On the Topology of Fermat Type Surface of Degree 5 and the Numerical Analysis of Algebraic Curves

Kazushi AHARA

Meiji University
(Communicated by T. Nagano)

1. Introduction.

Let V_n be a Fermat type algebraic surface of degree n, that is,

$$V_n = \{ [z_0 : z_1 : z_2 : z_3] \in \mathbb{CP}^3 \mid z_0^n - z_1^n - z_2^n + z_3^n = 0 \}.$$

We consider a fibration $f: V_n \rightarrow \mathbb{CP}^1$ given by

$$f: [z_0:z_1:z_2:z_3] \mapsto \begin{cases} [z_2^{n-1}:z_0^{n-1}] & \text{if } z_0=z_1 \text{ and } z_2=z_3\\ [z_0-z_1:z_2-z_3] & \text{otherwise} \end{cases}$$

A general fiber of f is a Riemannian surface of genus (n-2)(n-3)/2. If $n \le 4$, a general fiber is a sphere or a torus and the singular fibers and their monodromies are known. (See [K].). In the case n=5 the genus of a general fiber is 3. Matsumoto calculates in his notes [M] the positions and homeomorphism-types of all singular fibers appearing in the fibration $f: V_n \to \mathbb{CP}^1$ for general n. From his results we know the conjugate class of the local monodromy for each singular fiber.

In this paper we suppose n=5 and we give an algorithm to calculate the global monodromy map

$$[\tilde{\rho}_{*}]: \pi_1(\mathbb{CP}^1 - SF, \sigma_0) \to \mathfrak{M}_3 = \operatorname{Aut} \pi_1 \Sigma_3 / \operatorname{Inn} \pi_1 \Sigma_3$$

using numerical analysis of algebraic curves in CP². Here

$$SF = \{ \sigma \mid F_{\sigma} = f^{-1}(\sigma) \text{ is a singular fiber} \}$$
.

First we define a branched covering map

$$h_{\sigma}: F_{\sigma} \to \mathbb{CP}^1$$

for each general fiber $F_{\sigma} = f^{-1}(\sigma)$. Its branch loci are obtained as solutions of certain

equations $l_i(x) = 0$. (Lemma 2.5.)

Let $c: [0, 1] \rightarrow \mathbb{CP}^1 - SF$ be a continuous path. We define a homeomorphism between fibers on the ends of this path as follows. Let h_c be a map defined by

$$h_c: \bigsqcup_t F_{c(t)} \to [0, 1] \times \mathbb{CP}^1$$

 $F_{c(t)} \ni x \mapsto (t, h_{c(t)}(x))$.

Let $\rho(c)$: $[0, 1] \times \mathbb{CP}^1 \to \mathbb{CP}^1$ be a homeotopy of the base space of $h_{c(t)}$ preserving its branch loci, that is, $\rho(c)$ is continuous, $\rho(c)(t, \cdot)$ is a homeomorphism, $\rho(c)(0, \cdot) = \mathrm{id}$, and $\rho(c)(t, D_{c(0)}) = D_{c(t)}$, where $D_{c(t)}$ is a set of branch loci of $h_{c(t)}$. For any y in \mathbb{CP}^1 we consider a path γ_y on $[0, 1] \times \mathbb{CP}^1$ defined by

$$\gamma_{\mathbf{v}} \colon [0, 1] \to [0, 1] \times \mathbf{CP}^1 \colon t \mapsto (t, \rho(c)(t, y))$$
.

We define a map $\tilde{\rho}(c)$: $F_{c(0)} \to F_{c(1)}$ by $x \mapsto \tilde{\gamma}_x(1)$, where $y = h_{c(0)}(x)$ and $\tilde{\gamma}_x$ is a lifting of γ_y with its starting point x. $\tilde{\rho}(c)$ is a homeomorphism.

Secondly we show that there exists an injection p_* from $\pi_1(\mathbb{CP}^1-SF,\sigma_0)$ to a free group denoted by $\pi_1(T,\sigma_0)$ which is generated by four elements $[\gamma_0]$, $[\gamma_1]$, $[\gamma_2]$, $[\gamma_3]$, where $T=(\mathbb{CP}^1-SF)/\langle\omega\rangle$, and $\omega=\exp(2\pi\sqrt{-1}/5)$. (Lemma 5.2.) For any $[\gamma]$ in $\pi_1(T,\sigma_0)$, $[\gamma]$ is represented by a path γ connecting σ_0 and $\sigma_j=\omega^j\sigma_0$, and j is a length of γ , which is defined in 5.2. Fix γ_0 , γ_1 , γ_2 , and γ_3 as in section 5, and let πT be a free group of loops on T generated by γ_j 's. For any $[\gamma] \in \pi_1(T,\sigma_0)$ we take a realization γ of $[\gamma]$ in πT .

Finally we calculate $\tilde{\rho}(\gamma)$ for $[\gamma] \in \pi_1(T, \sigma_0)$ in the following way.

