation-preserving $G$ action on an oriente
manifold $M$. Then $(M, \varphi)$ may be a Wall manifold with the trivial structure $\alpha=1$ . Wht
such $M$ admits an orientation-reversing involution $R$ such that $\varphi(g, -)\circ R=R\circ\varphi(g,$ $-$

for each $g\in G,$ $S^{1}\times_{R}M=S^{1}\times M/-1\times R$ is a Wall manifold with the non-trivi
structure map $\alpha([z, w])=[z]\in RP(1)$ for each $z\in S^{1}$ and $m\in M$, and the induced $G$ actic
$id\times\varphi$ . We treat these types after all, and may omit the map $\alpha$ ifno confusion can arise.

Suppose that $\mathscr{F}^{\prime}\subset \mathscr{F}$ are families in $G$ . We say that such action $(M, \varphi)$ is $(\mathscr{F}, \mathscr{F}^{\prime})- fr_{(}$

if for each $x\in M$ the isotropy subgroup $G_{x}\in \mathscr{F}$ and if for each $x\in\partial M,$ $G_{x}\in \mathscr{F}^{\prime}$ . $Usi\iota$

these objects gives, in the usual way, a singular bordism group $W_{n}(G;\mathscr{F}, \mathscr{F}^{\prime}XX, A, \sigma)$

n-dimensional Wall manifolds of $(\mathscr{F}, \mathscr{F}^{\prime})$-free $G$ actions in (X, $A,$ $\sigma$), in which eve
element has order 2 (cf. [13]). Thus we have a graded abelian group

$W_{*}(G;\mathscr{F}, \mathscr{F}^{\prime}XX, A, \sigma)=\sum_{n\geq 0}W_{n}(G;\mathscr{F}, \mathscr{F}^{\prime}XX, A, \sigma)$ ,

which has a natural module structure over the Wall cobordism ring $W_{*}$ (cf. [12;
163]). We may denote that $W_{*}$( $G;\mathscr{F},$ $\mathscr{F}^{\prime}Xpt$ , pt, id) $=W_{*}(G;\mathscr{F}, \mathscr{F}^{\prime})$ and $W_{*}(G;\mathscr{F},$ $\beta$

(X, $\emptyset,$ $\sigma$) $=W_{*}(G;\mathscr{F})(X, \sigma)$ as usual.
Let $G_{k}=Z_{2^{k}}$ denote the cyclic group of order $2^{i},$ $k\geq 2$ and $T$ its generator. Let $\Lambda$

be the family $\{Z_{2}, \{1\}\}$ of subgroup of $G_{k}$ , then we say that a $G_{k}$ action $T:M\rightarrow M$

almost free if it is $Af$-free. We always denote by $(S^{2n+1}, T)$ , the standard $G_{k}$ action $($

the $(2n+1)$-sphere.

DEFINITiON 1.3. For $k\geq 1$ , let $e$ and $s:W_{*}(Z_{2};\mathscr{F}, \mathscr{F}^{\prime})\rightarrow W_{*}(G_{k};\mathscr{F}, \mathscr{F}^{\prime})$ be $t1$

extension maps defined by $e([M, A])=[G_{k}\times z_{2}M, T\times id]$ and $s\langle[M, A]$) $=[S^{1}\times z_{2}f$

$T\times id]$ for each class $[M, A]\in W_{*}(Z_{2};\mathscr{F}, \mathscr{F}^{\prime})$ respectively. The extensions $e_{2}$ and
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from $\mathfrak{R}_{*}(Z_{2};\mathscr{F}, \mathscr{F}^{\prime})$ are similarly defined in the unoriented case. When $k=1$ , we denote
the map $s$ by $d$ for convenience.

We first consider the principal $G_{k}$ actions.

PROPOSITION 1.4. For $k\geq 1$ ,
(i) $W_{*}$( $G_{k}$ ; Free) is freely generated over $W_{*}by$ the classes $e(X(2n))$ and $[S^{2n+1},$ $\prod$

for $n\geq 0$ , where $X(2n)=[S^{1}\times RS^{2n-1}, A=id\times-1]$ with the reflection $R:S^{2n-1}\rightarrow S^{2n-1}$

defined by $R(x_{0}, x_{1}, \cdots, x_{2n-1})=(-x_{0}, x_{1}, \cdots, x_{2n-1})$ if $n\geq 1$ , and $X(O)=[Z_{2}, -1]$ .
(ii) The generators $\{[S^{2n+1}, T]\}$ may be replaced by $\{s(X(2n))\}$ for $n\geq 0$ and the

following relation holds:

(1.5) $[S^{2n+1}, T]=\sum_{j=0}^{m}[CP(2j)]s(X(2n-4j))$

for $n=2m$ or $n=2m+1$ with $m\geq 0$ .
$PR\infty F$ . Let $F;W_{*}$ ( $G_{k}$ ; Free) $\sigma \mathfrak{R}_{*}$ ( $G_{k}$ ; Free) be the embedding which forgets Wall

structures (cf. [12: p. 163]). Since $e_{2}([S^{2n}, -1])$ and $[S^{2n+1}, T]$ generate $\mathfrak{R}_{*}$( $G_{k}$ ; Free)
freely (cf. [5; Prop. 1.7]) and the relation $[S^{2n}, -1]=\sum_{j=0}^{n}[RP(2n-2j)]X(2j)$ holds (cf.
[14; Prop. 3.1]), these implies the result (i) in the unoriented case hence in $W_{*}$( $G_{k}$ ; Free)
via the map $F$. Next, we have that

$[S^{2n+1}, T]=\sum_{p=0}^{n}[RP(2p)]s([S^{2n-2p}, -1])$ by [5; Theorem 1.17, Lemma 1.10 (ii)]

$=\sum_{0\leq p+q\leq n}[RP(2p)][RP(2q)]s(X(2n-2p-2q))$ by [14; Prop. 3.1]

$=\sum_{i=0}^{n}(\sum_{p+q=i}[RP(2p)][RP(2q)])s(X(2n-2i))$

$=\sum_{j=0}^{[n/2]}[RP(2j)]^{2}s(X(2n-4j))$

$=\sum_{j=0}^{[n/2]}[CP(2j)]s(X(2n-4j))$ by [16; Lemma 7].

Hence the above relation (1.5) holds. See [4: Theorem 2.5] about the class $X(2n)$

represented by the Wall manifold as mentioned above. q.e. $d$ .
Next we study the relative theory $W_{*}$($G_{k};Af$, Free) by using a standard fixed point

construction. Suppose that $(M, T, \alpha)$ is an n-dimensional Wall manifold with $(Af, Free)- G_{k}$

action. We note that if $F^{n-i}$ is the $(n-\iota)$-dimensional fixed point set of $Z_{2}$ in $M$, then
$G_{k-1}\cong G_{k}/Z_{2}$ acts freely on $F^{n-i}$ while $Z_{2}$ acts on its normal bundle $v_{i}$ by multiplication
by $-1$ . Here det $\tau_{M}|F\cong\det v_{i}\otimes\det\tau_{F}$ with $Z_{2}$ acting as $(-1)^{i}$ in the fibers. Thus the
fixed point set $F$ has even codimension by the definition 1.1 (iii). For such $v_{2j}\rightarrow F^{-2j}$,
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let $\gamma_{2j}=\gamma_{2j}(C^{\infty}, k)\rightarrow BO_{2j}=BO_{2j}(C^{\infty}, k)$ be its classifying spaoe and universal bundle $(c$

[2]). Now let $g_{2j}$ : $F^{n-2j}\rightarrow BO_{2j}$ be the classifying map. By taking the $\det e$rmina]

bundles of $v_{2j}$ and $\gamma_{2j}$ respectively, we have the map det $g_{2j}^{*}$ : $(D(\det v_{2j}), S(\det v_{2j}))-$

$(D(det\gamma_{2j}), S(\det\gamma_{2j}))$ naturally where $D(-)$ and $S(-)$ denote the associated disk an
sphere bundles respectively. Such $D_{2j}=D(\det v_{2j})$ possesses the Wall structure $\overline{\alpha}$ :

$\alpha\circ i_{*};$ det $\tau_{D}\cong i_{*}det\tau_{M}\rightarrow R\mathfrak{q}1$ ) for the embedding $i;F^{-2j}\subset M$, and the induce
det $\overline{T}\in G_{k-1}\cong G_{k}/Z_{2}$ acts on it freely. Hence we have an isomorphism:

