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Abstract. 'We consider inclusions of type III factors arising from finite group actions. We show the
relation between actions and the corresponding subfactors, and compute conjugacy invariants for the
subfactors.

§0. Introduction.

In the previous paper [18], we considered the inclusions of type III factors:

xeP},

where P is a type III factor and « is an automorphism of P. We showed “equivalence”
between classification of automorphisms up to outer conjugacy and that of the corre-
sponding subfactors up to conjugacy, namely, we gave the relationship between
Z-actions and the subfactors. We also computed conjugacy invariants for the subfac-
tors. In the present paper, we shall consider inclusions of type III factors arising from
finite group actions, more precisely, we consider the following:

xeP},

where a is an action of a finite group G with order n on a type Il1I factor P. Our main
purposes are to give the relation between actions and the corresponding subfactors,
and to compute conjugacy invariants for the subfactors: the tower of the relative
commutants, the mirroring in the sense of Ocneanu [14] and the dual action arising
from the associated type Il inclusion. We also remark the known facts on the crossed
product case in order to compare them.
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§1. Preliminaries.

1.1. Invariants for actions. We recall the cocycle conjugacy invariant for actions
on a type III factor from Sutherland-Takesaki [19].

Let a: G—Aut M be an action of a discrete group G on a type III factor M. Then
the cocycle conjugacy invariant of « is given by (N(a), mod, y, v). Each of them is defined
as follows: Let ¢ be a dominant weight on M. Remark that if we denote the continuous
decomposition of M by M=M_ >R, then the flow of weights of M is given by
(Z(M ), {6}, r) (see Connes-Takesaki [2]). For each automorphism « of M, the module
mod« in AutZ(M,) which commutes with 0 is given by

moda=Aduca|zn,,
where u is a unitary in M satisfying poa~! =@ o Adu. If we set
N)=o"'({Adu-G¢ | ue UM), ce Z{(R, UZ(M,))}) ,

it is a normal subgroup of G. Denoting a,=Adu,°6%,, he N(o), the characteristic
invariant y=[4, u] in A(G, N(a), U(Z(M,))) is defined by the relations

UG Sy (i) = upa (b, k) h, ke N() ,
Otg(ttg-1pgfDpoat,™ ! DO)moa ag)clg~ 1hg) = uyAg, h) , geG, he N(a),

and the modular invariant v which is a homomorphism from N(a) into the first
cohomology group of the flow of weights is defined by

wh)=[c(h)], heN(@®.
Furthermore, these invariants satisfy the following relations:
(1.1.1) c(h)c(k) =(0u(h, k))c(hk) ,
(1.1.2) (mod a,Xc(g ™ ' hg))=(0Mg; W)c(h) .
Here, for a unitary u in Z(M ), 0u means the coboundary defined by
(Ou)s)=u*04u) , sSER.

These invariants are independent of the choice of ¢ and depend only on the cocycle
conjugacy class of a. For details, see [19].

1.2. Type III index theory. Let M > N be a pair of type IIl factors and E: M—»N
a faithful normal conditional expectation with finite minimal index. Choosing a faithful
state @ on N, we set Yy =@ Ee M. Then we get the following inclusion of type II
von Neumann algebras:

M=M>a,yR>N=N>a,poR.

Moreover, there exists a faithful normal conditional expectation £ from M onto N such
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that E|,,=E and
,E’o@,:@,oE’, teR.

Here 6 means the dual action of ¢¥ on M. Thanks to Connes’ result on Radon-Nikodym
cocycle, the conjugacy class of M > N with E is independent of the choice of ¢. Therefore
we canonically get the two towers consisting of type III factors

NcMcM, cM,c--:
and type II, von Neumann algebras
- NeMcM,cM,c---
by iterating the basic extension. We remark that M, is the crossed product of M, by
the modular action because the basic extension is compatible with taking the crossed

product with respect to the modular action. For details, see [4], [5], [7], [9], [10],
[11] and [13].

1.3. Construction of an inclusion of type III factors. We recall the way to construct
an inclusion of factors from Popa [15] (see also Popa [16]).

Let a: G>AutP be an action of a finite group G on a type III factor P. We
denote by {e,,}, nec the usual matrix units parametrized by G in M,(C), where n is the
order of G. Then we define a factor M and a subfactor N by

M=P®M,,(C),
N={Z a,(X)e,, xeP},
geG

and define a faithful normal conditional expectation E by

1
E( > xg,,eg,,>= 2 o x)e,,  where x=—3 o, (x,).

9.heG geG N geG

Since the following lemma follows from the standard argument, we leave its proof
to the reader (see [7] and [10]).