- (1) Notice that $D_{\sigma_0} = D_{\sigma_j}$. (See 2.5.) $\rho(\gamma)$ determines a braid on $C^* = \mathbb{C}P^1 \{\infty, 0\}$, where we may perturb γ_j 's such that any branch loci of $h_{\gamma(t)}$ are not 0 nor ∞ . Now we define a homomorphism $\rho_T : \pi T \to B_8(C^*)$, where $B_8(C^*)$ is a braid group of degree 8 on C^* . (Proposition 5.3.) Remark that ∞ is a branch locus if and only if 0 is also a branch locus. (See Lemma 2.5.)
- (2) For a braid β of degree 8 on \mathbb{C}^{\times} , it induces a homeomorphism on \mathbb{C}^{\times} . Suppose β is represented by a map

$$\beta: \{8 \text{ points}\} \times [0, 1] \rightarrow C^{\times}: (x, t) \mapsto \beta(x, t).$$

Let ρ_{β} : $C \times [0, 1] \to C$ be an extension of β , that is, ρ_{β} is continuous, $\rho_{\beta}(\cdot, t)$ is a homeomorphism, $\rho_{\beta}(0, t) = 0$, and $\rho_{\beta}(x, t) = \beta(x, t)$ for $x \in \{8 \text{ points}\}$. The homotopy type of ρ_{β} depends only on a braid class of β . This extension induces an automorphism of $\pi_1(C - \{8 \text{ points}\}, 0)$. This automorphism only depends on a braid β and we define a homomorphism

$$\rho_B: B_8 \rightarrow \operatorname{Aut} \pi_1(\mathbb{C} - \{8 \text{ pts}\}, 0)$$
.

If we take $\{8 \text{ pts}\} = D_{\sigma_0}$ then we have $\rho(\gamma)_* = \rho_B \circ \rho_T(\gamma)$. (Proposition 5.5.)

(3) We calculate $\tilde{\rho}(\gamma)$: $h_{\sigma_0}^{-1}(0) \rightarrow h_{\sigma_j}^{-1}(0)$. (Proposition 5.6.)

(4) For * in $h_{\sigma_0}^{-1}(0)$, the diagram

$$\pi_{1}(F_{\sigma_{0}} - h_{\sigma_{0}}^{-1}(D_{\sigma_{0}}), *) \xrightarrow{\tilde{\rho}(\gamma)_{*}} \pi_{1}(F_{\sigma_{j}} - h_{\sigma_{j}}^{-1}(D_{\sigma_{j}}), \tilde{\rho}(\gamma)(*))$$

$$\downarrow^{h_{\sigma_{0}*}} \qquad \qquad \downarrow^{h_{\sigma_{j}*}}$$

$$\pi_{1}(\mathbf{CP}^{1} - D_{\sigma_{0}}, 0) \xrightarrow{\rho(\gamma)_{*}} \pi_{1}(\mathbf{CP}^{1} - D_{\sigma_{j}}, 0)$$

commutes, where $\tilde{\rho}(\gamma)$ is a monodromy homeomorphism which will be given in section 2. And $\tilde{\rho}(\gamma)_* = h_{\sigma_j *}^{-1} \circ \rho_B \circ \rho_T \circ h_{\sigma_0 *}$ induces a homomorphism

$$\tilde{\rho}(\gamma)_*$$
: $\pi_1(F_{\sigma_0}, *) \rightarrow \pi_1(F_{\sigma_i}, \tilde{\rho}(\gamma)(*))$,

where $h_{\sigma_{j*}}^{-1}$ is a lifting with its starting point $\tilde{\rho}(\gamma)(*)$. Because this diagram commutes, $\rho_B \circ \rho_T \circ h_{\sigma_{0*}}(x)$ has a lifting for any $x \in \pi_1(F_{\sigma_0}, *)$. In section 4, we have an algorithm to get this lifting.

This algorithm gives a monodromy map of a fibration f. We have some remarks. (Remark 1) $\gamma \mapsto \tilde{\rho}(\gamma)$ is not a homomorphism because $\tilde{\rho}(\gamma)$ is not an automorphism on $\pi_1(F_{\sigma_0}, *)$. $\tilde{\rho}(\gamma)$ only gives an element $[\tilde{\rho}(\gamma)]$ in $\operatorname{Aut} \pi_1(F_{\sigma_0})/\operatorname{Inn} \pi_1(F_{\sigma_0})$.

(Remark 2) $\rho_T(\gamma)$, $\rho(\gamma)$, $\tilde{\rho}(\gamma)$ depend on a choice of γ_j 's. Hence for any $[\gamma] \in \pi_1(T, \sigma_0)$, $\tilde{\rho}(\gamma)$ depends on a choice of the realization γ . But on the other hand $[\gamma] \mapsto [\tilde{\rho}(\gamma)]$ is well-defined and it is sufficient to calculate $\tilde{\rho}$ for one realization γ .

(Remark 3) This algorithm does not depend on the degree n of the surface V_n . Generally for any fibration from a smooth surface to a smooth line we can determine its singular fibers and its global monodromy map using a similar algorithm.

(Remark 4) It is known that \mathfrak{M}_g is generated by Dehn twists along simple closed curves on Σ_g . In our cases, for some loops on $\mathbb{CP}^1 - SF$ we easily give monodromy map using a product of Dehn twists. See Proposition 5.8.

The author would like to thank Professor Yukio Matsumoto and a referee of this paper for their suggestions and encouragement. The author is also grateful to his father Hachiro Ahara for his supporting to use a graphic tool for figures in this paper.

2. Singular fibers and branched covering of general fibers.

In this section we quote some results from Matsumoto's notes [M] and prepare some fundamental properties.

In the sequel we regard \mathbb{CP}^1 as $\mathbb{C} \cup \infty$. For $\sigma \in \mathbb{CP}^1$, let $F_{\sigma} = f^{-1}(\sigma)$ be a fiber. In this section we suppose $n \ge 4$.

PROPOSITION 2.1. F_{σ} is a singular fiber if and only if $\sigma = 0$ or $\sigma = \infty$ or for some $j, k = 1, 2, \dots, n-2$,

$$\sigma^{n} = \frac{(1 - \omega_{n-1}^{k})^{n-1}}{(1 - \omega_{n-1}^{j})^{n-1}},$$

where $\omega_{n-1} = \exp(2\pi i/(n-1))$.