(1.6) $h:W_{*}(G_{k};Af, Free)\cong\sum_{j=0}^{[*/2]}W_{*-2j+1}((D(\det\gamma_{2j}), S(\det\gamma_{2j}))X_{G_{k-1}}EG_{k-1})$

assigning to $[M, T, \alpha]$ the sum of pairs $(p_{2j}, q_{2j})$ where $p_{2j}=\det g_{2j}^{*}$ and $q_{2j}$ classifie
the orbit $D_{2j}\rightarrow D_{2j}/G_{k-1}$ . Let $Y_{i,k}=(D(\det\gamma_{i}), S(\det\gamma_{i}))X_{G_{k-1}}EG_{k-1}\rightarrow X_{t,k}=BO_{i}\times G_{k-}$

$EG_{k-1}$ in general, then the above $h$ induces the embedding $F:W_{*}$($G_{k};Af$, Free) $($

$\mathfrak{R}_{*}(G_{k};Af, Free)\cong\sum_{i=0}^{*}\mathfrak{R}_{*-i}(X_{i,k})$ through the maps $W_{*-2j+1}(Y_{2j.k})\sigma \mathfrak{R}_{*-2j+1}(Y_{2j.k})_{-}^{\prime}-$

$\mathfrak{R}_{*-2j}(X_{2j.k})$ in the usual way.

DEFINITION 1.7 (cf. [8; Sec. 4]). For each $n\geq 0$ , let $\xi_{2n}$ be the normal bundl
of $RP(2n)$ in $RP(2n+1)$ equipped with the orientation on its total space induced from
the standard orientation on $R\mathfrak{q}2n+1$ ). Now $\xi_{2n}$ admits an involution $R:\xi_{2n}\rightarrow\xi_{A}$,

obtained by reflection in the fiber. Since this involution changes the orientation of il
total spaoe, we put $\xi_{2n+1}=S^{1}X_{R}\xi_{2n}$ with non-trivial Wall structure.

Then $\mathfrak{R}_{*}$($Z_{2}$ ; All, Free) is the free $\mathfrak{R}_{*}$-module with basis $\xi_{J}=\xi_{j\langle 1)}\times\cdots\times\xi_{j\langle n)},$ J–
$(\lambda 1),$ $\cdots,j(n))withj(1)\geq\cdots\geq j(n)\geq 0$ and $W_{*}$($Z_{2}$ ; All, Free) is the free $W_{*}$-module wit
basis $\xi_{J},$ $J=(l11),$ $\cdots,j(2n))$ with even length by considering the embedding $W_{*}(Z_{2};Al$

Free) $\sigma \mathfrak{R}_{*}$($Z_{2}$ ; All, Free) (cf. [8; Theorem 4.2]).
Using these results, we have

PROPOSmON 1.8. For $k\geq 2,$ $W_{*}(G_{k};Af, Free)\cong Im(e)\oplus Im(s)\oplus L_{*}$ as $W_{*}$-modules
where $e$ and $s$ are two extensions from $W_{*}$($Z_{2}$ ; All, Free) and $\overline{L}_{*}$ is freely $generate|$

by the following;
(i) $Q(2p+1,2K)=[S^{2p+1}\times D(\eta_{2K}),\overline{T}\times T]$ and
(ii) $Q(2p, 2K)=\overline{e}([X(2p)\times D(\eta_{2K}), A\times i])$, where $p\geq 1$ and $\eta_{2K}=\eta_{2k(1)}\times\cdots>$

$\eta_{2k\langle n)}\rightarrow CP(2K)=CP(2k(1))\times\cdots\times CP(2k(n))$, the product of the canonical complex lin
bundles over the complex projective spaces $CP(2k0))$ for each $2K=(2k(1), \cdots 2k(n))$ wit
$k(1)\geq\cdots\geq k(n)\geq 0$ . The group $G_{k}$ acts on $S^{2p+1}$ by $\overline{T}\in G_{k}/Z_{2}\cong G_{k-1}$ and each fiber $0$

$\eta_{2K}$ by $T$ naturally. Further the map $\overline{e}$ is the extension from $W_{*}$($Z_{4};Af$, Free) defined $b$.
$\overline{e}([M, i])=[G_{k}\times z_{4}M, T\times id]$ where $i=\sqrt{-1}\in Z_{4}$ .

$PR\infty F$ . We consider the embedding $F:W_{*}$($G_{k};Af$, Free) $\sigma \mathfrak{R}_{*}(G_{k};Af$, Free
through the isomorphism $h$ (cf. 1.6). We see that $\sum_{j}\mathfrak{R}_{*-2_{J}}(X_{2j,k})\cong Im(e_{2})\oplus Im(s_{2})\oplus\overline{L}_{*}$ .
where $Im(e_{2})$ (or $Im(s_{2})$) is generated by $e_{2}(\xi_{J})$ (or $s_{2}(\xi_{J})$) for $J$ with even length $re$spectively
and $\overline{L}_{*,2}$ is given in [2; Prop. 3.12] as the sum of parts (iii) and (iv) there. We not
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that $F(Q(2p, 2K))$ differs from the element of type (iii) by $\mathfrak{R}_{*}$-decomposables by the
relation in the proofofthe proposition 1.4, while $Q(2p+1,2K)$ is appeared in the part (iv).
Thus $\overline{L}_{*,2}$ is generated by the classes $\{Q(q, 2K)|q\geq 2\}$ over $Y1_{*}$ , and so is $L_{*}$ over $W_{*}$ by
restricting the coefficient ring $\mathfrak{R}_{*}$ to $W_{*}$ . Note that the classes $\{Q(q, 2K)|q\geq 2\}$ is
linearly independent over $W_{*}$ (cf. [2], [7; Theorem 3.3.5]). We see that
$Q(O, 2K)=e(\eta_{2K})\in Im(e)$ and $Q(1,2K)=s(\eta_{2K})\in Im(s)$ . q.e.d.

Let $d:W_{*}$($Z_{2}$ ; All, $Free$) $\rightarrow W_{*1}+$ ( $Z_{2}$ ; All, Free) be the map mentioned in the
definition 1.3. Note that $d^{2}=d\circ d=0$ and we have

LEMMA 1.9. For the polynomial generators $\{\xi_{m}\}$ of $W_{*}$($Z_{2}$ ; All, Free) in the
definition 1.7, the following properties hold:

(i) $d\xi_{2n}=\xi_{2n+1},$ $d\xi_{2n+1}=0$ by definition and $d$ acts on $\xi_{J}=\xi_{j\langle 1)}\cdots\xi_{j\langle 2n)}$ by the
derivation in general,

(ii) the homology $H_{*}$ of the complex ( $W_{*}(Z_{2}$ ; All, Free), d) is isomorphic to the
free $W_{*}$-algebra on the squares $\xi_{2i}^{2}$ (cf. [1; Lemma 7]), and

(iii) the sequence

$W_{*}$( $Z_{2}$ ; All, Free) $\rightarrow^{d}W_{*}$( $Z_{2}$ ; All, Free) $\rightarrow^{t}W_{*}$($G_{k};Af$, Free)

is exact for $t=e$ or $s$ .
The above properties hold in the unoriented case hence in our case via the embedding

$W_{*}$($Z_{2}$ ; All, Free) $\sigma \mathfrak{R}_{*}$($Z_{2}$ ; All, Free) as usual. In particular, the property (i) is obtained
from [1; Theorem 3] and [14; Prop. 3.3]. Further the exactness of the sequences $(d, t)$

in (iii) are proved in [2; Prop. 5.4] simultaneously. In other words, this means that
$[S^{1}, T]\otimes_{G_{k}}-:Im(e)\cong Im(s)$ in $W_{*}$($G_{k};Af$, Free).

LEMMA 1.10 (cf. [8; Theorem 6.2]). As a set of generators of $W_{*}$ , we can choose
as follows; $w_{4}=[CP(2)]$ and for $n>4w_{n}=[RP(\xi_{I_{n}})]$ ; the projective space bundle asso-
ciated to $\xi_{In}$ for some sequence $I_{n}=(a, b, 0,0)$ with $a+b+3=n$ . Let $E_{*}$ be the ideal of
those Wall manifolds $M$ which has even Euler characteristic. Then $E_{*}$ is generated by
{ $w_{n}$ I $n>4$}, and $W_{*}/E_{*}\cong Z_{2}[[CP(2)]]$ , a polynomial ring generated by $w_{4}=[CP(2)]$ .