LeEMMA 1.3.  With the above notations, we have
(i) M and N are isomorphic to P,
(i) Index E=n? and E is the minimal conditional expectation for M > N.

§2. Relation bgtween actions and subfactors.

Let P be a type III factor and let a, B be actions of a finite group G (| G|=n) on
P. We denote by N,, N, the corresponding subfactors as in 1.3 respectively.
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PROPOSITION 2.1. The following conditions are equivalent:

(i) MoN, is conjugate to M > Ny,

(i) There exist an automorphism 0 of P and a unit preserving bijection ¢ of G such
that

Ooa,00 '=B,, in OutP=AutP/IntP.

PrROOF. (i)—(ii): Suppose that there exists an automorphism @ of M such that
D(N,)=Ny. Then there exists an automorphism @ of P such that

45( Y ag(x)e“) = ZG B0(x))e,, , xeP.

geG

Since ®(N, " M)=Njy N M, after a suitable perturbation we may assume that there
exists a bijection ¥ of G such that

D(€40) = Eyiawia - geG.

We compute, for any x€ P,

di(ag(x)e“) = ¢(egg ¢ ( Z ah(x)ehh) * egg)

heG

=€yl (EG B,,(G(x))e,,,,) 0

= Bua(0(XNey@wa) -
Since there exists a unitary u, in P such that
Dlege) = Uslygie) »
we also compute A
D(oy(x)eyy) = Pley. " A (X)e . ey
=ugyguer Bue 0% (XNeyenie 4™ euenio
=By e\ 0(2 (X4, ey guie) 5

where ee G is the unit of G. Hence we get

Bu@(0(x)) =u,Byof(Oog(xN)u,* ,  xeP.

This means that foa, 0071 =B,)- 14 in OutP. If we set o(g)=y(e)” W(g), ge G, we
obtain the conclusion.

(i) — (1): It is sufficient to show the assertion in the following three cases.

(1) The case of B,=0o-a,-0~ ' for some automorphism 6 of P.
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If we set ®=0®id., then we have

<D( > ag(x)egg> = ZG 0(a,(x))e,,

geG

=Y B0(x)eg, XEP.

geG

(2) The case of B,=Adu,-x, for some unitary u, in P, geG. If we set
®=Ad(}, g Us€q)> then

‘15( > aa(x)egq) = ZG Ugty(X)uy* €4

geG
=Y Bx)e,, x€P.
geG

(3) Thecase of B,=a
.then

»(g) fOT some bijection ¢ of G. If we put @=AdQ_, . €yew)

¢( Z “(x)eay) = ZG Lo () X)egq

geG
= ZG ﬁg(x)egg ’ xeP. q.e.d.
ge

REMARK 2.2. Let us assume that the conditions in Proposition 2.1 are satisfied.
If « is outer (hence so is ), then ¢ is an automorphism of G. In fact, since it follows
that, for g, he G,

B o@oth) = Bogh in OutP,

we have ¢(g)¢(h)=<p(gh)-

ReMARK 2.3. For outer actions «, B of a finite group G on a type III factor P,
the following three conditions are equivalent.

(i) P><,G>o P is conjugate to P><z;G>O P,

(i) P> P*is conjugate to P> P?, where P, P? mean the fixed point algebras,

(iii) There exists an automorphism ¢ of G such that « is cocycle conjugate to
@*B, where @*p is the action defined by (¢*B),= By, 9€ G-

Indeed, the equivalence of (i) and (ii) follows from the fact that P><,G> P is the
basic extension of P> P*.

We assume that the condition (i) is satisfied, that is, there exists an isomorphism
® from P><,G onto P><;G such that &(P)=P. Since it preserves the Jones pro-
jections, it can be extended to the isomorphism between the towers of the basic
extension. In particular, it preseves the towers of the relative commutants. Since it
intertwines the modular conjugation operators, it induces an automorphism ¢ of G.
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The cocycle conjugacy of two actions follows from a direct calculation. The converse
is trivial.

§3. Conjugacy invariants for subfactors.

For the subfactors defined in 1.3, we shall compute conjugacy invariants. Since
the informations of the tower of the relative commutants and the mirrorings in the
sense of Ocneanu [14] arising from type III inclusion are included in those arising from
the associated type II,, inclusion and the dual action, it is sufficient to compute the
latter (see Kosaki-Longo [12] and [18; Remark 2.8].)