COROLLARY 2.2. If n = 5 and F_{σ} is a singular fiber then $\sigma = 0$ or $\sigma = \infty$ or $\sigma^5 = -1/4$ or 1 or -4.

The proof is given by Matsumoto ([M]). Matsumoto determines the homeomorphism-type of all of singular fibers. In case n=5 we have

Proposition 2.3. Let $\alpha = \sqrt[5]{-4}$.

- (1) $F_0 \approx F_{\infty} \approx Bouquet \ of \ 4 \ S^2$'s.
- (2) For j=0, 1, 2, 3, 4, F_{ω_i} is homeomorphic to the singular fiber shown in Figure 2.1.
- (3) For j=0, 1, 2, 3, 4, $F_{\alpha\omega_{\xi}^{i}} \approx F_{\alpha^{-1}\omega_{\xi}^{i}}$ is homeomorphic to the singular fiber shown in Figure 2.2.
 - (4) If F_{σ} is a general fiber then $F_{\sigma} \approx \Sigma_3$ and F_{σ} is smooth.

FIGURE 2.1

FIGURE 2.2

For σ such that $\sigma \neq 0$ nor $\sigma \neq \infty$ we define a branched covering map

$$h_{\sigma}: F_{\sigma} \to \mathbb{CP}^1: [z_0: z_1: z_2: z_3] \mapsto [z_0: z_1].$$

LEMMA 2.4. (1) Suppose $\sigma \neq 0$ and $\sigma \neq \infty$.

$$F_{\sigma} \cap \{z_0 \neq 0\} = \{(x, y) \mid g_{\sigma}(x, y) = 0, x \neq 1\} \cup \{(1, y) \mid y^{n-1} = \sigma\},$$

where $g_{\sigma}(x, y) = 1 - x^n - y^n + (y + (x - 1)/\sigma)^n$. And h_{σ} is given by

$$h_{\sigma}: (x, y) \in F_{\sigma} \cap \{z_0 \neq 0\} \mapsto x = z_1/z_0 \in \mathbb{C}.$$

- (2) $F_{\sigma} \cap \{z_0 = 0\} = h_{\sigma}^{-1}(\infty)$.
- (3) If F_{σ} is a general fiber then h_{σ} is a branched covering map.

We leave the proof of this lemma to the readers.

LEMMA 2.5. (1) If F_{σ} is a general fiber then the branch loci $x = z_1/z_0$ of h_{σ} is given by the solutions of $l_i(x) = 0$, $(j = 1, 2, \dots, n-2)$, where

$$l_j(x) = \frac{(x-1)^{n-1}}{(1-\omega_{n-1}^{-j})^{n-1}\sigma^n} + (-1)^n(x^{n-1} + \cdots + x + 1),$$

$$\omega_{n-1} = \exp\left(\frac{2\pi i}{n-1}\right).$$

- (2) If the degree of $l_j(x)$ is less than n-1 for some j then $x=\infty$ is one of the branch loci.
 - (3) For any branch locus, its monodromy group is $\mathbb{Z}/2\mathbb{Z}$.

PROOF. (1) If x is a branch locus of h_{σ} and $x \neq 1$ and $x \neq \infty$ then

$$\frac{\partial}{\partial y} g_{\sigma}(x, y) = 0,$$

$$-ny^{n-1} + n\left(y + \frac{x-1}{\sigma}\right)^{n-1} = 0.$$

Therefore for some $j \in \{0, 1, \dots, n-2\}$ we obtain

$$y = \omega_{n-1}^j \left(y + \frac{x-1}{\sigma} \right).$$

From the assumption $x \neq 1$, we have $j \neq 0$ and

$$y = \frac{x-1}{(\omega_{n-1}^{-j}-1)\sigma}.$$

Substituting this for $g_{\sigma}(x, y) = 0$,

$$1-x^{n}-\left(\frac{x-1}{(\omega_{n-1}^{-j}-1)\sigma}\right)^{n}(1-\omega_{n-1}^{-j})=0,$$

$$(-1)^{n-1}(x-1)\left\{\frac{(x-1)^{n-1}}{(1-\omega_{n-1}^{-j})^{n-1}\sigma^{n}}+(-1)^{n}(x^{n-1}+\cdots+x+1)\right\}=0,$$

$$l_{i}(x)=0.$$

The condition $\sigma \neq 0$ implies that $h_{\sigma}([z_0:z_1:z_2:z_3])=1$ if and only if x=1, $y^{n-1}=\sigma$, and hence x=1 is not a branch locus. It is easy to check that $l_i(1)\neq 0$.

(2) Since $\sigma \neq 0$ and $\sigma \neq \infty$,

$$h_{\sigma}^{-1}(\infty) = \{(x, y) \mid y = x + 1/\sigma, -1 - x^n + (x + 1/\sigma)^n = 0\}$$

and it is easy to show that the degree of $l_j(x)$ is less than n-1 for some j if and only if $-1-x^n+(x+1/\sigma)^n=0$ has multiple solutions.

(3) It is sufficient to show that for any given x such that $x \ne 1$ the equation $g_{\sigma}(x, y) = 0$ for y does not have any triple solutions. In fact,

$$\frac{\partial}{\partial y} g_{\sigma}(x, y) = 0 \implies y = \omega_{n-1}^{j} \left(y + \frac{x-1}{\sigma} \right),$$

$$\frac{\partial^{2}}{\partial y^{2}} g_{\sigma}(x, y) = 0 \implies y = \omega_{n-2}^{j'} \left(y + \frac{x-1}{\sigma} \right).$$

The condition $n \ge 4$ and $x \ne 1$ implies that they have no common solutions for x, y.

