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§0. Introduction.

Minimal surfaces of a 3-dimensional Euclidean space have been studied by many
researchers. One of the most classic example of minimal surfaces is a helicoid. The
helicoid is a ruled surface, i.e., a surface foliated by lines of R3. The following fact is
well-known: minimal, ruled surface of R?3 is either a part of a plane R?, or a part of
the helicoid (cf. [1]). Barbosa-Dajczer-Jorge [2] generalize this theorem to the ruled
minimal submanifolds of higher dimensional space forms.

In this paper, we determine minimal hypersurfaces M given by M = {exp,(¢{) ; pe Z,
teR}, where X is a minimal surface of constant curvature in a 4-dimensional space
form M, and ¢ is a (local) unit normal vector field on Z. Such a minimal surface X is
classified by Kenmotsu [5]. In §2, we find the equations for a surface 2~ and a unit
normal vector field £ on X with respect to which M = {exp,(¢£) ; pe Z, te R} is minimal
in M. In §3, §4, and §5, we solve the equations when X is totally geodesic in M, the
minimal Clifford torus S! x S' = §3< S*4, and X is a Veronese surface of S*, respectively.
As a consequence, we find all minimal hypersurfaces M of S* satisfying the following
conditions (theorem 5.1): (1) M contains a Veronese surface & of S4, (2) M is foliated
by great circles S of S* which intersect £ orthogonally, (3) the type number (i.c., the
rank of the shape operator) of M is equal to 3 on some open set which intersects Z.
The proof is reduced to solving a differential equation of a holomorphic function.

Concerning this theorem, we note that minimal hypersurfaces with type number
2 of n-dimensional space forms (n = 4) are investigated by Dajczer-Gromoll [4]. In fact,
such a minimal hypersurface is obtained by the image of a minimal surface under the
Gauss map. But it seems that little is known about minimal hypersurfaces of S* with
type number 3, other than the generalized Clifford torus S2 x S! (cf. [6], [7]).

Received April 10, 1992

This research was partially supported by Grant-in-Aid for Scientific Research (No. 01740014), Ministry
of Education, Science and Culture.




242 MAKOTO KIMURA

The author would like to express his sincere gratitude to Professor K. Ogiue for
his valuable suggestions, and would like to thank Professor K. Tsukada for his
encouragements.

§1. Preliminaries.

Let M"(c) be a space form of constant sectional curvature ¢, namely, M"(c) is the
Euclidean sphere S"(c), the Euclidean space R" or the hyperbolic space H"(c) according
as ¢ being positive, zero or negative. We will consider S"(c) and H"(c) as hypersurfaces
of R**! and L"*!, respectively, where L"*! denotes the (n+ 1)-dimensional Lorentzian
space with the canonical flat metric

d0'2= "'de2+ Z dsz .
j=1
We assume that the constant curvature ¢ of M™(c) is equal to 1, 0 or —1, according as
¢>0, c=0, or c <0, unless otherwise stated. The exponential mapping of M"(c) has the
following expression:

(1.1) exp,(tV)=f1(Op+ f,()V,

where pe M"(c) and Ve TI,A? "(c) (||V]|=1) are considered as vectors in the ambient
space. The functions f, and f, are given by

(1.2) f1n=1, fA=t, if =0,
fi(t)=cost, f,()=sint, if ¢c=1,
fi1(®)=cosht, f,(f)=sinht, if c=-1.

Let X be a surface of M= AM*(c). We give fundamental equations for £ < M. Let
ey, e, be a local orthonormal frame field on X, and let &, 5 be a local orthonormal frame
field of the normal bundle of X in M. Then the Gauss formula and the Weingarten
formula are written as

(1.3) Veiej=Veiej+hi§f +h.;' n,
V. b=—Ae,+V:<L, (1<i,j<2),

vei" = - Aﬂei + Vi}" s

where V (resp. V and V+) denotes the Riemannian connection of A (resp. the induced
Riemannian connection of ¥ and the normal connection of Z in M), h$ and k] are the
components of the second fundamental tensor of X in M, and 4, (resp. 4,) describes
the shape operator with respect to & (resp. ) of ~ in M. Then we have h5=<Ae; e;>,
h1=<{A,e; e;>, h5=h; and h]=h;], where (, ) stands for the induced metric on ZX.
Let @ and s be connection forms for V and V*, defined by w(e;)=<(V,e,,e,)> and
s(e)=<Vz&, n) (i=1, 2). We donote w; and s; the components of @ and s, respectively.
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Then we have Ve, =w;e,, V e,= —we,, Vel =sm, Von= —s,&, respectively.
We define the covariant derivatives of the shape operators 4, and 4, by
(1.4) uk =<V, (Acei)_Aijﬁei—Aé(Vekei)a €

ijk= <Ve,,(Aqei)—Av;qei—Aq(vekei)a ej> .
Then the Codazzi equation is described as;
(1.5 h;iz and h;;] are symmetric with respect to i, j and k, respectively.

We also define the covariant derivative of the 1-form s by

(1.6) sij=esi—s(Ve.e;) .

