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Abstract. In the present paper we obtain a multiplier theorem for Fourier-Jacobi expansions in the
space lip(y, p), yp> 1, which extends an earlier result of Trebels [11].

1. Let X be the Banach space of all measurable functions on [0, 7] with respect
to the norm

n 1/p
(1.1) l|f||p=(J If(9)l”du(9)) < 0; l<p<owo,
0

where »
du(0) = (sin 6/2)*** (cos 0/2)?#* 140 , o, f>—1/2.

Let X* be the Banach algebra of all bounded operators of X onto itself.
We put

R(6) = Ri"(cos ) = P{*P(cos 0)/ PiP(1) ,

where P{#(cos 6) is the kth Jacobi polynomial of order («, B).
We now define Projections {B,};.z by

B,(6)= ( f ”f(e)Rk(e)du(e))hkRk@ ,
0

where

_Qk+a+B+DI(k+a+p+ DI (k+a+1)

4 2 -1
= h{®:B) —
= ‘(L(R"(O)) u (0)) T+ B+ DI(k+ DI (a+ DI+ 1)

and Z is the set of all non-negative integers.
It can be easily seen that the sequence {B};.z is a total and fundamental
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sequence of mutually orthogonal projections in X™*.
The Fourier-Jacobi series associated with any function feX in terms of the
orthogonal projection {B,}..z is given by

Qa0

f~2 BS,

k=0

12 = 5 70mR®).

where
7= f " FO)RUO)du6) .
0

We suppose that S is the set of all sequences of scalars. A sequence n={m}0€S
is called a multiplier sequence for X with respect to {B,},.z if V/€X, 3 an element
f"€ X such that

ﬂkka-_—"ka"; k=0, 1,2,"’ .

From this definition it follows that
[o.o]
ST~ Z MBS -
k=0

On account of totality of the sequence {B;};.z, the element f" is uniquely
determined for every fe X. ,

We denote by M = M(X; {B,},.z) the set of all multipliers for X corresponding to
{B.}xcz- Trebels [11, p.10] has shown that the set M is a commutative Banach algebra
with respect to vector addition, coordinatewise multiplication and the norm

Inlla=sup{lf"I : feX, I fl<1}.

It is known that the identity sequence {1} e M.
Next, let 7 be an operator from X into itself. We say that T is a multiplier
operator provided there exists a sequence 7€ S such that

Bka=Tkka VfEX; k=0, 1,2, ctt .

Hence we see that corresponding to any multiplier operator 7 we have the expansion

a0

Tf~ Z B f .

k=0

From the above discussion it is clear that with respect to each multiplier operator
T there exists a multiplier sequence 7€ M and vice versa.
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2. The convolution structure for the ultraspherical series was introduced by
Gelfand [7] and the corresponding formula for Legendre series was obtained by
Bochner [3]. Gangolli [5], on the other hand, found the convolution structure for
Jacobi series for some particular values of o« and B. A general convolution structure
for Jacobi series was discovered by Askey and Wainger [1] in 1969.

On the lines of Askey and Wainger (loc. cit.), we define the convolution formula
for any two function f, ge L, by

(f*9)(0)= f uf (0)(T49(6)an(8))
(4]

- f | @0 WK®, ¢, ¥)du(@)duy),

where

Ty9(6)= f gW)K(G, ¢, ¥)duy)
0
and K(6, ¢, ¥) is a non-negative symmetric function such that

R(O)R ()= f "RAIKO, b, ¥)du(p)

and
f KO, , W)du)=1.

We write

(e, f, X)=0232¢” Ty fO)—f(O)x -
If
(e, f, X)<C¢’,

where 0<y<1 and C is any positive constant not necessarily the same at each
occurence, then we say that f belongs to the Lipschitz class of order y or to Lip(y, p).
In case C—0 as ¢—0, we say that felip(y, p)=X}. It is known that all the functions
of the class Lip(y, p) form a Banach space with respect to the norm (see [2], p. 43).

I/ NLipy= 17 lx+ sup (we(n” P9)

where Z* is the set of all positive integers.
Multiplier problems for Fourier-Jacobi expansions in Banach spaces have been
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studied in detail by Connett and Schwartz [4] and Gasper and Trebels [6].

In order to prove the main results, they all have used a well known theorem of
Szegd ([10], Chapter IX) on the (C, §) summability of Jacobi series for é>a+1/2;
a=>—1/2.