LEMMA 2.6. (1) F_{σ} ($\sigma \neq 0$, $\sigma \neq \infty$) is a singular fiber if and only if $l_{j}(x)=0$ has multiple solutions for some j.

(2) If n is odd, $l_j(x) = l_{n-j-1}(x)$. If $l_j(x) = 0$ and $l_{j'}(x) = 0$ have a common solution then (i) j = j' or (ii) j' = n - j - 1 with odd n.

PROOF. Let $y_i(x)$ be defined by

$$y_j(x) = \frac{x-1}{(\omega_{n-1}^{-j}-1)\sigma}$$
.

From Lemma 2.5, $(-1)^{n-1}(x-1)l_j(x) = g_{\sigma}(x, y_j(x))$ holds. If F_{σ} has a singular point $(x_0, y_0) \in F_{\sigma} \cap \{z_0 \neq 0\}$, then $g_{\sigma} = \partial g_{\sigma}/\partial x = \partial g_{\sigma}/\partial y = 0$ at (x_0, y_0) . It follows that $y_0 = y_j(x_0)$ for some j and

$$g_{\sigma}(x, y) = \alpha(x - x_0)^2 + \beta(x - x_0)(y - y_0) + \gamma(y - y_0)^2 + \text{(higher terms)}$$

holds for some constant α , β , γ . Hence

$$g_{\sigma}(x, y_j(x)) = \alpha(x - x_0)^2 + \beta(x - x_0)(y_j(x) - y_j(x_0)) + \gamma(y_j(x) - y_j(x_0))^2 + (\text{higher terms})$$

$$\frac{d}{dx} g_{\sigma}(x, y_{j}(x)) \bigg|_{x=x_{0}} = \left\{ 2\alpha(x-x_{0}) + \beta\{(y_{j}(x)-y_{j}(x_{0})) + (x-x_{0})y'_{j}(x)\} + \gamma(y_{j}(x)-y_{j}(x_{0}))y'_{j}(x) \right\} \bigg|_{x=x_{0}}$$

$$= 0.$$

Hence we have

$$\left. \frac{d}{dx} \, l_j(x) \right|_{x = x_0} = 0$$

and x_0 is a multiple solution of $l_i(x) = 0$.

Suppose x_0 is a multiple solution of $l_j(x_0)=0$, then $l_j(x_0)=l'_j(x_0)=0$ holds. If $L_i(x)=(x-1)l_i(x)$ then $L_i(x_0)=L'_i(x_0)=0$.

$$L_{j}(x_{0}) = \frac{(x_{0}-1)^{n}}{(1-\omega_{n-1}^{-j})^{n-1}\sigma^{n}} + (-1)^{n}(x_{0}^{n}-1) = 0,$$

$$L'_{j}(x_{0}) = \frac{n(x_{0}-1)^{n-1}}{(1-\omega_{n-1}^{-j})^{n-1}\sigma^{n}} + (-1)^{n}nx_{0}^{n-1} = 0,$$

$$x_{0}-1 = \frac{x_{0}-1}{x_{0}^{n-1}},$$

$$x_0^n - x_0^{n-1} = x_0^n - 1,$$

 $x_0^{n-1} = 1,$
 $x_0 = \omega_{n-1}^k$

for some k. $L'_{j}(x_{0}) = 0$ implies that

$$\frac{(1-\omega_{n-1}^k)^{n-1}}{(1-\omega_{n-1}^{-j})^{n-1}} = \sigma^n$$

and hence F_{σ} is a singular fiber.

(2) If n is odd then $(1-\omega_{n-1}^{-j})^{n-1}=(1-\omega_{n-1}^{-(n-j-1)})^{n-1}$ and $l_{n-j-1}(x)=l_j(x)$. Assume that x is a common solution of $l_j(x)=0$ and $l_{j'}(x)=0$ and $j\neq j'$. Easily we have

$$\frac{(x-1)^{n-1}}{(1-\omega_{n-1}^{-j})^{n-1}\sigma^n} = \frac{(x-1)^{n-1}}{(1-\omega_{n-1}^{-j'})^{n-1}\sigma^n}.$$

Remark that since $l_i(1) \neq 0$, $x \neq 1$ and we have

$$(1 - \omega_{n-1}^{-j})^{n-1} = (1 - \omega_{n-1}^{-j'})^{n-1},$$

$$1 - \omega_{n-1}^{-j} = \omega_{n-1}^{k} (1 - \omega_{n-1}^{-j'})$$

for some k. Now it is easy to show that

$$1 - \omega_{n-1}^{-j} = 2\sin\frac{\pi j}{n-1} \exp\left\{ \left(\frac{1}{2} - \frac{j}{n-1} \right) \pi i \right\}.$$

And we have

$$\begin{cases} \sin\frac{\pi j}{n-1} = \sin\frac{\pi j'}{n-1} \\ \exp\frac{-j\pi i}{n-1} = \exp\frac{(-j'+2k)\pi i}{n-1} \end{cases}.$$

From the assumption $i \neq i'$,

$$\begin{cases} j+j'=n-1\\ -j \equiv -j'+2k \pmod{n-1} \end{cases}.$$

We conclude that j+j'=n-1 and n is odd.