Then we can see that

(1.7) 5ij=AVeVal = V3 ol 1> .

Now the Ricci equation is expressed as

(1.8) S12—S21=h3(h}—h D)+ (A —h3)hi% .

§2. The normal exponential mapping of surfaces.

In this section, we consider the minimal hypersurface M which is the image of a
subbundle of the normal bundle of some surface X in a 4-dimensional space from
M = M*(c), under the normal exponential mapping of = in M. Let £ be a surface in
M. Then by (1.1) and (1.2), the posmon vector of the hypersurface M = {expp(té) pPeZ,
teR} is parametrized as;

X(u, v, )=f1(Op(u, v) + f(DE(u, v)

where p=p(u, v) and &=¢&(u, v) describe the position vector of £ and a unit normal
vector of X in M at p, respectively, and (u, v) is a local coordinate of =. We denote by
n=n(u, v) a local field of unit normal vectors on X in Af orthogonal to &. The tangent
vectors at the point X'=X(u, v, f) on M are expressed as;

(21) Xu=f1pu+f2€u ’ Xv=f1pv+f2€v H Xt=f,1p+f12€ ’

where X, X,, X,, - - -, etc. denote the derivatives of X, p and & with respect to u, v and
t, respectively, which are considered as vectors in the ambient space, and f’; means the
differentiation of f;= f,(¢). Then we can see that the induced metric g on M is given by

IX0? (X, X,> 0

X, X,> 1X0* 0,
0 0 1
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with respect to the local coordinate (u, v, 7) of M. Since the integral curves of 9/0t are
geodesics of M, the mean curvature vector H,, of M in M is given by

M X 12X + 1 X 2K oo) =< Xy X)X+ X))

~ 3(detg)

where ( )* denotes the projection of the normal space of M in M, and detg=
"Xu"2"X0”2_<Xu9 Xv>2' -
Assume that ¢#0. Then M is minimal in M if and only if

(2.2) PACAX,AX, A X2 X+ 1 X012 X — (X X)Xy + X)) =0,

since X A X,=p A &. If ¢=0, then the same argument shows that M is minimal in R* if
and only if

(2.3) EAX, A X, AIX P X+ 1 X2 Xy — <Xy X)Xy + X)) =0

Here we note that (2.2) and (2.3) are independent of the choice of local coordinate
(u,v) of 2. ,

Take a local isothermal coordinate (u, v) of X, such that p,=ge,, p,= pe,, where
(e1, e,) forms an orthonormal frame, and ¢ is a positive function on some open set in
2. Suppose c¢#0. Then, by (1.3) and (2.1), we have

24) X.=o(f1e1+ [2D. 0)=0(f 161+ f(— A, +V;,8)
=@(f1e1+ f(—hie—hide, +s1m),

X,=o(f1e;+ f2D.,8)=0(f 1€, +f2(—4¢ez+vi;§))
=@(f1e2+ f2(—hise; —hyse, +5,m)

where D denotes the covariant differentiation in R or L3. Note that the component
of D, W tangent to M is V,, W for V, W tangent to M. From this, we get

(2.5 X% =@*(f > =211 f 2§ + £22(B:D)* + (A, 3)* +5,),
1Xol12=@>(f 12 =211 f2ha5 + 22 (115 + (h25)* +5,2))
X X,>=0*(=2f 125 + 22 (h5(h 5+ 1B +5455)) .
Similarly, X,,, X,,, X,, and X, are written as
Xua= (€)X, + 9*(f 1 Dyer + f(— D, (Acer) + D, VEE)),
Xpw=(€20)X,+¢*(f1D,.e; + f(— D, (4.e,)+ D, V3. E),
Xou=(€10)X,+@0*(f 1D, .3+ f2(— D, (4ee;)+ D, V5,5,
Xoo=(e20)X,+9*(f1D,,e,+ f1(— D, (4,e,)+ D, VL,E) .
Using (1.3), (1.4), (1.5) and (1.7), we get
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Xou=@*(f 1hy 10— f((h111 + 25181 Dey + (hy15 + 25,7, De,
G RE Y ATRAEY R R) 1)) mod(p, ¢, X, X,),
X,o=@*(f1h3n— fo((h115 451k 3+ 528 Des +(hyoh +51h53 + 5.0 Dey
+(=s12+h i3 +h5h5)M) mod(p, ¢, X, X)),
Xo=@*(f1hyn— f2((h115+51h % + 52 Deq + (hyh +51h53 + 5,0, D)e;
+ (=821 + A1 50T+ Ry Dn) mod(p, ¢, X, X,),
X, = @*(f 130 — £ 2((h125 + 25201 3)ey + (hao} +25,h5))e;
+ (=822 +hy5h 3+ hy3haDn) mod(p, ¢, X, X,).