Let «: G—Aut P be an action of a finite group G with order »n on a type III factor
P:Let Mo N be as in 1.3 and M > N the canonical inclusion of type I, von Neumann
algebras with the dual action 8™ (see 1.2). We set, for a non-negative integer k, P, = M,(C)
with matrix units {e},}, ,.c and put

Mk=ﬁ®Po®P1®”'®Pka kZO,
1\7_1={Z &y(x)e,, xef’}.
G

ge
Here P means the crossed product P><q,oR for some weight ¢ on P and & is the
canonical extension of « in the sense of Haagerup-Stermer [3]. We denote the dual
action on P by 0. We embed M, into M, ., by

0 ...,k Y, >
Z xaoho'“okhkeaoho € gihi € M k

~ 0 ...,k k+1 v
Z gse + l(xaoho"'akhk)e goho €omgirigies € M k+1>

and define a faithful normal conditional expectation E, from M, , onto A, by

I 0 ... .ok+1
Ek(z Xgoho:gx + 1hic + 1€ goho € ks 1hicr 1)

1

— ~ z -1 0 ...,k k+1

= Z“ekﬂ lzg}“z (Xgohogichctt) |€goho” " * € gmcon + 100+ 1 -
€

LemMA 3.1. With the above notations, we have
(i) There exists an isomorphism ® from M onto M, such that

HN)=M_, and ®-0M=(0P®id)-d, 1cR,

(i) {M}> _, is the canonical tower of type 11, von Neumann algebras arising
from Mo N and {E )} _, is the sequence of the canonical conditional expectations,
(i) The dual action 0% on M, is given by

0 =6 ®id.®id.® - - - ®id.

Proor. (i) Taking a state (or a weight) 7 on P such that toa,=1, geG, we set
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P=P>q,.G. We define a state ¢ on N by

qo( Y ocg(x)egg) =1(x), xeP,

geG

and set Yy =@ o Ee M}. We then have ¥ =t ® (1/n)Tr, where Tr is the usual trace on
M,(C). Since M =M ><, R is generated by

xX®PR1®1, xeP,
1®e,,®1, g9, heG,
A*"®1®4,, teR,
and M,=P ® M,C) is generated by
x®1®1, xeP,
AP®IL®1, teR,
1®1®e,,, g,heG,

we get a natural isomorphism @ from M onto M, which has the desired properties.
(ii) These follow from the characterization of the basic extension by Hamachi-

Kosaki [6] (see also Bisch [1]).
(iii) This is a direct consequence of (i) and (ii). q.e.d.

For the indices g, Ao, * * * gso h, e G, we set

I(go ho, " *» 9o B) =91 - “goho ™1+ bt
LemMA 3.2 (Bisch [1]). The relative commutant N’ M,, k> —1, is given as
Sfollows:
N, N Mk ={ Z Cgoho-gichuc
I(go.ho, ***» gk, hi) € N(a)

‘ cgoho"'Gkhk € Z(F)} .

7 0 ...,k
UI(go,ho, g1 )€ goho € guchc

where i ho g0 M€ANS an implementing unitary of &rg ho, - gimy 1 P-

ProOOF. Since the canonical extension & is free in the sense of [8] or inner ([3]
or [17]), the conclusion follows from a direct computation. q.e.d.

TueoreM 3.3. Let (P, H, J, P*) be a standard form of P and {D,}4ec the canonical
implementation of &. We choose and fix a cyclic and separating vector £ for P in P*,
We represent M, in BH® I*(G)® - - - ® 1*(G)) by



426 YOSHIHIRO SEKINE

0 ...,k
Z Xgoho-+-gihi€ goho € gichi

Z &021: + 1&021: T &ﬂk + 1(xaoh0"'ak’lk)

o .. k+1

. 2k+1
goho eakhkeok +10K+1

G2k + 102k +1 ?
and define a vector E, in the Hilbert space H®I1(G)® - - - ® IX(G)=I*(G x - - - x G, H)
by \

e e

~

f(go’ g1 " s G2k + l)=600-02k+;1691-32k-1. ) .50k-0k+l.—lc *

Here 6, means the Kronecker symbol.
Then é cisa cyclzc and separating vector for M, and the modular conjugation operator
J, arising from &, is given by