We characterize the monodromy map as follows. Let $c: [0, 1] \to \mathbb{CP}^1 - SF$ be a continuous path. We define a homeomorphism between $F_{c(0)}$ and $F_{c(1)}$. Let $\rho(c): [0, 1] \times \mathbb{CP}^1 \to \mathbb{CP}^1$ be a homeotopy of the base space of $h_{c(t)}$ preserving its branch loci, that is, $\rho(c)$ is continuous, $\rho(c)(t, \cdot): \mathbb{CP}^1 \to \mathbb{CP}^1$ is a homeomorphism, $\rho(c)(0, \cdot) = \mathrm{id}$,

and $\rho(c)(t, D_{c(0)}) = D_{c(t)}$, where $D_{c(t)}$ is a set of branch loci of $h_{c(t)}$. Remark that the homotopy type of $\rho(c)$ is uniquely determined. In fact,

PROPOSITION 2.7. (1) If $\rho_0(c)$ and $\rho_1(c)$ are homeotopy of the base space of $h_{c(t)}$ preserving their branch loci, then there exists a homotopy $r_s: \mathbb{CP}^1 \to \mathbb{CP}^1$, $s \in [0, 1]$ such that $r_0 = \rho_0(c)(1, \cdot)$ and $r_1 = \rho_1(c)(1, \cdot)$.

(2) Let c_1 and c_2 be mutually homotopic paths on \mathbb{CP}^1-SF . Then there exists a homotopy $r_s: \mathbb{CP}^1 \to \mathbb{CP}^1$, $s \in [0, 1]$ such that $r_0 = \rho_0(c_0)(1, \cdot)$ and $r_1 = \rho_1(c_1)(1, \cdot)$ for homeotopies $\rho_0(c_0)$, $\rho_1(c_1)$.

PROOF. (1)
$$r_s = \rho_0(c)(1, \cdot) \circ \rho_0(c)(s, \cdot)^{-1} \circ \rho_1(c)(s, \cdot)$$
.

(2) Let c_s be a homotopy between c_0 and c_1 . It is easy to construct a family of homeotopies $\rho'_s(c_s)$ along c_s . From (1), $\rho'_s(c_s)(1, \cdot)$ and $\rho_s(c_s)(1, \cdot)$, are homotopic for s=0, 1. This completes the proof.

For any $y \in \mathbb{CP}^1$, let a path γ_y on $[0, 1] \times \mathbb{CP}^1$ be given by

$$\gamma_{\mathbf{v}} \colon [0, 1] \rightarrow [0, 1] \times \mathbf{CP}^1 \colon t \mapsto (t, \rho(c)(t, y)).$$

Let h_c be a branched covering on $[0, 1] \times \mathbb{CP}^1$ defined by

$$h_c: \bigsqcup_t F_{c(t)} \rightarrow [0, 1] \times \mathbb{CP}^1: \quad x \in F_{c(t)} \mapsto (t, h_{c(t)}(x)),$$

and $\tilde{\gamma}_x$: $[0, 1] \rightarrow \bigsqcup_t F_{c(t)}$ be a lifting of γ_y with its starting point $x \in h_{c(0)}^{-1}(y)$. We define $\tilde{\rho}(c)$ by

$$\tilde{\rho}(c): F_{c(0)} \rightarrow F_{c(1)}: \qquad x \mapsto \tilde{\gamma}_x(1).$$

Clearly the following proposition holds.

Proposition 2.8. (1) $\tilde{\rho}(c)$ is a homeomorphsim.

(2) If c(0) = c(1) then $\tilde{\rho}(c)$ gives a monodromy of $F_{c(0)}$ along a loop c.

3. Numerical analysis of 1-parameter equation.

Let $f_t(x)$ be a continuous family of polynomials of x with one parameter t. Assume that for any t the degree of $f_t(x)$ is n. We define D_f by

$$D_f = \{t \mid f_t(x) = 0 \text{ has a multiple root}\}$$

and let $C_f = CP^1 - D_f$.

Fix $t_0 \in C_f$ as a base point. Let γ be a loop in C_f with a base point t_0 and $[\gamma]$ be a homotopy class of γ in $\pi_1(C_f, t_0)$. Let $\{x_1(c), \dots, x_n(c)\}$, $(c \in [0, 1])$ be a set of continuous functions such that $x_1(c), \dots, x_n(c)$ are the solutions of $f_{\gamma(c)}(x) = 0$. (See (3.2).) Because $\gamma(0) = \gamma(1) = t_0$, $\{x_1(1), \dots, x_n(1)\}$ is a permutation $\rho_f(\gamma)$ of $\{x_1(0), \dots, x_n(0)\}$, where ρ_f is a monodromy map $\rho_f : \pi_1(C_f, t_0) \to \mathfrak{S}_n$. The problem we want to solve in a special case is as follows.

PROBLEM 3.1. For a given $f_t(x)$, calculate the monodromy map ρ_f .

In this section we will give a partial answer using Newton approximation. The following lemma is well-known.

LEMMA 3.2. If $\gamma: [0, 1] \to C_f$ is continuous then the solutions of $f_{\gamma(t)}(x) = 0$ move continuously.

For a polynomial f(x), let $E_f: \mathbb{CP}^1 \to \mathbb{CP}^1$ be a Newton approximation, that is,

$$E_f(x) = \begin{cases} x - \frac{f(x)}{df(x)/dx} & \text{if } x \neq \infty \text{ and } df(x)/dx \neq 0\\ \infty & \text{otherwise} \end{cases}$$

For a map $E: \mathbb{CP}^1 \to \mathbb{CP}^1$ we define attracting points in \mathbb{CP}^1 with respect to E.

DEFINITION 3.3. (1) $p \in \mathbb{CP}^1$ $(p \neq \infty)$ is an attracting point with respect to E if and only if there exist $\varepsilon > 0$ and $0 < \kappa < 1$ such that

$$\frac{|E(x)-p|}{|x-p|} < \kappa$$

if x satisfies $|x-p| < \varepsilon$.