Clearly, X,,=X,, holds, and we remark that this condition is equivalent to the Ricci
equation (1.8), e, ¢ = pw,, and e, = — pw,. By straight computation, using (2.5) and
(2.6), we obtain

Q.7

where,

(2.8)

”Xvuquu"' “Xullszv'—<Xu’ Xv)(Xuv+Xvu)
= *(f3aon— f12f 2(a10n +ay €1 +as285) + f1f22(@z20n+az e, +asze5)
— [} (ason+asie; +asze;)) mod(p, ¢, X, X,),

ap=h,1+h,%,
ay0=—(511+522) + (h§ +2h,3)h, T —2h 5k, 3+ (2h G +had)ho)
ayy=hy,§+hio5+2s.h,1+ 25,03,
@y =hy15+hya3+2s1h )+ 25,03,
az0=—2h33511 +2hy5(512+ 531) — 2k 5525 + (h25(2h,§ + ho3) — (Bi3)? +5,)hy ]
—2(hy5(h§ +ho3) + 515)hy %+ (B iy +2h38) — (1 3)* +5:.2)h0%
g1 =2ho5h 1§ — 4R 5hy 15 420 3Ry 55+ 4(s1hos — 52k )T +4(s o0 f‘S1hxg)h1z >
@35 =2hy3hy 5 —4h,5h 55 +2h5hy0% +4(s1hy5 —s2h 3R G+ A(s2h,§ — 5, 3RS
azo=—((h13)* + (h33)* + 57511 + (h 5(h 4+ ho3) +515,) (512 +521)
—((h.$)? +(h1§)2 +512)825 + (B8 (h1§ho5 — (B13)?) + 55(s2h,§ — 1A, 5))h4 ]
+ (2R 5((h13)* — hy§ha3) + (512 4+ 5,2)hy 5 — 515§ + h2$))h1%
+ (h1§(h13ha3 — (h13)%) +51(51h25 — 52h1 )RS3,
az; =((h13)? +(h5)* +5,9)h 4§
—2(hy5(h,f + had) + 51520k 15
+ (117 + (115> +511)hy08
+(251((h13)* + (125)%) — 255k, 5(h,§ + ha3))Ay ]
+(252((h11)* + (1,3)%) — 2512, 5(hy § + ha3)RyY
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@32 =((115)> + (h23)* +522)h1 15— 2(h,5(h§ +ho3) +5152)h1 0%
+((1 >+ D)+ 312)"22%““ (25,((h13)> + (h33)®) — 25,8, 5(hy § + h23))h, )
+(252((11 D) + (313)*) — 251, 5(h.§ +ha3))hsY
By (2.4), the exterior product of X, and X, is written as
(2.9) XunX,=0*(f ey ney— f1f 2(i +hd)e  ne,
—s2e; An+siea AN+ f2((h 1A —(h3)P)es A e,
+ (51715 — 52 e An+(s1hos—s2hi3)e, Am)) .
Substituting (2.7) and (2.9) into (2.2), we have the following equation,

1 Pbo— 12 f2bs+ F13f22ba—F 2 f2%b3+ f1S 2 *ba— [2°bs)p AEAn e, ney =0,
where
(2.10) bo=ay, by=(hi+h3)ac+ay,,
by=(hy3ha5—(hi3)P)ao+ (ki +hy3)aio+51a1 1 +5,a,,+ a5,
by=(h13h33—(h13)Paso+ (s1h35 —s:h,3)ay
+(s2h1§ =51 5)as s+ (hi§ 4+ hod)ase +51a5, + 52055+ a5,
by=(hy§hs5 —(h13)*)azo+ (51425 —5:h,5)as,
+ (520§ —51119)az + (hy§ +ho8)ase + 51034 + 5505, ,
bs=(hi$h5 —(h15)P)ase+(s.h25 —s2h,5)as, + (28,5 — s,k 3)as,

Because 5, f1*f,, "+, f,> are mutually independent functions, we have b;=0
(0<j<5). Hence (2.10) implies

(2.11) a,=0,

(2.12) a,0=0,

(2.13) Sla11+S2a12+azo=0,

(2.14) (51h25 —52h13)ay 1 + (527§ —s51hy5)ay,
+(hy§+hy3)as0+ 510y, +520,,+a30=0,

(2.15) (hﬁhzg —(hlg)z)azo + (s1h2§ —32h1§)az1 + (Szhl'i —Slhlg)azz
+(hy§ +hy3)as0+ s1as; +5,a3,=0,

(2.16) (R1§h25 — (B13)?)ase + (s1ho5 — 5,h38)as, +(sohy§ —s1hy5)as, =0 .

We can see that (2.11)—(2.16) hold too, when ¢=0. We note that the above equations
are independent of the choice of orthonormal basis e,, e, at each point of X. Hence we
get
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PROPOSITION 2.1. Let X be a surface in a 4-dimensional space form M*(c), and let
M be the hypersurface which is the image of the subbundle, spanned by unit vector field
&, of the normal bundle under the normal exponential mapping of X in M. Then M is
minimal in M if and only if ~ and the orthonormal normal frame &, n satisfy (2.8) and

(2.11)~(2.16).