Using this coefficient ring, we have

PROPOSITION 1.11. The long exact sequence for the triple ($Af$, Free, $\emptyset$) induces the
following one;

(i) $0\rightarrow \mathscr{P}\rightarrow^{i_{*}}W_{*}(G_{k};Af)\rightarrow^{i_{*}}W_{*}(G_{k};Af, Free)\rightarrow^{\partial}Im\partial\rightarrow 0$ ,

where $\mathscr{P}\cong W_{*}/E_{*}\{\{[G_{k}, T], [S^{1}, T]\}\}$ , the free $W_{*}/E_{*}$-module generated by the classes
$\{\cdots\}$ , and

(ii) $Im\partial\cong W_{*}\{\{e(X(2n+2)), s(X(2n+2))|n\geq 0\}\}\oplus E_{*}\{\{[G_{k}, T], [S^{1}, T]\}\}$ .
COROLLARY 1.12. The kernel of $F$ is isomorphic to $\mathscr{P}$ for the forgetting
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homomorphism $F:W_{*}(G_{k};Af)\rightarrow \mathfrak{R}_{*}(G_{k};Af$].

$PR\infty FS$ OF PROPOSITION 1.11 AND COROLLARY 1.12. When $G_{1}=Z_{2}$ , there is $t$

exact sequence;

(1.13) $0\rightarrow W_{*}/E_{*}\{\{[Z_{2}, -1]\}\}\rightarrow^{i_{*}}W_{*}(Z_{2}; All)\rightarrow^{j_{*}}$

$W_{*}$($Z_{2}$ ; All, Free) $\rightarrow^{\partial}W_{*}(BZ_{2})\oplus E_{*}\rightarrow 0$ ,

where $\tilde{W}_{*}(BZ_{2})$ is the kemel of the augmentation map $\epsilon_{*}:$ $W_{*}(Z_{2};Free)\rightarrow W_{*}$ (cf. $[$

Corollary 7.5]), and this is freely generated by $X(2n+2)$ and $[S^{2n+1}, -1]$ for $n\geq 0$

the proposition 1.4. Using the fact that $W_{*}(G_{k};Af, Free)\cong Im(e)\oplus Im(s)\oplus\overline{L}_{*}$

mentioned in the proposition 1.8, we have that $\partial(Im(t))\cong W_{*}\{\{t(X(2n+2))|n\geq 0\}\}$

$E_{*}\{\{t(X(0))\}\}$ ($t=e$ or s) and $\partial(\overline{L}_{*})=\{0\}$ . The former is derived from the commutati
diagram $(\partial|Im(t))\circ t=t\circ\partial$ starting from $W_{*}$($Z_{2}$ ; All, Free) and the fact that $t([S^{2n\star}$

$-1])=0$ in $W_{*}$( $G_{k}$ ; Free) (cf. [5; Prop. 1.7 (ii)]), while it is easy to see that $\partial(\overline{L}_{*})=\{$

in $W_{*}$( $G_{k}$ ; Free) by the definition of $L_{*}$ . Thus the proposition 1.11 follows by Pro
1.4 (ii). Next we consider the exact sequence;

(1.14) $0\rightarrow \mathfrak{R}_{*}(G_{k};Af)\rightarrow^{j_{*}}\mathfrak{R}_{*}(G_{k};Af, Free)\rightarrow^{\partial}\mathfrak{R}_{*-1}(G_{k};Free)\rightarrow 0$ ,

which has a splitting homomorphism $\theta$ for $\partial$ defined by $\theta([M, A])=[M\times z_{2}I,$ $T\times i($

for each $[M, A]\in SJI_{*-1}$ ( $G_{k}$ ; Free)), (I; the unit interval) (cf. [2; Sect. 2]). Joining th
and the exact sequence (i) in the above proposition by the forgetting map $F$, we ha
the corollary 1.12. q.e.

COROLLARY 1.15. $[S^{4m+1}, T]=[CP(2)]^{m}[S^{1}, T]\neq 0$ and $[S^{4m+3}, T]=0$

$ W_{*}(G_{k};Af\gamma$ for $m\geq 0$ .
$PR\infty F$ . Using the relation (1.5), we see that $[S^{4m+3}, T]\in Im\partial$ in the $abot$

proposition, while $[S^{4m+1}, T]=[CP(2m)][S^{1}, T]=[CP(2)]^{m}[S^{1}, T]\neq 0$ . Here we no
that $[CP(2m)]=[CP(2)]^{m}(mod E_{*})$ from the definition of $E_{*}$ (cf. Lemma 1.10). $q.e$ .

To study the module $W_{*}(G_{k} : Af)$, we define that

DEFINITION 1.16. $K_{t}=$ {$x\in W_{*}(G_{k};Af\gamma|j_{*}(x)\in Im(t)$ in $W_{*}(G_{k};Af$, Free)} for eat
$t=e$ or $s$ .

DEFINITION 1.17. For each $n\geq 0$ , let $V(O, 2n+2)$ be an element in $K_{e}$ such th
$j_{*}(V(O, 2n+2))=e(\xi_{0}^{2n+2})$ in $W_{2n+2}$($G_{k};Af$, Free). Such $V(O, 2n+2)$ exists and non-ze]

since $\partial(e(\xi_{0}^{2n+2}))=e([S^{2n+1}, -1])=0$ in $W_{2n+1}$ ( $G_{k}$ ; Free) and $[\xi_{0}^{2n+2}]\neq 0$ in $H_{*}$ , tl
homology in the lemma 1.9 (ii). We define similarly an element $V(1,2n+2)$ in $K_{s}$ sue
that $j_{*}(V(1,2n+2))=s(\xi_{0}^{2n+2})$ .

REMARK 1.18. For the above element $V(O, 2n+2)$ , let $A$ be an involution $c$
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$RP(2n+2)$ defined by $A([x_{0}$ : $x_{1}$ : $\cdots$ : $x_{2n+2}])=[-x_{0}$ : $x_{1}$ : $\cdots$ : $x_{2n+2}]$ , and let $M=$

$G_{k}\times RP(2n+2)/-1\times A$ with the induced almost free $G_{k}$ action $T\times id$ . Then
$j_{*}([M, T\times id])=e(\xi_{0}^{2n+2})+e(\lambda)$ in the exact sequence (1.14) where $\lambda$ is the canonical line
bundle over $RP(2n+1)$ . Since $e(\lambda)=0,j_{*}([M, T\times id])=(j_{*}\circ FXV(0,2n+2))=e(\xi_{0}^{2n+2})$ .
Henc$eF(V(O, 2n+2))=e_{2}([RP(2n+2), A])$ in $\mathfrak{R}_{*}(G_{k};Af)$ .

Using these, we have

THEOREM 1.19. For $k\geq 2,$ $W_{*}(G_{k};Af)\cong(K_{e}+K_{s})\oplus L_{*}as$ $W_{*}$-modules, where
(i) $K_{e}\cong(W_{*}/E_{*})\{\{[S^{1}, T], V(O, 2)\}\}\oplus(Q+Im(e))$ ,
(ii) $K_{s}\cong(W_{*}/E_{*})\{\{[G_{k}, T], V(1,2)\}\}\oplus Im(s)$ where $e$ and $s$ are two extensionsfrom

$W_{*}$($Z_{2}$ ; All) and $Q$ is a $Z_{2}$ vector space generated by the classes $\{[CP(2)]^{u}w_{n}V(O, 2)\}$ with
$u\geq 0$ and $n\equiv 3$ (mod 4).

Further $K_{e}\cap K_{s}\cong \mathscr{P}$ by the definition of $K_{t}$ , and
(iii) $L_{*}isisomorphicto\overline{L}_{*}andfreelygeneratedbythefollowing(iii- 1)and(iii- 2)$ ;
(iii-l) $V_{\langle k)}(2p+1,2K)=D^{2p+2}\times S(\eta_{2K})\cup-(S^{2p+1}\times D(\eta_{2K}))$ with an orientation-

preserving action $T_{V}=\overline{T}\times T\cup\overline{T}\times T$,
(iii-2) $V_{\langle 2)}(2p, 2K)=S^{1}\times RV\langle 2$ )$(2p-1,2K)$ with the action $id\times T_{V}$ where $R$ is an

orientation-reversing involution on $V_{(2)}(2p-1,2K)$ obtained by the reflection in the first
coordinate of $D^{2p}$ if $k=2$ , and $V_{\langle k)}(2p, 2K)=\overline{e}(V_{\langle 2)}(2p, 2K))$ where $\overline{e}$ is the extension fron
$G_{2}=Z_{4}$ actions if $k\geq 3$ .