5 Je© 1 _,...p2k+1

szzvazu;vazk' " "Ug,V90Y€ gogan + 1~ "€ 9102 €g2c+190 ' -
e 0 ...,k k+1 C. L 2k+1
ProOOF. For X= Z X gore s s ng %y s l(xgoho---gohk)egoho € gichic €gic s 10k + 1 €gon+ 192K+ 1

€ M,, we have

(ng)(go, g1 * "> G2k+1)

= Zh &92k+ 1&921" : '&mu 1(xgoho---gkhk)ék(h0’ T hka Gi+1> """ s 92K+ 1)

~ ~ ~

=a 04

G2k + 1 92!:. ) 'amu- 1(x

-1 -1 -
gog2k+1 G182k " Gkfk+1 l)é *

Hence &, is a cyclic and separating vector for M,.
From the definition, S, (=S¢ ) is the closure of the operator SP : X. 5,,—->X *fk, XeM,.
Since we compute

(X*Ek)(hm hl, Tt h2k+ 1)

z &h2k+ 1&h2k. ) .&hk+ 1(xgollo, . .gkhk)*ék(g09 Tty gk! hk+ 15 ° 7% h2k+ l)
40" >0k

—F - _ _ oy YEE
= Qg+ 1 Xhose Chye o 1(xh2k+ 1 thohai 'y b lhk) é H

we get
0__ ~ S 0 - ~
S" _ngzk-k lvﬂzk 9k+ ,Sﬁ,“‘ * UgatDoan+ 1§, Don " * Vg1 Dgol
3 P11 V] 1 e o p2k+1
Ugs* vﬂxvaoeaoazk +17%€g.g2 ! €g2kc+ 190!

Taking the closure, we have

Sk _—Z 92k+ 1 ﬂ2k ot vﬂk+ lSﬁﬂu:' + Dgarlean 4'12" Oor” * '5llﬁlog

5 50 1 _,...p2k+1

Ugo€ i '€g1921 " €gaksrg0” -

Ugi " " U9, 0g0€ goganc + 1

gk g1

Thus we obtain
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— %k —_— ok k... %
A=S*S,=Y.7,.*D,, 7, *A

gk Do+t *  DgaiDga 8 Do Baulgol
X ...8 8 pO _ _ypl _ Cqe e ep2ktl
vgk vmvgoeyzk+x 192k+1 legzk 192k ! ego 190 th
and
T — —1/2_Z~ ~ ...x & 7,0 o1 . p2k+1
Jk—SkAk = 2. Vg21c+ 1Vgan valvao‘]eaoazkn 1€g192 " €ore+190 " *

q.ed.

By Sutherland-Takesaki [19; Lemma 5.11], there exists a dominant weight ¢ on
P such that g oo, =¢, g€ G, and for the continuous decomposition P= P, >R,

G,00,=0,0 d,, geG, teR,

{ag(x) =d,(x), xeP,,
alAD)=A1), teR,

where 4 is the action on P, induced by a. Then each of the invariants of « is calculated
as follows: The module is given by
mod a,=8,|zp,) » geG.
Writing o, =Adu, 6%, he N(o),
uptty = p(h, K)uy, h,keN(x),
A (Uy-1n)=AMg, Wu,, geG, heN(®),
0,(u,)=c(h, thu, , teR, heN(a).

COROLLARY 3.4. With the above notations, we have
(i) The canonical tower {M,}- _, of type I1,, von Neumann algebras arising from
M >N is given by

M=P,®P,®P,® - ®P,, k>0,
xePw},
k

o ... 7, >
Z Xgoho+-gihi€ goho € gim € M k
P, (o) ... pk k+1 1
Z gy + 1(xaoh0"'akhk)eaoho € a1mic€ gic + 11+ 1 € Mk +1>

(i) The tower of the relative commutants {N' n M}~ _, is calculated by

M_1=J\7={Z d (x)e,q

geG

and the embedding is given by
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ﬁ'nﬂ,‘={ Y c

goho**gihi
I(go, ho,**, gi, ) e N(@)

0 ...k
Ugo,h0, g1, )€ goho € gichic cﬂoho"'hkthZ(P ®. } ’

(ili) The mirroring §, of N' \ M,y .., is calculated by

~ 0 ...,2k+1
?k(z Cgoho+gax + thak + luf(ao.ho,"',azk + 1.h2ic + 1)€ goho € g2+ 1thase+ 1)

= Z(mOd Oho™ *hy ™ ohases 1 ‘)(cao’lomozln 1hai + 1)