REMARK 2.2. By (2.8), (2.11) says that £ is proportional to the mean curvature
vector H of X in M (if H#0). Then (2.11) and (2.12) imply that s, +5,, = —trace 4.4,
The equations (2.11)—~(2.16) are viewed as linear equations for s,,, §;5, S21, 522, hy.8,
hllg’ h12§s h22§°

REMARK 2.3. In Proposition 2.1, the assumption about M is equivalent to the
following two conditions: (a) M is foliated by geodesics of M*(c). (b) 2-dimensional
distribution on M orthogonal to the geodesics in (a) is integrable (locally). Then
Proposition 2.1 claims that M is minimal if and only if a leaf of the foliation of (b)
satisfies (2.11)~(2.16). We note that an isoparametric minimal hypersurface in S*(1)
with 3 distinct constant principal curvatures —./ 3, 0, \/ 3 is foliated by geodesics of
S4(1), and the orthogonal 2-dimensional distribution is not integrable.

§3. Construction of examples I.

In this section, we determine the unit normal vector field ¢ on the totally geodesic
surface T=M?>(c) in M*c) such that M={exp,(t&); peZ,teR} is a minimal
hypersurface. Since X is totally geodesic, we have h$ =0, hJ=0and A, #=0fori,jk=1,2.
Thus Proposition 2.1 implies
(3.1) S11+S22=0,

(3.2 522811 +51%522—5152(512+521) =0,
and the Ricci equation (1.8) yields
3.3) $12=9521 -

EXAMPLE 3.1. X is a totally geodesic R? in R* (c¢=0).

We may put R*={(x, y, 0, 0)e R*; x, ye R}. Lete, =0/0x, and e,=3/dy. Then
they form an orthonormal frame on R? and satisfy Ve, =Ve,=0. Note that an
orthonormal normal frame ¢, n for R? in R* is given by

(34 ¢=(0, 0, cos@, sinf) , n=(0, 0, —sin#@, cos@),

where 0=0(x, y), and the normal connection of R? in R* satisfies

o0 o0
Vié=0yn, ViE=0, O0y=—, 6,=—1,
E=0xn =01 (x o Y 6y>
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ie., s;=0, and s,=0,. Moreover we can see that s,,=0,,, S12=0,,, $;;=0,, and
s22=0,,. Then (3.1), (3.2) and (3.3) are equivalent to

(3.5) O, + 6,,=0, 0,,= O, 5
0y20x, + zeﬂyy —0,0,(0,,+6,,)=0.
We put

3.6) z=x+,/ -1y, w=0,—,/—-180,,
6 1[0 0 o 1/ 0 7}
—-———-—y/-1—) and —=—{—+./ -1 —}.
Jz 2 (ax 6y> 0z 2\ ox 6y)
Then by the definition of 6, we have

3.7 0=Re f wdz,

where Re means the real part of the complex number.
If w=0, then 0 is a constant. So we assume that w#0. Using (3.5), we can see
that w=w(z) is holomorphic, i.e., dw/0z=0 and

ow ow
/) L
w<az)+w(az)

Hence we can write the above equation as;

ow ) .
P —1 pw?, p=p(2) is a real valued function .
z
Since w is holomorphic, p is also holomorphic. These facts imply that p =constant. By
integrating this equation, we obtain w= —(\/ —1pz+C;)~!, where C, is a complex
constant. Then we obtain

v —1
fw dz= log(/ —1 pz+C)), if p#£0,

p

fwdz=sz+C3, if p=0,
where C, and C; are complex constants. Hence, by using (3.7), we obtain

y+A4

(3.8) 9(x,y)=A1—1arctanj‘—f+A4, (4,#0) if p#0,

1x+ 4,
O(x, y)=A,x+A,y+ A,, if p=0,
where 4; (1<;j<4) is a real constant. The hypersurface M= {exp,(t{); pe X, te R} is




MINIMAL HYPERSURFACES

parametrized by the coordinate (x, y, t) as

X(x, y, )=(x, y, t cosf, t sinf) .

When p #0, we put r=((4,x+ A,)*>+(4,y+ A;)*)'/2. Then using (3.8), we see that the

parametrization of M is given by

rcos(A,0—A,)—A, rsin(4,0—A,)—A,
A4, ’ A,

X(r, 0, t)=( , tcosf, tsinﬂ).

When p=0, we put r=—A4,x+ A,y. Then the parametrization on M is

—A2r+A10—A1A3 A1r+A29—A2A3
(4,2 +4,%)? ’ A2+ 457

X(r, 0, t)=< , tcos@, tsinO).

In both cases, the above expression of M shows that M is a ruled hypersurface in R*,
because r and 7 are linear parameters which span totally geodesic planes R?2.

ExampPLE 3.2. I is a totally geodesic S%(1) in S*(1) (c=1). We put
S2D)={(x*+y*+1) Y (x>+y*—1,2x,2y,0,0)eR®; x, yeR}.
Then (x, y) is a local isothermal coordinate on S%(1). Let
x*+y*+1 0 x2+y*+1 0
el = s e2 = .
2 0x 2 oy

Then they form an orthonormal local frame on S?(1) and satisfy

Ve =ye,, V.e,=—ye,, V,e,=—xe,, V,e,=xe,.
Any orthonormal normal frame &, n for $%(1) in S*(1) is given by
3.9 ¢=(0, 0, 0, cos#, sinf) , n=(0,0, 0, —sin#, cosh),

where 6=0(x, y). Then the normal connection of S2(1) in S*(1) satisfies

Moreover, we have
511 = x2+;2+1 (x2+';2+1 Gxx+x0,-—y0y),
S12= x2+)2)2+1 (x2+y2+1 Oxy+x9,,+y9x),
5y, = x2+;2+1 (x2+32,2+1 Byx+x6,+y0x),
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§22=

2 2
Then (3.1)—(3.3) are equivalent to

0,,—x0,+ yB,) .