(2) $\infty \in \mathbb{CP}^1$ is an attracting point with respect to E if and only if there exist $\varepsilon > 0$ and $1 < \kappa$ such that

$$\frac{|E(x)|}{|x|} > \kappa$$

for any x satisfying $|x| > 1/\varepsilon$.

From Definition 3.3 it is easy to show the following lemma.

LEMMA 3.4. Suppose that $p \in \mathbb{CP}^1$ $(p \neq \infty)$ is an attracting point (if it exists). For x such that $|x-p| < \varepsilon$, we define a sequence $\{x_i\}_{i=0,1,2,\cdots}$ by $x_0 = x$ and $x_{i+1} = E(x_i)$. Then the sequence $\{x_i\}$ converges to p.

LEMMA 3.5. Let f(x) be a polynomial of degree n and p is one of solutions of f(x)=0. Then p is an attracting point of E_f .

Proof. Replace x with x-p. If

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x$$
,

then

$$E_f(x) = x - \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x}{n a_n x^{n-1} + (n-1) a_{n-1} x^{n-2} + \dots + 2a_2 x + a_1},$$

$$\left| \frac{E_f(x)}{x} \right| = \left| \frac{(n-1)a_n x^{n-1} + (n-2)a_{n-1} x^{n-2} + \dots + a_2 x}{na_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + \dots + 2a_2 x + a_1} \right|.$$

The condition $a_n \neq 0$ implies that for x such that |x| is small

$$\left|\frac{E_f(x)}{x}\right| < 1 - \frac{1}{2n} < 1.$$

Hence 0 is an attracting point with respect to E_f and we complete the proof.

From Lemma 3.2, Lemma 3.4 and Lemma 3.5 we have

PROPOSITION 3.6. For a given loop γ in C_f there exists a partition of the interval

$$0 = c_0 < c_1 < \cdots < c_{k-1} < c_k = 1$$

such that for any $0 \le l < k$ if we define a sequence $\{y_i\}_{i=0,1,2,\dots}$ by $y_0 = x_j(\gamma(c_l))$ and $y_{i+1} = E_{f_{\gamma(c_{l+1})}}(y_i)$ for $i = 0, 1, 2, \dots$, then the sequence $\{y_i\}$ converges to $x_j(\gamma(c_{l+1}))$.

Using this proposition for given γ we make a partition of [0, 1] and we calculate $x_i(\gamma(c_i))$ and the monodromy map ρ_f .

4. General fiber F_{q_0} .

Let $\sigma_0 = 1.1 = 11/10$. In this section we consider a branched covering $h_{\sigma_0} : F_{\sigma_0} \to \mathbb{CP}^1$, which is given in Lemma 2.5, and characterize $F_{\sigma_0} \approx \Sigma_3$.

The branch loci of h_{σ_0} are given by solutions of

$$\left\{\frac{(x-1)^4}{16\sigma_0^5} - (x^4 + x^3 + x^2 + x + 1)\right\} \left\{\frac{(x-1)^4}{4\sigma_0^5} - (x^4 + x^3 + x^2 + x + 1)\right\} = 0.$$

In fact the solutions are $\{A, \overline{A}, B, \overline{B}, C, \overline{C}, D, \overline{D}\}\$, where A = -0.9256 + 0.3786i, B = -0.3800 + 0.9250i, C = 0.2159 + 0.9764i, D = 0.3246 + 0.9458i.

If $G_t(x) = g_{\sigma_0}(t, x)$ then we have $C_G = \mathbb{C}P^1 - \{A, \overline{A}, B, \overline{B}, C, \overline{C}, D, \overline{D}\}$. Let $a, b, c, d, \overline{a}, \overline{b}, \overline{c}$, and \overline{d} in Figure 4.1 be generators of $\pi_1(C_G, 0)$. We number the solutions of $G_0(x) = 0$ as in Figure 4.2. Using Proposition 3.6, we calculate numerically movement

FIGURE 4.1

FIGURE 4.2

FIGURE 4.3.1

FIGURE 4.3.2

FIGURE 4.3.3

FIGURE 4.3.4

of solutions of $G_t(x) = 0$ when t runs along a, b, \dots , and so on. Figures 4.3.1, 4.3.2, 4.3.3, and 4.3.4 give some examples of movement of solutions of $G_t(x) = 0$.

REMARK. Since $g_{\sigma_0}(\bar{t}, x) = \overline{g_{\bar{\sigma}_0}(t, \bar{x})} = \overline{g_{\sigma_0}(t, \bar{x})}$, $G_t(x) = 0$ if and only if $G_{\bar{t}}(\bar{x}) = 0$. Hence the movements of solutions for \bar{a} , \bar{b} , \bar{c} , \bar{d} are conjugations of those of a, b, c, d

respectively.

And we have

$$\rho_{G} \colon \pi_{1}(C_{G}, 0) \to \mathfrak{S}_{4}$$

$$a \mapsto (14)(2)(3) \qquad \bar{a} \mapsto (14)(2)(3)$$

$$b \mapsto (12)(34) \qquad \bar{b} \mapsto (13)(24)$$

$$c \mapsto (12)(34) \qquad \bar{c} \mapsto (13)(24)$$

$$d \mapsto (1)(23)(4) \qquad \bar{d} \mapsto (1)(23)(4) .$$

Here for example (1)(23)(4) is an element of \mathfrak{S}_4 given by $x_1 \mapsto x_1$, $x_2 \mapsto x_3$, $x_3 \mapsto x_2$, $x_4 \mapsto x_4$.