'1(’10—1}'1—1 T 'h2k+1_1, I(h2k+1_1, 92k+1_1, T, ho_l, 90_1))

a _ _ _, 00 _ e op2ktl
UI(hok+ 7 g2k i thnho 190" D€ has 41 ‘gt ! €ho " 'go™ " >

and the canonical shift I’ in the sense of Ocneanu [14] is given by

o 0 e e n2k+1
F(z cyohO'“azk + 1ha2ic+ 1410 hos G20 + 102k + 1)eaoho €92k + 1hanc+ 1)

— 2 3 e e opn2k+3
- Z Cgoho--gaic + 1hakc + 1%¥I(go.ho, @2k + 1,h2x + 1€ goho€ g1k €g2k+ 1hai+1 0

(iv) Therestriction of the dual action 6 to the relative commutant N’ ~ M, is given by

k 0 ...,k
01 (Z Caoho-+gihi¥I(go,ho, 1. k)€ goho eakhk)

=Z ot(cgoho"'gk'lk)c(l(go, hO’ o ‘gkhk) 2 t)

o ...,k
U190,h0, g1 m)€ goho € gichyc > teER.

PrROOF. By [17], P is identified with P,. Then assertions (i) and (ii) follow from
Lemma 3.1 and Lemma 3.2.
(iii) We get, from Theorem 3.3,

> 0 e e n2k+1
y’t(z Cgoho g2k + 1h2c + 141(goho, g2k + 1,h 2k + 1€goho € g2k + thakc+ 1)

=Nk k.. ok & *7 *
- Z UhoUh, UhaicVhasc+ 1 JcaohO"'92k+ 1hakc+1

*~ ~ . ‘.~ ~ =4
U I(go.ho, g2k + 1h2kc+ 1) V821 + Y921 vanvao']
o _ 1l _ e . ep2ktl
€goncei ‘haics T "€ thay ! €50 'ho!

=Zﬁroﬁh1 o .6h2k5:2k+ 1€goho g2k + 1hak + 1
UL(go.ho, g2k + 1.2k + l)ﬁth + 15’!21( T 5'lnﬁho
e22k+1.192k+1_le’];2k_192k_1. T €ho 'go !

=Z(m0dah51hn_l"'h2k+ Tl)(caohomezu-r thai + 1)

Mho™thy ™ hy a0 ok T Gans 1ty e, go 1)

- - - .09  _ g op2ktl
UIthaic+ T 'ug2ic+ 1 Lo~ Lago Y haus i lgamcsi! €io g0~ " -



TYPE III FACTORS 429

Furthermore, we have

~ 5 [0} .. .p2kt1
Pk+1° yk(z Cgoho g2k + 1hak+ 141(go.ho, g2k + 1,h21c + 1€ goho € garc+ 1har + 1)

— 2 .. ep2k+3
- Z Caoho-gax+ 1hak+ 1#1(go,ho, 21 + 1.h2ic + V€ goho € gar+ 1haic+ 1) .

(iv) follows from Lemma 3.1. q.e.d.

REMARK 3.5. We compare the above example with the crossed product. Let
o: G—>AutP be an outer action of a finite group G on a type III factor P. Let
M= P><,G>N=P. Then the canonical inclusion A& = N is conjugate to P><z;G> P ([3]
or [17]) and the basic extension M, is given by P® M,(C), n=|G|.

Let (P, H, J, P") be a standard form and {f,},.c the canonical implementation of
. Then the standard representation of M is the usual one, namely,

Z xg'lg : Z dzqh_l(xg)egh,h'
geG g,heG

If we take a cyclic and separating vector & for P in P" and define a cyclic and separating
vector &, for M in H® I*(G) by

Eo(g) = 6y,e£ > g € G ’

then the modular conjugation operator J, coming from &, is calculated by

j(): Z 5gjeg—l’g .
geG
Moreover, the following are valid:

~, ~
N N M1={ Z Cg,hug—-lheg,h

g~ 1heN(a)

Cgh€ Z(Pq,)} ,

}70(2 cg,hug‘ 1heg,h) = Z ’{(h’ hg - 1)(m0d ah)(cy,h)uhg' 1€p - 1g—1ts
0}(2 Cg'hug— 1heg_;,) = Z et(cg,h)c(g— lh, t)ug— lheg,h s te R .

ReEMARK 3.6. For both examples, a simple calculation shows that the relation
(1.1.2) corresponds exactly to the commutativity of the mirroring and the dual action.
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