0,x+0,,=0, 0,,=0,,
(x2 +y2 + 1)(0y20xx + szeyy - exey(exy + oyx)
—2(x0,+y0,)(0,2+6,5)=0.
We define z, w, 0/0z and 0/0zZ by (3.6). Then we get
Iz + 1)(w2(3'1)+w29‘3)+2(zw+2wn wr=0,
0z 0z
w=w(z) is holomorphic .

If w=0, 0 is constant. So we assume that w# 0. Hence we can write the above equation
as

(3.10) (lz|2+1)%—u—’+2fw=./ —1 pw?,
4
p=p(2) is a real valued function.

Differentiating this equation by 6/0Z, we have

F
(3.11) za—w+2w=,/ 1 pw?,
Z

where p;=0p/0z. Since w#0, p; is holomorphic, i.e, p;;=0. Hence we can see that p
is written as

p=Ao|2|2+C12+C'12+A1 ’

where A4,, A, are real constants, C, is a complex constant, and p;=A4,z+ C,. By (3.10)

and (3.11), we get
/ —1 w2
W=——2——w—<—élzz+(Ao—Al)z+C1) s

a_w=, / —1 WZ(C'IZ'}‘AI) .
0z

Since w#0, we have w=2,/ —1(C,2z*+ (4, — A,)z— C,) " . Differentiating w by z and
using the above equations, we can easily see that 4o= —A4,. Hence the holomorphic
function w is written as w=2,/ —1(C,22+24,z—C,)”'. Then we obtain
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)

wdz=\/ =1 (4 +|C; )" "*(log((4,*+| C, |2 — 4, — C,2)

—log((4,2+|C1 D)2+ 4,4+ C,2))+ C,, if C,;#0,
™

wdz=./ —14,logz+C, (C,e(), A2=A1_1a if C;=0,

o

where C, e C. By virtue of (3.6), we get
(3.12) 0=(A12+A22)_1/2

ind;— sA
><arctan(2(A12+A22)”2 YoM~ — ) COS4s )+A4,

Ay(x*+y*—1)+2A4,(x cos A5+ y sinA4,)
Ci=A4,(cosd3+./ —1 sind,),
if C,#0,
9=Azarctanl+A3 > if C1=O,
X

where 4;eR (1<j<4).

EXAMPLE 3.3. X is a totally geodesic H%(—1) in H*(—1) (c= —1).
We put

H>(—1D)={1—-x*—p?)" Y1 +x>+y?, 2x,2y,0,0)e L5 ;
x,yeR, and x2+y*<1}.
Then (x, y) is an isothermal coordinate on H?(—1). Let
_1—=x2—)* 9
2 ox’

Then they form an orthonormal frame on H?(—1) and satisfy

_1—x2—»* 9
B 2 oy

€ e,

Velel =—Yyé,, VeleZ =)e,, Vezel =Xxe,, Ve262= —Xxe; .

Any orthonormal normal frame ¢, y for H?(— 1) in H*(—1) is given by (3.8). Then the
normal connection of H2(—1) in H*(—1) satisfies

_ 1_x2_y2

1— 2_ .2
Sl_ =_u_0
2

0 s
X 2 y 2
2

and

1— 2_ .2 1— 2 .,2 :
x2 4 ( x2 4 Gxx_xox+y0y>,

§11=
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1— 2 __ 4,2 1— 2_ ,2
al 4 ( ad 24 oxy—xey—yox)a

§12= ) 2
1—x2—y? [(1—x2—y2
S21= 2 4 ( 5 4 ny_xoy_y9x>,

N
N

1— 2__,,2 1_x2_ 2
Sgp=— y( 4 0”,+x9x—y0y).

Then (3.1)«3.3) are equivalent to
0..+6,,=0, 6,,=0,,,
(1—x%—y?)(6,%0,,+0,%0,,—0,0,(0,,+9,,)
+2(x0, +y0,)(0,2 +6,%)=0.
We define z, w, d/0z and 8/Z by (3.5). Then we see

(1—|z |2)(w2(6_w>+ w2 a—w)—2(zw+ﬁ)| wi|*=0,
0z 0z

w=w(z) is holomorphic .