Let e_1 , e_2 , e_3 , e_4 be mutually disjoint simple closed curves on C_G such that they are homotopic to $a\bar{a}$, bc, $\bar{c}b$, $\bar{d}d$, respectively in G_G . (Figure 4.4.) Let D_1 , D_2 , D_3 , D_4

FIGURE 4.4

be mutually disjoint open disks in \mathbb{CP}^1 such that they bound e_1 , e_2 , e_3 , e_4 respectively and let $\widetilde{D}_i := h_{\sigma_0}^{-1}(D_i)$ for i=1, 2, 3, 4. Suppose $\mathbb{CP}^1 - \bigcup_i D_i$ contains 0. Observing the monodromy map ρ_G we have the following proposition.

PROPOSITION 4.1. (1) $\rho_G(a\bar{a}) = \rho_G(bc) = \rho_G(\bar{c}\bar{b}) = \rho_G(\bar{d}d) = (1)(2)(3)(4)$.

- (2) $h_{\sigma_0}^{-1}(\mathbf{CP}^1 \bigcup_i D_i) \approx (\mathbf{CP}^1 \bigcup_i D_i) \times \{x_1, x_2, x_3, x_4\}.$
- (3) Let $\partial \tilde{D}_i^j$ (j=1,2,3,4) be components of $\partial (h_{\sigma_0}^{-1}(D_i))$ defined by

$$\partial \tilde{D}_i^j = \partial (h_{\sigma_0}^{-1}(D_i)) \cap ((CP^1 - \bigcup_i D_i) \times \{x_j\})$$
.

Then

$$\begin{split} \widetilde{D}_1 &:= h_{\sigma_0}^{-1}(D_1) = D_1^2 \coprod N_1^{14} \coprod D_1^3 \\ \widetilde{D}_2 &:= h_{\sigma_0}^{-1}(D_2) = N_2^{12} \coprod N_2^{34} \\ \widetilde{D}_3 &:= h_{\sigma_0}^{-1}(D_3) = N_3^{13} \coprod N_3^{24} \\ \widetilde{D}_4 &:= h_{\sigma_0}^{-1}(D_4) = N_4^{23} \coprod D_4^1 \coprod D_4^4 , \end{split}$$

where (a) D_i^j is a disk such that $h_{\sigma_0}(D_i^j) = D_i$ and $\partial D_i^j = \partial \tilde{D}_i^j$, (b) N_i^{jk} is an annulus

FIGURE 4.5

such that $h_{\sigma_0}(N_i^{jk}) = D_i$ and $\partial N_i^{jk} = \partial \tilde{D}_i^j \coprod \partial \tilde{D}_i^k$.

(4)
$$F_{\sigma_0} \approx (\mathbb{C}P^1 - \bigcup_i D_i) \times \{4 \text{ pts}\} [(\bigcup_i \tilde{D}_i) \approx \Sigma_3. \text{ (See Figure 4.5.)}]$$

Next we fix generators of $\pi_1(F_{\sigma_0}, *_1)$, where $*_j$ is given by $*_j = 0 \times x_j \in (\mathbb{CP}^1 - \bigcup_i D_i) \times \{x_j\}$ (j = 1, 2, 3, 4). We define $\pi_1(\mathbb{C}_G, 0)_j$ by

$$\pi_1(C_G, 0)_j = \{ \gamma \in \pi_1(C_G, 0) \mid \rho_G(\gamma)(x_j) = x_j \}.$$

 $\gamma \in \pi_1(C_G, 0)_i$ if and only if γ can be lifted to $\pi_1(F_{\sigma_0}, *_i)$. We denote the lifting map by

$$h_{\sigma_0*}^{-1}: \pi_1(C_G, 0)_j \to \pi_1(F_{\sigma_0}, *_j).$$

PROPOSITION 4.2. If $l_1=b\bar{c}a$, $l_2=ab\bar{b}$, $l_3=\bar{c}dc$, $m_1=a\bar{c}b\bar{a}$, $m_2=\bar{b}bc\bar{b}$, $m_3=cd\bar{d}c$ then

- (1) $l_1, l_2, l_3, m_1, m_2, m_3$ are contained in $\pi_1(C_G, 0)_1$.
- (2) Their liftings to $\pi_1(F_{\sigma_0}, *_1)$ are generators of $\pi_1(F_{\sigma_0}, *_1)$.

PROOF. (1) For example, $\rho_G(l_1) = \rho_G(b\bar{c}a) = (12)(34)(13)(24)(14) = (1)(23)(4)$ hence $l_1 \in \pi_1(C_G, 0)_1$. We can prove the proposition similarly in the other cases.

(2) To prove 4.2(2) we prepare some notations and Lemma 4.3.

For $\gamma \in \pi_1(C_G, 0)$ and for j = 1, 2, 3, 4 we denote a lifting of γ with its starting point $0 \times x_j \in (CP^1 - \bigcup_i D_i) \times \{x_j\}$ and with its end point $0 \times x_{j'}$ by $(\gamma)_j^{j'}$. (We may denote $(\gamma)_j^{j'}$ by $(\gamma)_j$.) Then we have following lemma.

LEMMA 4.3. (1) $(a)_2 = (0)_2$, $(a)_3 = (0)_3$, $(\bar{a})_2 = (0)_2$, $(\bar{a})_3 = (0)_3$.

- (2) $(d)_1 = (0)_1, (d)_4 = (0)_4, (\overline{d})_1 = (0)_1, (\overline{d})_4 = (0)_4.$
- (3) $(a^2)_j = (b^2)_j = (c^2)_j = (d^2)_j = (\bar{c}^2)_j = (\bar{c}^2)_j = (\bar{c}^2)_j = (0)_j$, for j = 1, 2, 3, 4.
- (4) $(dcba\bar{a}b\bar{c}d)_{i} = (0)_{i}$ for j = 1, 2, 3, 4.