In the above, $p\geq 1$ and $\{\eta_{2K}\}$ are appeared in the proposition 1.8.

We may omit the subscript number $(k)$ of $V$ after this, if no confusion can arise.

REMARK 1.20. When $p=0$ , we note that $V(1,2K)\in K_{s}$ sinoe $j_{*}(V(1,2K))=$

$Q(1,2K)=s(\eta_{2K})$ , while we have an element $V(O, 2K)\in K_{e}$ such that $j_{*}(V(O, 2K))=$

$Q(O, 2K)=e(\eta_{2K})$ . In particular, we see that $V(\epsilon, 2n+2)=V(\epsilon, 2K)$ with $2K=(0, \cdots, 0)$ ;

$(n+1)$-times of $0$ for $\epsilon=0$ or 1. Both $V(\epsilon, 2K)$ are related by the map $[S^{1}, T]\otimes_{G_{k}}-$ as
$V(1,2K)=[S^{1}, T]\otimes_{G_{k}}V(O, 2K)(mod \mathscr{P})$ in general by the proposition 1.11 (i). Hence
$V(\epsilon, 4m+2)(m\geq 0)$ are uniquely determined in particular and $V(1,4m+2)=[S^{1}, T]$

$\otimes_{G_{k}}V(O, 4m+2)$ . Further $V_{\langle k)}(0,4m+2)=\overline{e}(V_{\langle k-1)}(0,4m+2))$ ; the extension from $G_{k-1}$

action.
$PR\infty F$ OF THEOREM 1.19. The sequence (1.14) has a splitting map $\rho$ for $j_{*}$ defined

by $\rho([M, T])=[RP(v\oplus R), T\times id]$ for the normal bundle $v$ in $M$ over the fixed point
set of $Z_{2}$ in $G_{k}$ (cf. [7; Lemma 4.2.4]). We note that $\theta:\mathfrak{R}_{*1}-(G_{k};Free)\cong \mathfrak{R}_{*}(X_{1,k})$ and
$\rho;\sum_{i\neq 1}\mathfrak{R}_{*}(X_{i,k})\cong \mathfrak{R}_{*}(G_{k};Af)\cong Im(e_{2})\oplus Im(s_{2})\oplus L_{*,2}$ where $e_{2}$ and $s_{2}$ are the two

extensions from $\mathfrak{R}_{*}(Z_{2};AlI)$ and $L_{*,2}=\rho(\overline{L}_{*,2})$ (cf. the proof of Proposition 1.8). Here
we see that $j_{*}(V(q, 2K))=Q(q, 2K)$ by definition hence $\rho(Q(q, 2K))=V(q, 2K)$ . Thus the
above classes (iii-l) and (iii-2) generate $L_{*,2}$ freely over $SJI_{*}$ via the isomorphism
$\rho|\overline{L}_{*,2}$ : $\overline{L}_{*,2}\cong L_{*,2}$ . Let $L_{*}$ be a submodule in $W_{*}(G_{k};Af)$ generated by these classes.
Then th $e$ map $\rho_{0}$ ; $\overline{L}_{*}\rightarrow L_{*},$ $\rho_{0}(Q(q, 2K))=V(q, 2K)$ , is an isomorphism $\rho_{0}$ : $L_{*}\cong L_{*}$ with
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$\rho_{\overline{0}^{1}}=j_{*}|_{L}.$ . Now for each $x\in W_{*}(G_{k};Af)$ , put $j_{*}(x)=y_{1}+y_{2}(y_{1}\in Im(e)\oplus Im(s),$ $y_{2}\in l$

in the proposition 1.11 (i), then $j_{*}(x-\rho_{0}(y_{2}))=y_{1}\in Im(e)\oplus Im(s)$ since $j_{*}(\rho_{0}(y_{2}))=y_{2}$

mentioned above, and $x-\rho_{0}(y_{2})\in K_{e+s}=j_{*}^{-1}(Im(e)\oplus Im(s))$ . For any element $z\in K_{e}$

put $j_{*}(z)=e(\xi)+s(\eta)$ for some $\xi$ and $\eta\in W_{*}$( $Z_{2}$ ; All, Free). Then $e(\partial(\xi))=s(\partial(\eta))$

$W_{*}$ ( $G_{k}$ ; Free) since $\partial(j_{*}(z))=0$ . Note that $Im(e)\cap Im(s)=\{0\}$ here by the propositi
1.4 (i) (ii) and [5; Prop. 1.7 (ii)], so $e(\partial(\xi))=s(\partial(\eta))=0$ in $W_{*}$( $G_{k}$ ; Free) and there is
element $z_{t}\in K_{t}$ for $t=e$ or $s$ such that $j_{*}(z_{e})=e(\xi)$ or $j_{*}(z_{s})=s(\eta)$ by the definition of
Therefore, $z=z_{e}+z_{s}(mod \mathscr{P})$ and $z\in K_{e}+K_{s}$ since $\mathscr{P}\subset K_{e}+K_{s}$ , so we have tl
$K_{e+s}=K_{e}+K_{s}$ . Thus $W_{*}(G_{k};Af\neg)\cong(K_{e}+K_{s})\oplus L_{*}$ in such a way that the sequence;

(1.21) $0\rightarrow \mathcal{P}\rightarrow^{i_{l}}K_{e}+K_{s}\rightarrow^{j_{*}}Im(e)\oplus Im(s)\rightarrow^{\partial}Im\partial\rightarrow 0$

is exact and $j_{*};$ $L_{*}\cong\overline{L}_{*}$ in the proposition 1.11. To complete the theorem, we pro
the following lemmas for the parts $K_{t}$ . These imply the result. q.e

LEMMA 1.22. We have that
$K_{e}\cong W_{*}\{\{V(0,2)\}\}+Im(e)+\mathscr{P}$ , and
$K_{s}\cong W_{*}\{\{V(1,2)\}\}+Im(s)+\mathscr{P}$ .
LEMMA 1.23. For the classes $\{V(O, 2n+2)|n\geq 0\}$ of $K_{e}$, we have that
(i) $V(O, 4m+4)\in Im(e)$ ,
(ii) $V(O, 4m+2)-[CP(2m)]V(O, 2)\in Im(e)$ ,
(iii) $[CP(2m)]V(O, 2)\not\in Im(e)$ hence $V(0,4m+2)\not\in Im(e)$ in general, and
(iv) If $x\in E_{*}with$ $x\neq[CP(2)]^{u}w_{n}(u\geq 0, n\equiv 3(mod 4))$, then $x\cdot V(O, 4m+2)\in Im|$

In particular, $v\cdot V(O, 4m+2)\in Im(e)$ for $v=[CP(2u)]-[CP(2)]^{u}\in E_{*}$ .
The same results holdfor the classes $\{V(1,2n+2)\}$ of $K_{s}$ . In this case, the part $($

holds for each $x\in E_{*}$ .
LEMMA 1.24. We have that
(i) $[CP(2)]^{u}[G_{k}, T]\not\in Im(s)$ , (ii) $[c\eta 2)]^{u}[S^{1}, T]\not\in Im(e)$, and
(iii) $[CP(2)]^{u}V(\epsilon, 2)\not\in Im(t)$ for $\epsilon=0$ or 1, and $t=e$ or $s$ .
To prove the above lemmas, we use the following

LEMMA 1.25. For the map $\partial:W_{*}$($Z_{2}$ ; All, $Free$) $\rightarrow W_{*}(BZ_{2})\oplus E_{*}\{\{[Z_{2}, -1]\}\}$

(1.13), we have that $\partial(Ker(e))\cong W_{*}\{\{dX(2n+2)|n\geq 0\}\}\oplus E_{*}\{\{[S^{1}, -1]\}\}$ in $Ker(e)$

$W_{*}\{\{dX(2n+2)|n\geq-1\}\}$ (cf. Prop. 1.4(ii)). The same result holds for the map $s$ .
$PR\infty F$ . Sinoe $Ker(e)=Im(d)$ at $W_{*}$($Z_{2}$ ; All, Free) (cf. Lemma 1.9 (iii)), $\partial(Ker(e))$