By the same argument as in Example 3.2, we have w=2,/ —1(C,z2+24,z+C,)"}
(A, eR, C,eC), provided w#0. Then we get

wdz=\/ -1 (A12_| C, |2)_1’2(10g((A12—| C, |2)1/2‘A1 "612)

—log((A12—|C1 |2)1/2+A1+612))+C2a if C,#0, and A12¢lC1 12,
. V=143 '

wdz= -2,/ —1 i

J Ai(z+e

o

+C,, if C;#0, and C,=A4,e' 43,

v - 1A3)

wdz=—./ —1A,logz+C,, if C,=0,

o

where C, e C. By means of (3.6), we obtain

(3.13)  6=(4,2—A4,%)" 112

‘ x sinAd,—ycosA .
X arctan(Z(Alz—Azz)”2 3™y 3 )+A4,

A,(1+x*+y*)+2A4,(x cosA;+y sinA,)
Cl =A2(COSA3 -+ - l SinA3),
if C,#0, and 4,2—A4,2>0,
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0= (A~ 4,57/

ind;—ycosA
xarctanh(z(AZZ_Alz)l/z xsinAd;—ycosAd; ) ..

+A4
A,(1+x2+y?)+2A4,(x cosA3+y sinAds)

Ci=A,(cosd;+./ —1 sind,),
xsinAd;—ycosA;

9=2 +A,,  if Cy=dA,8 420,
A, (P +y*+1+2(xcosdy+ysindy) s

§=A,arctan2-+4,, if C,=0,
X

where 4,eR (1<j<4).
In consideration of these examples, we have

PROPOSITION 3.1. Let X be a totally geodesic surface M?(c) in a 4-dimensional space
form M*(c), and let & be a unit normal (local) vector field of X in M given by (3.4) and
(3.9), according as ¢c=0 and c#0. Then the hypersurface M ={exp,(t); peZ,tc R} is
minimal if and only if the function 0 which determines & is given by (3.8), (3.12) and
(3.13), according as c=0, ¢>0 and ¢ <0, respectively.

§4. Construction of examples II.

In this section, we determine the unit normal vector field ¢ on the minimal Clifford
torus S' x §' = S53(1) = S*(1) such that M= {exp,(¢{) ; pe Z, te R} is a minimal hyper-
surface in $*(1). The position vector of X in R% is given by

((1/y/ 2)cosx, (1/y/2)sinx, (1// 2 ) cosy, (1/5/ 2) siny, 0)

for an isothermal coordinate (x, y) of Z. Let e, =/ '28/0x and e, =,/ 2 8/dy. Then they
form an orthonormal frame on X, and satisfy Ve, =Ve,=0. An orthonormal normal
frame is given by

@.1) & =(—(1/2)cosx, —(1// 2)sinx, (1/i/ 2 )cosy, (1/i/ 2 )siny, 0),
£,=(0,0,0,0,1). |

Then the shape operator and the normal connection of X in S*(1) are given by

(1 0 (0 0 1y _olz _
Ag,—(o _1)’ Agz_(o O)a v él_v 52—'0'

Moreover, we can see that the covariant derivative of the second fundamental form of
Z in S*(1) is identically zero. Any orthonormal normal frame ¢, n for X in S%(1) is




254 MAKOTO KIMURA

given by
E=cos@&;+sinf&,, n=—sinf&, +cosbé,,

where 0=0(x, y). So we have h§= —h,5=cos0, h;3=0, h,1= —h,} = —sinb, h,}=0,
and hf=0 (i,j,k=1,2). The normal connection satisfies s,=1/20,,s,=4/286,,
S11=20,, $1,=20,,, 55, =20,,, and s5,,=20,,.

Suppose M = {exp () ; p€ Z, t€ R} is a minimal hypersurface of S*(1). Since (2.12),
(2.14) and (2.16) hold, we have

sll +S22 = “traceAgA,, ) ”V‘LéuzuAgu 2traceA§A"=0 N

where || 4,(1>=3, j(h})* =2 cos?6, trace 4,4, =3, jh3h1= —2 cosO sin6, and ||V*¢||2 =
512 +5,>=2|grad0||®>. If cosfsinf+#0, then 6 is constant. Hence s,,+5,,=
2(0,,+6,,)=0, and this is a contradiction. Consequently, we have cosf=0 or sinf=0,
i.e., {=¢, or =&, When £=¢,, M is a totally geodesic S3(1), and when £=¢,, Mis a
“cylinder”. Thus, we obtain

PROPOSITION 4.1. Let X be the minimal Clifford torus S* x S' = S3(1) = S*(1), and
let &1, &, be a natural orthonormal normal frame of Z in S*(1) defined by (4.1). We define
a unit normal vector field & of ¥ in S*(1) by E=cosO¢&, +sind &,, where 0 is a function
on X. Suppose M ={exp,(t£) ; pe Z, te R} is a minimal hypersurface. Then =0 mod =/2
holds. As a consequence, M = S>3(1) (totally geodesic) or M is a “cylinder”.

More generally, we have the following examples:

EXAMPLE 4.2. Let X be a surface in M3(c), and let ¢ be a unit normal vector
field of X in M3(c). If we regard X as a surface in M*(c), then the hypersurface
M={exp,(t£); pe Z, te R} is itself a totally geodesic M3(c) in M*(c).