The object of the present paper is to improve the above mentioned result of Szegd
and obtain a multiplier theorem for the space X}.

Precisely, we prove the following:

THEOREM. If 0<d<a+1/2—1/p: |a|<1/2 and B>a; then bvs,, is continuously
embedded in M(X]}, {B.}y.z) for y=a+1/2—0, where

bv6+1={neS 3 "'7”6+1=kZoA:|A6+lﬂk|+'}im|”k|<00} R

o Tle+d+1)
*“rk+Dr@G+1)°

and

Aﬂ”k=2A;ﬂ—lﬂk+m .

3. The proof of the theorem depends on the following lemmas:

LeMMA 1. If fe X}, then
sup |T,f(0)—f(6)|<C¢*~ 7,
Osy<¢

where yp>1.
For the proof see ([8], Theorem 5(ii)).

LemMma 2. If fe X)), then
(3.1 I(C, M I<CIfI, ,
where (C, 8), f is the Cesaro mean of order & of the series (1.2).

PrOOF. On account of the orthogonal property of Jacobi polynomials it can be
easily seen that

1(C, 8)fO) @)l = 1T, (8 — FONKEW)dRW) x5
j "LT, (6)—FO)IK2W)du(¥)

<

X

+supn’ sup
neZ Os¢<li/n

T.»{ f T, £6) —f(e)JK:.’(w)du(-/z)}
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_ f LT, £(6)—fONIK2(W)du)
0

X
3.2) =I+J, say .
We consider [ first. We have

An n—c/n n
AL

0 IlX An X n—c/nli X

(3.3) =IL+1,+1,

say, where

KW=t 3 ap=t TOFIIPHD  peripeosy),
v=0 'a+DIrv+p+1)
and

A =n—(2a+2)(3a+ 5/2-6—1/p)~1
n .

Now using the order estimate for Jacobi polynomials in the range 0<y < C/n,
we get

Il =0(n2a+2)o121+1

An
j | T, f(6)—f(0) ld¥
(V]

X

=o(n2°‘+2)'iﬁ“+ I[J‘ln‘lly~ llpdlll]
0

by Lemma 1.
=O(n21+2).12a+ IAa+3/2—6— 1/p
n n
— 0(n2a+2).'13a+ 5/2-6—1/p
3.4) =o0(1), as n—oo.

We now consider 7.

I,= H (4! f " Tf06) —f(e)[ 5. 42100 )| Py cos y) l]

T—c/n

*(siny/2)*** Y(cos y/2)>F 1

X

=0(na+p+ 1)

f Ty
4]
—_ O(na+p + 1)(C/n)2ﬂ +2

X
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=0n 1)
3.5) =o(1), as n—oo,
because f>a and |a|<1/2.

Finally we discuss 7,. Using the asymptotic formula for Jacobi polynomials in the
range [c/n, n—c/n] (see 10, p. 196), we obtain

N1 —12 nt—c/n B . —'/,— a—1/2. _'/’_. p+1/2
4D~ 'n [T, f(0)—f(0)]\ sin 5 cos 5

An

-cos(a+%>12t-[ Y AZ-ly=t12 cos(v+ a;B + l)lll]dlll

=0

+(Aa)—1n‘1/2fn_dn[T 70 —f(G)](Sinly—l/z(cos ¥ )ﬂ+ 1/2
n. l" * 2 7

~sin(a+%) % I:Z A3 lyat1n2 sin(v+—a-;—ﬁ+ l)l/l:ldt//+o(1)

=11+ 1, +0o(1)lx.

Izz\

X3

We now consider I, ,. It can be easily seen that (see [9], Theorem 2)

(36) I,, =F_?% (A5~ ip—1/2 sin<a+%) % e~ ia+1/2)m/2
. n—c/n N a—1/2 A ot s B2 1op
L.. LT, f(6)—f1 (9)](81n —2—) (cos 7) e RW)dy ,
where
R(y)=o(n** 12y ~%),
R(Y + ) — RY) =o(n** P~ 12) = logn
and '
T
et @+ P2+

The integral in (3.6) may be rewritten in the form

1 ®—c/n ll’ a—1/2 |// p+12
DY lif [Ty (0)—f1 (9)]R(lll)<sin —2—) (cos 7) i+ @+ B2+ Db gy,

An
n—c/n—pn a—1/2
- J [Ty + ., SO)—S(O)IR(Y + ﬂ..)(Sin v -;u" )