$d(Im(\partial))=d(W_{*}(BZ_{2})\oplus E_{*}\{\{[Z_{2}, -1]\}\})$ . This implies the $re$sult since $d(W_{*}(BZ_{2}))$

freely generated by $dX(2n+2)(n\geq 0)$. q.e
$PR\infty F$ OF LEMMA 1.22. Take each $x\in K_{e}$ and put $j_{*}(x)=e(\xi_{x})$ for so]

$\xi_{x}\in W_{*}$($Z_{2}$ ; All, Free) (cf. Definition 1.16). Then $\partial(\xi_{x})$ belongs to the kemel
$e:\tilde{W}_{*}(BZ_{2})\oplus E_{*}\rightarrow W_{*}$( $G_{k}$ ; Free), hence $\partial(\xi_{x})=\sum_{n\geq-1}M_{2n+2}d(X(2n+2))(M_{2n+2}\in W$
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and $\partial(\xi)=\sum_{n\geq 0}M_{2n+2}d(X(2n+2))$ for some $\xi\in Ker(e)$ in $W_{*}$ ( $Z_{2}$ ; All, Free) by the above
lemma. This implies that there is an element $y\in W_{*}$($Z_{2}$ ; All) such that $j_{*}(y)=\xi_{x}-(\xi+$

$M_{0}\xi_{0}^{2})$ , and $j_{*}(x-M_{0}V(O, 2)-e(y))=0$ in $W_{*}$($G_{k};Af$, Free). Hence the result for $K_{e}$

follows by the proposition 1.11 (i). For an element $x\in K_{s}$ , the proof is similar by using
the lemma 1.9 (iii), so we omit it here. q.e. $d$ .

PROOF OF LEMMA 1.23. First we prove the part (ii). See the relation (1.5) in
$W_{*}$($Z_{2}$ ; All), then we note that an element $[S^{4m+1}, -1]-[CP(2m)][S^{1}, -1]$ has
a counter-image $\xi\in Ker(e)$ in $W_{*}$($Z_{2}$ ; All, Free) by the lemma 1.25. Let $y$ be an element
in $W_{*}$($Z_{2}$ ; All) such that$j_{*}(y)=\xi_{0}^{4m+2}-(\xi+[CP(2m)]\xi_{0}^{2})$ , then $(i_{*}\circ eXy)=j_{*}(V(0,4m+$

$2)-[CP(2m)]V(O, 2))$ in $W_{*}$($G_{k};Af$, Free) by definition. This implies that $e(y)-$

$(V(O, 4m+2)-[CP(2m)]V(O, 2))=0$ in $\mathscr{P}$ by the dimensional condition, and the $re$sult
holds. The proof of the part (i) is similar to this, so we omit it here. For part (iii), we
suppose that $[CP(2m)]V(O, 2)=e(y)$ for some $y\in W_{*}$ ($Z_{2}$ ; All), then $(e\circ j_{*}Xy)=(i_{*}\circ eXy)=$

$[CP(2m)]e(\xi_{0}^{2})$ in $W_{*}$($G_{k};Af$, Free). This means that $j_{*}(y)-[CP(2m)]\xi_{0}^{2}\in Ker(e)$ in
$W_{*}$($Z_{2}$ ; All, Free) and $\partial C_{*}(y)-[CP(2m)]\xi_{0}^{2})=-[CP(2m)][S^{1}, -1]\in\partial(Ker(e))$ in
$W_{*}$($Z_{2}$ ; Free). This is contrary to the lemma 1.25 sinoe $[CP(2m)]\not\in E_{*}$ . Thus the part
(iii) follows. Finally we prove the part (iv). From the lemma 1.25 and the relation (1.5)

again, we see that $x\cdot[S^{4m+1}, -1]$ has a counter-image $\xi\in Ker(e)$ in $W_{*}$($Z_{2}$ ; All, Free)

for each $x\in E_{*}$ . Thus there is an element $y$ in $W_{*}$($Z_{2}$ ; All) such that $e(y)-xV(O,$ $4m+$

$2)\in \mathscr{P}$ . When dim $x\equiv 3(mod 4)$ , this differenoe may be $a=[CP(2)]^{\alpha}[S^{1}, T]$ in $ge$neral.
Then $xV(O, 4m+2)\not\in Im(e)$ by the next lemma 1.24. If $x^{\prime}=w_{n}$ for $n\not\equiv 3(mod 4)$ and if
$x^{\prime}=w_{n_{1}}w_{n_{2}}$ for $n_{i}\equiv 3(mod 4)$ , then $x^{\prime}V(O, 4m+2)\in Im(e)$ . Thus if $x$ belongs to the ideal
in $W_{*}$ generated by these elements $x^{\prime}$ , we also have $xV(O, 4m+2)\in Im(e)$ in general.
Hence we admit the case that $xV(O, 4m+2)=e(y)+a$ when $x=[CP(2)]^{u}w_{n}$ with $u\geq 0$

and $n\equiv 3(mod 4)$ . The corresponding relations among the classes $\{V(1,2n+2)\}$ and
$Im(s)$ are proved by using the exactness of $(d, s)$ in the lemma 1.9 (iii). For the part (iv),

we take an element $y$ in $W_{*}$ ($Z_{2}$ ; All) such that $s(y)-xV(1,4m+2)\in \mathscr{P}$ for $e$ach $x\in E_{*}$

as above, and this difference may be $b=\epsilon[CP(2)]^{\alpha}[G_{k}, T]$ ($\epsilon=0$ or 1) when dim $x\equiv 1$

$(mod 4)$ . However this implies that $0=[S^{1}, T]\otimes_{G_{k}}b=\epsilon a$ in $W_{*}(G_{k};Af)$ by the remark
1.20 (cf. [5: Theorem 2.22 $(i)]$ ) and $\epsilon=0$ . Henoe $xV(1,4m+2)\in Im(s)$ for each

$x\in E_{*}q.e.d$ .

Proof of LEMMA 1.24. The proof of (i) is easy. For part (ii), we suppose that
$\epsilon[CP(2)]^{u}[S^{1}, T]=e(y)$ for some $y\in W_{*}$( $Z_{2}$ ; All). Since $(e\circ j_{*})(y)=(i_{*}\circ e)(y)=0$ in
$W_{*}$($G_{k};Af$, Free), $j_{*}(y)=d(\xi)$ for some $\xi\in W_{*}$( $Z_{2}$ ; All, Free) by the lemma 1.9 (iii).

We have that $\partial(\xi)=\sum_{n\geq-1}M_{2n+2}d(X(2n+2))$ sinoe $\partial(\xi)\in Ker(d)$ in $\tilde{W}_{*}(BZ_{2})\oplus E_{*}\{\{[Z_{2}$ ,

$-1]\}\}$ . By the lemma 1.25, there is an element $\xi^{\prime}$ in $Ker(e)=Im(d)$ such that
$\partial(\xi^{\prime})=\sum_{n>0}M_{2n+2}d(X(2n+2))$ and an element $z\in W_{*}$($Z_{2}$ ; All) such that $j_{*}(z)=\xi-(\xi^{\prime}+$

$M_{0}\xi_{0}^{2})as^{-}$ usual. Then $(i_{*}\circ d)(z)=d(\xi)=j_{*}(y)$ implies that $y=d(z)$ by the dimensional
condition (cf. (1.13)). Since $e\circ d=0$ , we see that $e(y)=0$ and $\epsilon=0$ . This implies the
$re$sult. The proof of part (iii) is proved by using the lemma 1.25. q.e. $d$ .
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REMARK 1.26. In the lemma 1.25, a conter-image $\xi\in Ker(e)$ of $dX(2n+2)und($
the map $\partial$ is constructed as follows. Sinoe $X(2n+2)=[S^{1}\times RS^{2n+1}, id\times-1](n\geq 0)(c$

Prop. 1.4), we see that $\partial[S^{1}\times RD^{2n+2}, id\times-1]=\partial(\xi_{1}\xi_{0}^{2n+1})=X(2n+2)$ by $\infty nsideril$

its fixed point data. Thus $\xi=d(\xi_{1}\xi_{0}^{2n+1})=\xi_{1}^{2}\xi_{0}^{2n}\in Ker(e)$ maps to $dX(2n+2)$ by $\partial$ . $V$

have another $\xi$ as follows. Let $y_{n+1}=[S(\xi_{n}\xi_{0})](n\geq 0)$ be a basis of $W_{*}(BZ_{2})$ in $[$