EXAMPLE 4.3. Let X be a minimal surface in M3(c), and let & be a unit normal
vector field of a totally geodesic M3(c) in M*(c). Then we can easily see that
M={exp,(t£); peZ, te R} is minimal in M*(c). In particular, when ¢=0, we have
M=ZxRcR?®xR=R*, and M is a cylinder. In each case, a short calculation yields
that the type number (that is, the rank of the shape operator) is equal to 0 or 2 at each
point.

§5. Construction of examples III.

In this section, we construct minimal hypersurfaces M from the Veronese surface
in S*3) (c=3). Let HB3,R)={YeM(3, R);'Y=Y} be the set of (3 x 3)-symmetric
matrices. H(3, R) is a 6-dimensional linear subspace of M(3, R)= R®°. We define a metric
in H(3, R) by

(Y, Z>=%trace(YZ), Y,ZeH3,R).
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Define a map ¥ : S?(1)->H(3, R) as

YO)=yy, y="Yoy1,r2)€S*(1).

Then we have 2 =¥(S%(1))={Ye H(3, R) ; Y>=7, trace Y=1}. Using this fact, we can
see that (Y —1%1I, Y—31I> =1/3 holds for Y € X, where I denotes the identity (3 x 3)-matrix.
Hence X lies in the hypersphere S*(3) with center at 3/ and of radius 1/,/3 in a
5-dimensional linear space {Ye H(3, R) ; traceY =1} (= R?). Moreover, it can be shown
that ¥ is an isometric immersion (cf. [3]).

First, we write the position vector y of S%(1) by an isothermal coordinate (x, y)
as follows:

y="02+y*—1, 2x, 2»)/(x2+ y*+ 1) e S?(1) .
We define P= P(x, y) by

x2+y*—1 2x 2y
P(x,y)=(x*+y*+ 1)~} 2x —x?+y*+1 —2xy
2y —2xy x2—y%+1

Then P is an orthogonal (3 x 3)-matrix, and the position vector Y= ¥(y)e R? is written
as

1 00
5.1 Y=P(O 0 OJ'P.
00O
Let
010 001
5.2) e1=P(l 0 OJ‘p, e2=P(O 0 O('P.
000 1 00
Then they form a local orthonormal basis of Ty(Z) and satisfy
2 2 2 2
(5.3) el=x +y +1lp*(6), e2=x +y +1T*(6>.
2 ox 2 oy
We put
00 O 000
5.4 §1=P(0 1 0 )’P, §2=P(O 0 1)‘P,
00 -1 010

then they form an orthonormal normal frame for ¥ in S4(3) (locally). If we denote by
D the canonical connection of R3, then direct calculations imply that
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D.e,=1-3Y+ye,+¢,,
D,e,=—xe;+¢&;,
D,l=—e +2y¢,,
D¢ =e,—2x¢,,

De1e2=_yel+€29
De282=1-—3Y+xe1—sfl N
D, ¢=—e,—2y¢,,
Dezéz=—e1+2x§1 .

Hence, using (1.4), we have

(5.5 V.ei=ye,, V.e,=—ye,,
Ve, =—xe,, V.,e,=xe;,

1 0 01
A = ’ A = 2
Veé=2y¢,, Vala=—29¢,,

Vi-zél = —2x52 s ijéz'—_zxél s

and X is minimal in S4(3).
Any orthonormal normal frame of X in $*(3) is locally described as

(5.6) E=cosO & +sin@ &, , n=—sinf &; +cosb &, ,
where 8 =0(x, y). Then we have
5.7 hi{=—h5=cosf, h,i=sind,

n

h]=—hy}=—sin0, h,}=cosf.

We note that trace 4,4, =0 and A;;; =0 (1 <i, j, k<2) hold, because of (1.4), (5.5) and
(5.7). The Ricci equation (1.8) is written as
(5.8) S12—821=2,
by (5.7). By Proposition 2.1, the hypersurface M ={exp(t£); pe Z, te R} is minimal if
and only if X satisfies
;.9 S11+82,=0,

—2hy55y1 +2h,5(s12+521) —2hy§s,, = —detAM|;,

522811+ 512522 —5155(512+521)=0.
Here det AM|; denotes the determinant of the shape operator 4™ of M in M on a point

of ¥ = M with respect to the orthonormal basis (e, e,, £) and the normal vector 1 of
M. Hence we have

(5.10) det AM| = —h,7s5,% +25,5,h, 3 — hyls, 2 .

If we regard (5.8) and (5.9) as linear equations in s,,, §,,, 5,; and s,,, then the determi-
nant of the coefficient matrix is equal to 4{h,5(s,% —s,%) +(h,§ —h,3)s,5,} =4 det 4¥|;
by (5.7).

' First, we suppose detAMI s#0 (locally). Then, using (5.7) and (5.10), we see that
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(5.8) and (5.9) are equivalent to

5.11 i
( ) S11=—"i‘s1sza S1z=—4f(s12"522)+1 s

1
s21=?(~912‘“522)“'1 s 322=?~5’152-

By (5.3), (5.5) and (5.6), the components of the normal connection are given by

2 241 2 241
(5.12) s, =2t g 1oy, s2=ﬁi_;—1ey—2x,
and
$1 =T T (O DB 260,298+ 25y
x2+y*+1
12 =TT L (454 D0+ 20,4 2x8) 3Py
x2+y2+1 2 2 2 2
s21=——T——((x +y2+1)0,,+2y0,+2x0,) —x*+y*—1,
2 2
241
53 =3‘___£_i~ (¥ +? +1)8,,— 2x0, + 2y6,) — 2xy .