An=pn
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B+1/2
'(COS w;”") ei(n+(a+ﬂ)/2+1)¢d!//
<J,+Ty 4T+ T+ Js

say, where

[ A-n‘l‘n

fr—c/n I/l a—1/2 l/l p+1/2
Jy= (sin _2_) (cos T) | T, £(6)—f(O) IRGH)AY

Jr—c/n—pun

frt—c/n—pun ) + . a=—1/2 + . p+1/2
J3= ) |Tw+u,.f(9)—wa(9)|<Sm v 2” ) (cos"]—zli—) ,

(fr—c/n—pn

o= | Ty fO)—f(O) || R(Y + 1) — R(Y) |

v ain
a—1/2 B+1/2
-(sin i%) (cos v —;,u,, ) ay

a=-1/2 p+1/2
(sin 'lfﬂ;u,.) <Cos 'I/J;u..)

— (sin i’—)a ) 1/2<cos —ll—’—)ﬂ o
2 2

Using the hypothesis of our theorem it follows that
Jl’ J2 and J5 =0(n6) .

and

T—c/n— pn
JS=J‘
An

| T, f(6)—f(O) IR(Y)aY .

Now, by Hélder’s inequality, we have

m—c/n—pyn 1/p
J3 s([ | Ty +,,/(6) —£(6) I"dtll)

An
e Rl

(jn—c/n—un
An

where

1/p+1/g=1.

Thus we have

q 1/q
d!/f) ,

447

P an a—1/2 p+1/2
Jy= (sin "’;“") (cos "’;‘“) | Ty + 0 SO —F(O) |RG + 1 )ds
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m—c/n—pn

J3=o(up)O(n** 2)(I

An

1/q
((/ "2)"dll/)

"—c/n—pn

— o(nd-a— 1/2)0(na+ 1/2)(‘[

An

wq(a—d— 1/2)d!/,>1/q

= o(n")O(l“,,_‘" 1/2+ l/q)
= 0(n6)0(1.¢,,_6_ 1/2+1~ l/p)
=o(n®)O(A? " 1Py =o(n%) .

Also, we have

T—c/n—fun
J4=0(n“+6—1/2 logn) '/’—ll/ﬂ—”plﬁ“—l/zdnjz

An
=0m’n*~ 12 logn)
=o(m’) as n-o for |a|<1/2.

Substituting the order estimates for J,, J,, J3, J, and J5 in (3.6), we get

I ;=0(1).
Similarly, we have
I, ,=0(1).
Hence we obtain
3.7 ‘ I,=0(1) as n—oo.
Now combining (3.1), (3.2), (3.3), (3.4) and (3.7), we see that
I=o0(1).

Next we discuss J. We have

J= sup n’ sup ITyL(c, 8)af(0)—S(6)]—L(c, ), f(O)—S(O)]lIx

neZ+t O0<

< sup n’ sup 1Ty(c, 8)nf(0)—(c, 8),f0)Ilx + Sup n’ S 17, f(O)—f(6)lIx

neZ+ o<y

= sup n’ OSS:SWII(C’ )L T, f(0)—f(0)]lix +o(1)

neZ+

= sup n* sup
neZ+ O<sy<1/n

+o0(1)
X

1/n
J KXWLT, £(6)—f(0)1du(y)

o
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= sup n’0O(n?**?2)

neZ*

1/n
J [T, f(O)—f(O)y>** dy
0

+o(1)
b's

1 2a+1 *1/n
= sup nVO(nZ“”)(;) f 17, f(6)—f(O) xd +o(1)

neZ+ 0

1

/n
o(y")dy +o(1)

= sup n’0O(n)
neZ* )

=0m' No(n~?""1)
=o0(1).

This completes the proof of the lemma.
4. Proofof the theorem. Proceedingon thelines of Trebels[11, p.20], we have
f1= 5 A e S+
Using the above lemma, we obtain
||f"||x;-<-c1||f||X;k20A2| A+ 0 11 1l g

“4.1) <clinllposs M S N xy -
Trebels has also shown that ([11], p.22)

0, k<n

B,(c, 6)kf={(Az_,,/A2)an’ k>n.

Thus we have

B.f"=B,f 3. AL/ ADN A0 Bof

o0
=an{ Z A2A6+1nk+n+nw}
k=0

4.2) =",B,f.

Hence, on account of (4.2), we obtain
(4.3) S~ Y n.B.f -
n=0

Combining (4.1) and (4.3) the proof of the theorem is complete.
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