Lemma 7.1]. We note that $\Delta(y_{2n+2})=X(2n+1)=\Delta(X(2n+2))$ in $\mathfrak{R}_{*}$($Z_{2}$ ; Free) by tl
definition of $\xi_{2n+1}$ and [4; Theorem 2.5] where $\Delta$ is the Smith homomorphism. $Sin|$

$\epsilon_{*}X(2n+2)=0$ too in $\mathfrak{R}_{*}$ for the augmentation map, this implies that $y_{2n+2}=X(2n+$

in $\mathfrak{R}_{*}$($Z_{2}$ ; Free) henoe in $W_{*}$($Z_{2}$ ; Free). Thus we may take that $\xi=\xi_{2n+1}\xi_{1}\in Ker|$

in $W_{*}$($Z_{2}$ ; All). Further, to find a counter-image $\xi_{x}$ for each $x\in E_{*}\{\{[S^{1}, -1]\}\}$ ,
is sufficient to consider the case that $x=w_{n}[S^{1}, -1](n>4)$ where $w_{n}=[RP(\xi_{I_{n}})]f_{t}$

a suitable sequenoe $I_{n}$ (cf. Definition 1.10). Put $\partial(\xi_{I_{n}})=\sum_{n\geq 0}M_{2n+2}X(2n+2)$

$\sum_{n\geq 0}M_{2n+1}[S^{2n+1}, -1]+w_{n}[Z_{2}, -1]$ in $W_{*}$($Z_{2}$ ; All) formally, then the eleme]
$d(\xi_{I_{n}})\in Ker(e)$ maps to $\sum_{n\geq 0}M_{2n+2}d(X(2n+2))+x$ by $\partial$ . Hence the element $\xi_{x}$

$d(\xi_{I_{n}})-\sum_{n\geq 0}M_{2n+2}\xi_{1}^{2}\xi_{0}^{2n}\in Ker(e)$ is a desired counter-image of $x$ for example.

REMARK. In the theorem 1.19, the part $Q$ may be really contained in $Im($

However, as far as an application to the oriented theory in the next section is conceme
this is not at all serious.

2. Some applications.

Let $\Omega_{*}(G_{k};Af)=\sum_{n\geq 0}\Omega_{n}(G_{k};Af)$ be the oriented bordism group of ,

orientation-preserving almost free $G_{k}$ actions. We note that a torsion element
$\Omega_{*}(G_{k};Af)$ is of order $2^{i}$ for some $1\leq i\leq k$, and a torsion free element comes from that $($

$\Omega_{*}$($Z_{2}$ ; All) essentially by the extension map $e:\Omega_{*}(Z_{2};All)\otimes Z[1/2]\cong\Omega_{*}(G_{k};Af^{-})($

$Z[1/2]$ , where $Z[1/2]$ is the subring of the rationals, generated by $Z$ and 1/2 (cf. [1
Prop. 4.2 and 2.2]). Now let $\beta:W_{*}(G_{k};Af)\rightarrow\Omega_{*1}-(G_{k};Af)$ be the Bockste
homomorphi$sm$ which sends $[M, T]\in W_{n}(G_{k};Af)$ into $[N, T|_{N}]\in\Omega_{n-1}(G_{k};Af)$, whe
$N$ is the invariant submanifold of $M$ dual to $\det\tau_{M}$ (cf. [6; Sect. 6] for example). $F\langle$

a typical type $x=[S^{1}X_{R}M, id\times T]$ in the example 1.2, we see that $\beta(x)=[M, T]t$

definition. Then $F=Im(\beta)$ is the subgroup of all elements of order 2 in $\Omega_{*}(G_{k};Af)$ , an
there is a universal coefficient sequenoe:

(2.1) $0\rightarrow\Omega_{*}(G_{k};AJ7\otimes Z_{2}\rightarrow W_{*}(G_{k};Af)\rightarrow^{\beta}\mathcal{T}\rightarrow 0$

induced from the Wall exact sequenoe.

DEFINITION 2.2. Let $\Delta$ be the set of all unord$e$red sequenoe consisting of $distin|$

even integers which are greater than 4 and not a power of 2. Then the class $($

$\{w_{I}=w_{2i(1)}\cdots w_{2i(t)}|I=(2i(1), \cdots, 2i(t))\in\Delta\}$ is a base of the free $\Omega_{*}\otimes Z_{2}$ module $($

$W_{*}$ (cf. [8; Sect. 11] for example).
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THEOREM 2.3. $\mathcal{T}$ is generated by the following (i) and (ii):
(i) $\mathcal{T}_{1}=\beta(K_{e}+K_{s})$ is the sum of $Z_{2}[2^{k}‘ 2[CP(2)]^{m}[S^{1}, T]|m\geq 0]$ as a $Z_{2}$ vector

space, $e$($Tor\Omega_{*}(Z_{2}$ ; All)) and $s$($Tor\Omega_{*}(Z_{2}$ ; All)) ($e,$ $s$ : the two extensions from the torsion
part of $\Omega_{*}$($Z_{2}$ ; All)), and

(ii) $\mathscr{L}_{*}=\beta(L_{*})\cong(\Omega_{*}\otimes Z_{2})\{\{\beta(w_{I})V(2p+1,2K),$ $\beta(w_{I}V(2p, 2K))|p\geq 1,2K$, and
$I\in\Delta\}\}$ as a free $\Omega_{*}\otimes Z_{2}$ module where the class $\{p, 2K\}$ is appeared in the proposition
1.8. Further, $\mathcal{T}_{1}\cap \mathscr{L}_{*}=\{0\}$ except that $k=2$ .

REMARK 2.4. In the above, an oriented manifold representing the class
$\beta(w_{I}V(2p, 2K))$ is constructed by the method as mentioned in [8; Lemma 15.2].

First we prove the following lemmas.

LEMMA 2.5. In general, $\beta(V(O, 2n+2))=2^{k-2}[S^{2n+1}, T]$ and $\beta(V(1,2n+2))=0$ in
$\Omega_{*}(G_{k};Af)$ .

PROOF. We have that $j_{*}(V(O, 2n+2))=e(\xi_{0}^{2n+2})=[G_{k}\times_{z_{2}}D^{2n+2}, T\times id]$ in
$W_{2n+2}$($G_{k};Af$, Free) (cf. Definition 1.17). Sinoe the composition $e\circ r=2\times id:\Omega_{*}(G_{k}$ ;
$Free)\rightarrow\Omega_{*}(G_{k-1};Free)\rightarrow\Omega_{*}$( $G_{k}$ ; Free) ($r$ ; the $re$striction) (cf. [10: Prop. 4.2]), we see that
$\partial[G_{k}\times z_{2}D^{2n+2}, T\times id]=2^{k-1}[S^{2n+1}, T]$ in $\Omega_{*}$( $G_{k}$ ; Free) by induction. Henoe we have
an oriented manifold $V$ (with an orientation-preserving almost free action $T_{V}$) whose
boundary $\partial V$ has $2^{k-1}$ copies of $(S^{2n+1}, T)$ and $Z_{2}$ fixed point data is $e(\xi_{0}^{2n+2})$ . By
pasting these boundaries two by two, we obtain $V(O, 2n+2)$ with the induced action $T$

and $\beta(V(O, 2n+2))=2^{k-2}[S^{2n+1}, T]$ . Further $\beta(V(1,2n+2))=2^{k-2}[S^{1}, T]\otimes_{G_{k}}[S^{1}, T]=$

$0$ since $V(1,2n+2)=[S^{1}, T]\otimes_{G_{k}}V(O, 2n+2)(mod \mathscr{P})$ and $\beta(\mathcal{P})=\{0\}$ (cf. Remark 1.20).
q.e.d.