Then we see that (5.11) is written as

1 1
(5.13) Ou=——0:0,,  6,=—-0.0

= sl
0,,=0,,= % 6,>—6,%).

If we define z, w, 8/0z and 0/0Z by (3.6), then (5.13) is equivalent to

ow \/——1 2

—_—=— we, w=w(z) is holomorphic.
0z 4

Therefore, we have w=4(,/ —1z+C)~! (CeC), provided w#0. By means of (3.7),
we obtain

| 4
(5.14) 0(x,y)=4arctan’ 2+ 4,, or O(x,y)=A;,
x+ A,

where 4;e R (1 <j<3). Then the hypersurface M is parametrized by a local coordinate
(x, y, 1) as
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1 1 1
X(x, y, )=—1I+cos./ 3t<Y——I)+ sin,/ 3¢t¢&.
3 3 /3
By (5.7), (5.10), (5.12) and (5.14), we can see that det 4™|;#0, so M has type number
3 on some open set. Hence we obtain

THEOREM 5.1. Let X be the Veronese surface in S*(3), and let &,, &, be a natural
orthonormal normal frame of X in S*(3) defined by (5.4). We define a unit normal vector
field & of Z in S*(3) by E=cos0 &, +sinf &,, where 0 is a function on Z. Then M=
{exp,(¢¢); peZ, te R} is minimal and dctAM|z¢0 if and only if 0 is given by (5.14).

REMARK 5.2. By Theorem 5.1, we find all minimal hypersurfaces M of S, satisfying
the following conditions: (1) M contains a Veronese surface X of S4, (2) M is foliated
by great circles S! of S* intersecting £ orthogonally, (3) the type number of M is equal
to 3 on some open set which intersects .

REMARK 5.3. Examples of Theorem 5.1 are not complete because detAM|, di-
verges when (x, y) goes to point at infinity.

Finally we prove

PROPOSITION 5.4. Let X be the Veronese surface in S*(3), and let ¢ be a unit
normal vector field on Z in S*(3). We put M={exp,(t£); peZ,teR}. Suppose M is
minimal in S*(3), and satisfies detAM|;=0. Then M is a ruled hypersurface (i.e., M is
foliated by the totally geodesic S*(3) in S*(3)).

PrROOF. In order for M to be minimal in $4(3), £ and ¢ must satisfy (5.9). We
note that the equations of (5.9) are independent of the choice of the orthonormal frame
e;, e; on X. So we can take the orthonormal frame on ¥ such that 4,5=0. Since X
satisfies trace4,4,=0, we have h;]=h,3=0. Using (5.10), we get s,s5,=0, because
A,#0. We note that the normal connection of X in S$*(3) is not trivial. So we may
assume that s, =0 and s, #0. Then (5.9) yields

511 +522=0, 2h,5511 +2h,§5,,=0.

So we get 5,, =5,,=0, because 4,#0 and trace4,=0. By the definition (1.6) of s;;,
we obtain w, =0 and e,s, =0. Hence an integral curve y of e, satisfies

Ve.el=h1‘i5 s Velé'_- —hyie; .

Thus, y lies on S2(3) which is totally geodesic in S*(3), and the tangent space of S3(3)
on a point of y is spanned by e; and . Consequently, by the definition, M is a ruled
hypersurface. Q.E.D.

An example of Proposition 5.4 is constructed as follows: We write the position
vector y of S%(1) by a polar coordinate (u, v) as
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y="(cosu cosv, cosu sinv, sinu) e S*(1) ,
where —n/2<u<mn/2 and 0 <v<2rn. We define P= P(u, v) by

Cosu cosv —sinucosv —sinv
P(u,v)=| cosusinv —sinusinv cosv
sinu cosu 0

Then the position vector Y of X and the orthonormal local frame e,, e, on X are given
by (5.1) and (5.2), respectively. We define the orthonormal normal frame &, &, for 2
in S*(3), locally by (5.4). Then the similar computations as the first part of this section
imply that

Velel =V21e2 =0 s

V.e,=—tanue,, V.,e,=tanue,,

A¢1=(l 0)’ A§2=(O 1>’
0 —1 10

Vj‘§1=Vj}éz=0 s
ViE =—2tanué,,  Vy&,=2tanud,.

We put £=¢, and n=¢&,. Then we have s, =0, s,= —2 tanu, and detAM|z=0. More-
over, we get

S11=S22=0, 512=—2 tanzu, S21='—2(1+tan2u).

Therefore, 2 satisfies (5.8) and (5.9). By the proof of Proposition 5.4, we can see that
the hypersurface M= {exp,(t£); pe Z, te R} is a ruled minimal hypersurface in S$*(3),
so the type number of M is at most 2.
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