LEMMA 2.6. On the basis $\{V(q, 2K)\}$ of $L_{*}$ , we have that

$\beta(V(2p, 2K))=2^{k-2}V(2p-1,2K)$ and $\beta(V(2p+1,2K))=0$ $(p\geq 1)$ .
$PR\infty F$ . From the theorem 1.19 (iii), we note that $\beta(V_{\langle k)}(2p, 2K))=\overline{e}(V_{\langle 2)}(2p-1$ ,

$2K))=(\overline{e}\circ r)(V_{\langle k)}(2p-1,2K))=2^{k-2}V_{\langle k)}(2p-1,2K)$ by using the composition $e\circ r=$

$2\times id:\Omega_{*}(G_{k};Af)\rightarrow\Omega_{*}(G_{k-1} : Af)\rightarrow\Omega_{*}(G_{k};Af)$ as above. q.e. $d$ .
PROOF OF THEOREM 2.3. Note that $\beta$ maps the part $Im(t)$ (in $K_{t}$) onto

$t$($Tor\Omega_{*}(Z_{2}$ ; All)) for $t=e$ or $s$ since all torsion of $\Omega_{*}$($Z_{2}$ ; All) has order 2 (cf. [9;
Theorem 3.4]). We note that $w_{n}\in Tor\Omega_{n}$ for $n\equiv 3(mod 4)$ hence $\beta(w_{n}V(O, 2))=$

$2^{k-2}w_{n}[S^{1}, T]$ by the above lemma 2.5, which is zero if $k\geq 3$ . When $k=2$ , the fact that
$w_{n}[Z_{2}, -1]=0$ in $\Omega_{n}$($Z_{2}$ ; All) implies that $w_{n}[S^{1}, T]=0$ in $\Omega_{n}(G_{k};Af)$ (cf. [9; Theorem
3.1]). Thus we have that $\beta(Q)=\{0\}$ after all, and $\mathcal{T}_{1}$ consists of thre$e$ parts as mentioned
in (i). Note that

$\beta(w_{I}V(2p+1,2K))=\beta(w_{I})V(2p+1,2K)$ ,
(2.7)

$\beta(w_{I}V(2p, 2K))=\beta(w_{I})V(2p, 2K)+w_{I}\cdot 2^{k-2}V(2p-1,2K)$
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in $W_{*}(G_{k};Af)$ from the lemma 2.6. Thus the linearly independenoe of the clas.
$\{V(q, 2K)|q\geq 2\}$ over $W_{*}$ implies the result (ii) in particular by the definition 2.2. Nt
we study the intersection part $\mathcal{T}_{1}\cap \mathscr{L}_{*}$ . In case of $k\geq 3$ , we note that $\mathscr{L}_{*}\sigma L_{*}$ via $t$

embedding of the coefficient ring $\Omega_{*}\otimes Z_{2}\sigma W_{*}\sin oe\beta(w_{I}V(q, 2K))=\beta(w_{I})V(q, 2K)1$

all $q\geq 2$ by the formula (2.7), while $\mathcal{T}_{1}$ lies in $Im(e)+Im(s)$ in $W_{*}(G_{k};Af)$ . Thus ea
$x\in \mathcal{T}_{1}\cap \mathscr{L}_{*}$ lies in $(Im(e)+Im(s))\cap L_{*}=\{0\}$ (cf. Theorem 1.19), henoe $x=0$

$\Omega_{*}(G_{k};Af)$ by the embedding $\mathscr{L}_{*}\sigma L_{*}$ . This implies that $\mathcal{T}_{1}\cap \mathscr{L}_{*}=\{0\}$ and the $res$
.

follows. q.e

REMARK 2.8. In case of $k=2$ , define by $L_{*}^{\prime}$ , the submodule of $W_{*}(Z_{4};r$

generated by all element of $L_{*}$ and $\{V(1,2K)|2K\}$ for convenience. Including the lat
classes, we see that $\{V(q, 2K)|q\geq 1,2K\}$ are also linearly independent over $W_{*}$ by usi
the fact $thatj_{*}(V(1,2K))=s\langle\eta_{2K}$) $=s\langle\xi_{2K^{2}}$) and the lemma 1.9 (ii) and (iii). Thus we ha
that $K_{e}\cap L_{*}^{\prime}=\{0\}$ and $K_{s}\cap L_{*}^{\prime}\cong W_{*}\{\{V(1,2K)|2K\}\}$ . Then we note that $\mathcal{T}_{1}\bigcap_{-}^{(}$

lies in $(K_{e}+K_{s})\cap L_{*}^{\prime}\cong W_{*}\{\{V(1,2K)|2K\}\}$ by the formula (2.7). Now, for each torsi
element $x=\beta(\overline{x})$ in $\Omega_{*},$ $xV(1,2K)=\beta(\overline{x}V(1,2K))=\beta(xV(2,2K))$ which does not vani
in $\mathcal{T}_{1}\cap \mathscr{L}_{*}$ . However we see that $[CP(2u)]V(1,4m+2)\in \mathscr{L}_{*}$ does not belong to $\mathcal{T}_{1}1$

example by using the lemma 1.25. Henoe $\mathcal{T}_{1}\cap \mathscr{L}_{*}$ is properly contained
$(\Omega_{*}\otimes Z_{2})\{\{V(1,2K)|2K\}\}$ .

As an application, we study the image $Im(I_{*})$ of the forgetful homomorphi $($

$I_{*}:$ $\Omega_{*}(Z_{4} : Free)\rightarrow\Omega_{*}(Z_{4};Af)$ .
THEOREM 2.9. $Im(I_{*})\cong(\Omega_{*}/Tor\Omega_{*})\{\{[Z_{4}, i]\}\}\oplus C_{*}\{[S^{1}, i]\}$ , where $C_{*}\{[S^{1}, i]]$

a $C_{*}\cong Z_{2}[CP(2m)|m\geq 1]$ module generated by $[S^{1}, i]$ .
First we prove the following

PROPOSITION 2.10. As the elements in $\mathcal{T}$ ,
(i) $[S^{4m+1}, i]=[CP(2m)][S^{1}, i]\neq 0$ and (ii) $[S^{4m+3}, i]=0$

in $\Omega_{*}(Z_{4};Af)$ for $m\geq 0$ .
$PR\infty F$ . We note that $[S^{4m+1}, i]\neq 0$ in $\Omega_{*}(Z_{4};Af)$ by the corollary 1.15. No

see the proof of the lemma 1.23 (ii). There an element $y\in W_{*}$( $Z_{2}$ ; All) is chosen su
that $j_{*}(y)=\xi_{0}^{4m+2}-(\sum_{\alpha=0}^{m-1}[CP(2\alpha)]\xi_{1}^{2}\xi_{0}^{4\langle m-\alpha)-2}+[CP(2m)]\xi_{0}^{2})$ by using a countt
image $\xi$ of $d(X(2n+2))$ mentioned in the remark 1.26. Thus $j_{*}(\beta(y))=0$ in $W_{*}(Z_{2}$ ; A
Free) in particular (cf. [8; Theorem 4.2]). Sinoe $\beta(y)\in Q_{*}^{(2)}$ which is the submodule
$W_{*}$($Z_{2}$ ; All) embedded in $W_{*}$($Z_{2}$ ; All, Free) (cf. [8; Sec. 8]), we have that $\beta(y)=0$

$W_{*}$($Z_{2}$ ; All) henoe in $\Omega_{*}$($Z_{2}$ ; All). Thus $\beta(V(O, 4m+2)-[CP(2m)]V(O, 2))=[S^{4m+1}, i]$

$[CP(2m)][S^{1}, i]=e(\beta(y))=0$ in $\Omega_{4m+1}(Z_{4};Af\neg)$ by the lemma 2.5. This implies the $res\rceil$

(i). We see that $[S^{4m+3}, i]=0$ in $\Omega_{*}(Z_{4};Af)$ as follows. Consider an orientatic
preserving $Z_{4}$ action $T$ on $CP(2m+2)$ given by

$T([z_{0} : z_{1} : z_{2} : \cdots ; z_{2m+1} ; z_{2m+2}])=[\overline{z}_{O} ; -\overline{z}_{2} : \overline{z}_{1} : \cdots : -\overline{z}_{2m+2} ; \overline{z}_{2m+1}]$
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(cf. [11; Sec. 3]).
We note that the only stationary point of $T$ is $[$ 1: $ 0:\cdots$ : $0]$ . Thus, deleting

neighborhood of this point gives a manifold $V^{4m+4}$ (with suitable orientation) whose
boundary is equivariantly diffeomorphic to $[S^{4m+3}, i]$ . q.e.d.

PROOF OF THEOREM 2.9. Consider that $\Omega_{*}(Z_{4};Free)\cong\Omega_{*}\{\{[Z_{4}, i]\}\}\oplus\tilde{\Omega}_{*}(Z_{4}$ ;
Free) as usual. Then $\tilde{\Omega}_{*}(Z_{4};Free)\cong \mathfrak{H}_{2}\oplus \mathfrak{G}_{2}$ where $\mathfrak{H}_{2}$ is generated by the classes
$\{[S^{2n+1}, i]|n\geq 0\}$ of order 4 and $\mathfrak{G}_{2}$ is generated by the classes $\{e(E^{2n+1}W(\omega))\}$ , the
extension of suitable elements $E^{2n+1}W(\omega)\in\tilde{\Omega}_{*}$ ($Z_{2}$ ; Free) of order 2 (cf. [5; Theorem
2.18]). Since $e:\Omega_{*}(Z_{2};All)\otimes Z[1/2]\cong\Omega_{*}(Z_{4};Af)\otimes Z[1/2]$ , we see that the kemel of
$I_{*}$ from $\Omega_{*}\{\{[Z_{4}, i]\}\}$ is $(Tor\Omega_{*})\{\{[Z_{4}, i]\}\}$ in particular. On the other hand $I_{*}(\mathfrak{G}_{2})=\{0\}$

sinoe $\tilde{\Omega}_{*}$ ($Z_{2}$ ; Free) vanishes in $\Omega_{*}$ ($Z_{2}$ ; All) (cf. [9; Theorem 3.1]). The image $I(\mathfrak{H}_{2})$ is
shown by the above proposition and the fact that $C_{*}=\Omega_{*}/(Tor\Omega_{*}+2\Omega_{*})$ is isomorphic
to the $Z_{2}$ polynomial algebra on the classes $\{[CP(2m)]\}$ (cf. [12; p. 183]). q.e. $d$ .

REMARK 2.11. We need to see the element $x_{k}(m)=2^{k-2}[CP(2)]^{m}[S^{1}, T]$ in $\mathcal{T}_{1}$ is
really non-zero. The fact $x_{2}(m)\neq 0$ is mentioned in the corollary 1.15. Next we prove
that $x_{3}(m)\neq 0$ by using the theory of Wall manifolds only. Suppose that $x_{3}(m)=0$ in
$\Omega_{4m+1}(Z_{8};Af)$ and let $v$ be an element in $W_{4m+2}(Z_{8};Af)$ such that $\beta(v)=[CP(2)]^{m}[S^{1}, T]$ .
We write that $v=\epsilon[CP(2)]^{m}V_{\langle 3)}(0,2)+e(x)+s(y)+l$ for some $x,$ $y\in W_{*}$( $Z_{2}$ ; All) and $l$; a
sum of elements $V_{\langle 3)}(q, 2K)(q\geq 2)$ in $L_{*}$ (cf. Theorem 1.19). We consider the natural
restriction $r:W_{*}(Z_{8};Af)\rightarrow W_{*}(Z_{4};Af)$ . Then $r(v)=s(y)+r(l)$ where $r(l)$ is a sum of
elements $V_{\langle 2)}(2p+1,2K)$ $(p\geq 1)$ since $r(V_{(3)}(0,2))=(r\circ e^{\rightarrow}XV_{\langle 2)}(0,2))=2V_{\langle 2)}(0,2)=$

$0,$ $r(V_{\langle 3)}(2p, 2K))=0$ for $p\geq 1$ by the same reason (cf. Remark 1.20 and Theorem 1.19
(iii-2)) and $(r\circ e)(x)=2x=0$ . Hence we have that $(\beta\circ rXv)=x_{2}(m)=s(y^{\prime})+l^{\prime}$ in
$\Omega_{4m+1}(Z_{4};Af)$ where $y^{\prime}=\beta(y)\in Tor\Omega_{*}$($Z_{2}$ ; All) and $I^{\prime}=(\beta\circ r)(l)$ . Consider again this in
$W_{*}(Z_{4};Af)$, then 1’ is a sum of elements $V_{\langle 2)}(2p+1,2K)(p\geq 1)$ over $\Omega_{*}\otimes Z_{2}$ . In
particular, we see that $x_{2}(m)-s(y^{\prime})=l^{\prime}\in(K_{e}+K_{s})\cap L_{*}=\{0\}$ and $x_{2}(m)=s(y^{\prime})$ in
$W_{4m+1}(Z_{4};Af).Letj_{*}(y^{\prime})=\xi_{y}$ , in $W_{4m}$($Z_{2}$ ; All, Free), then $s(\xi_{y},)=(s\circ j_{*})(y^{\prime})=j_{*}(x_{2}(m))=0$

in $W_{4m+1}$ ($Z_{4};Af$, Free). Hence $(i_{*}\circ e)(y^{\prime})=e(\xi_{y},)=0$ by the lemma 1.9 (iii), and
$e(y^{\prime})=\epsilon[CP(2)]^{m}[Z_{4}, i]$ ($\epsilon=0$ or 1) by the proposition 1.11 (i). Using the following
lemma 2.12 and Lemma 8.2 in [8], $ 0\equiv\chi(\overline{y^{\prime}})=\epsilon$ where $y^{\prime}-$ is the orbit spaoe of $y^{\prime}$ under
$Z_{2}$ . Hence $x_{2}(m)=s(y^{\prime})=0$ in $W_{4m+1}(Z_{4};Af)$ which is contrary to $x_{2}(m)\neq 0$ , and we
have that $x_{3}(m)\neq 0$ in $\Omega_{4m+1}(Z_{8};Af)$ . In other words, we see that $[S^{4m+1}, T]$ is of order
4 in $\Omega_{4m+1}(Z_{8};Af)$ by the same way as the proof of the proposition 2.10. However, this
method does not apply to the case $k\geq 4$ since $(\beta\circ r)(v)$ vanishes in $W_{*}(G_{k-1};Af)$ from
the beginning, while it is easy to see that $x_{k}(0)\neq 0$ in general.

LEMMA 2.12. If $X$ is a non-oriented mamfold with almostfree $G_{k}$ action Tsuch that
the $Z_{2}$ fixedpoint set $F$ of $T$ has even codimension, then the Euler characteristic modulo
2, $\chi$ of the orbit space $\partial X/T$ is zero.

Th $e$ proof is entirely analogous to that in [8; Lemma 8.1], so we omit it here.



474 TAMIO HARA

References

[1] R. P. BEEM, The action of free G-bordism on G-bordism, Duke Math. J., 42 (1975), 297-305.
[2] –, On the bordism of almost free $Z_{2^{k}}$ actions, Trans. Amer. Math. Soc., 225 (1977), 83-105.
[3] P. E. CONNER, Lectures on the Action ofa Finite Group, Lecture Notes in Math., 73 (1968), Springer.
[4] T. HARA, On Wall manifolds with $(\epsilon)$-free involutions, Publ. R. I. M. S. Kyoto Univ., 22 (1986), 571-582.
[5] Y. KATSUBE, Principal oriented bordism algebra $\Omega_{*}(Z_{2^{k}})$ , Hiroshima Math. J., 4 (1974), 265-277.
[6] K. KOMIYA, Oriented bordism and involutions, Osaka J. Math., 9 (1972), 165-181.
[7] C. KOSNIOWSKI, Actions ofFinite Abelian Groups, Pitman (1978).
[8] C. KOSNIOWSKI and E. OSSA, The structure of the bordism module of oriented involutions, Proc

London Math. Soc., u (1982), 267-290.
[9] H. L. ROSENZWEIG, Bordism of involutions on manifolds, Illinois J. Math., 16 (1972), 1-10.
[10] R. J. ROWLETT, The fixed-point construction in equivariant bordism, Trans. Amer. Math. Soc., 24

(1978), 473-A81.
[11] R. E. STONG, Stationary point free group actions, Proc. Amer. Math. Soc., 18 (1967), 1089-1092.
[12] –, Notes on Cobordism Theory, Princeton Univ. Press (1968).
[13] –, Wall manifolds, Trans. Amer. Math. Soc., 251 (1979), 287-298.
[14] J. C. SU, A note on the bordism algebra of involutions, Michigan Math. J., 12 (1965), 25-31.
[15] F. UCHIDA, Bordism algebra of involutions, Proc. Japan Acad., 46 (1970), $61\approx 19$ .
[16] C. T. C. WALL, Determination of the cobordism ring, Ann. of Math., 72 (1960), 292-311.
[17] E. R. WHEELER, The oriented bordism $ofZ_{2^{k}}$ actions, Trans. Amer. Math. Soc., 199 (1974), 113-121.

Present Address:
DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND TECHNOLOGY
SCIENCE $UNIVERS\Pi Y$ OF TOKYO
NODA, CHIBA 278, JAPAN