PROOF. (1) (2) For instance, $(a)_2$ and $(\bar{a})_2$ are homotopic to zero because they are represented by loops contained in D_1^2 . (3) Since any monodromy of a, \dots, \bar{d} is $\mathbb{Z}/2\mathbb{Z}$, any lifting of a^2, \dots, \bar{d}^2 bounds a disk. (4) $dcba\bar{a}b\bar{c}\bar{d}$ bounds a neighborhood of ∞ in C_G then its lifting is also zero.

To show Proposition 4.2(2) it is sufficient to show that for any $\gamma \in \pi_1(C_G, 0)_1$, $(\gamma)_1$ can be written as a product of $(l_k)_1$, $(m_k)_1$ (k=1, 2, 3). We leave the proof to the readers.

Proposition 4.4. (1) $(bc)_1 = (l_1 m_1^{-1} l_1^{-1} m_3)_1$.

- (2) $(\bar{a}a)_1 = (l_2 m_2^{-1} l_2^{-1} m_1)_1$.
- (3) $(\bar{c}\bar{b})_1 = (l_3 m_3^{-1} l_3^{-1} m_2)_1$.
- (4) If $n_1 = bc$, $n_2 = \bar{a}a$, $n_3 = \bar{c}\bar{b}$ then $(n_3n_2n_1)_1 = (0)_1$.

PROOF. We only prove (1) and leave (2) (3) (4) to the readers.

$$(l_1 m_1^{-1} l_1^{-1} m_3)_1 (cb)_1 = ((b\bar{c}a)(a\bar{b}ca)(a\bar{c}b)(cd\bar{d}c)(cb))_1$$

$$= (b\bar{c}b\bar{b}cd\bar{d}b)_1$$

$$= (b)_1^2 (\bar{c}b)_2^2 (bcd\bar{d})_2^2 (b)_2^1$$

$$= (b)_1^2 (\bar{c}b\bar{a}abcd\bar{d})_2^2 (b)_2^1$$

$$= (b)_1^2 (0)_2^2 (b)_2^1 = (0)_1.$$

5. Monodromy action on \mathfrak{M}_3 .

In this section we calculate monodromy of $f: V_5 \mapsto \mathbb{CP}^1$. Let SF be

$$SF = \{ \sigma \in \mathbb{CP}^1 \mid F_{\sigma} \text{ is a singular fiber} \}$$
.

We denote a monodromy map by

$$[\tilde{\rho}_{\star}]: \pi_1(\mathbb{CP}^1 - SF, \sigma_0) \rightarrow \mathfrak{M}_3$$

where \mathfrak{M}_3 is a mapping class group of $\Sigma_3 \approx F_{\sigma_0}$, that is,

$$\mathfrak{M}_3 = \text{Homeo}_+ \Sigma_3 / \text{Isotopy}$$

 $\simeq \text{Aut}(\pi_1 \Sigma_3) / \text{Inn}(\pi_1 \Sigma_3)$.

The latter equivalent is proved by Nielsen [N].

We calculate the monodromy map in the following 5 steps.

- Step 1: We fix generators $[\gamma_i]$ of $\pi_1(T, \sigma_0)$.
- Step 2: We calculate $\rho_T: \pi_T \to B_8(\mathbb{C}^\times)$.
- Step 3: We calculate $\rho_B: B_8(\mathbb{C}^\times) \to \operatorname{Aut} \pi_1(\mathbb{C} D_{\sigma_0}, 0)$ and show $\rho(\gamma)_* = \rho_B \circ \rho_T(\gamma)$.
- Step 4: We calculate $\rho_S: \pi T \to \tilde{\rho}(\gamma) \in \mathfrak{S}_4(h_{\sigma_c}^{-1}(0))$.
- Step 5: We calculate $\tilde{\rho}(\gamma)_*$: $\pi_1(F_{\sigma_0}, *) \rightarrow \pi_1(F_{\sigma_i}, \tilde{\rho}(\gamma)(*))$.

Step 1: We determine $\pi_1(\mathbb{CP}^1 - SF, \sigma_0)$. If $\omega = \exp(2\pi i/5)$ then $\langle \omega \rangle = \mathbb{Z}/5\mathbb{Z}$ acts on $\mathbb{CP}^1 - SF$ freely. Let $T = (\mathbb{CP}^1 - SF)/\langle \omega \rangle$. We define four loops $\gamma_0, \gamma_1, \gamma_2, \gamma_3$ on T.

$$\gamma_0 \colon t \in [0, 5] \mapsto \begin{cases} 1 + (1/10) \exp(t\pi i) & 0 \le t \le 1 \\ (9/10)(2-t) + (1/\alpha - 1/10)(t-1) & 1 \le t \le 2 \\ (1/\alpha - 1/10) \exp(2(t-2)\pi i/5) & 2 \le t \le 3 \\ (1/\alpha - 1/10)\omega(4-t) + (9/10)\omega(t-3) & 3 \le t \le 4 \\ \omega + (1/10) \exp((7/5 - (t-4))\pi i) & 4 \le t \le 5 \end{cases}.$$

$$\gamma_1 : t \in [0, 3] \mapsto \begin{cases} 1 + (1/10) \exp(t\pi i) & 0 \le t \le 1 \\ (9/10) \exp(2(t-1)\pi i/5) & 1 \le t \le 2 \\ \omega + (1/10) \exp((7/5 - (t-2))\pi i) & 2 \le t \le 3 \end{cases}.$$

 $\gamma_2: t \in [0, 1] \mapsto (11/10) \exp(2t\pi i/5)$.

$$\gamma_3 \colon t \in [0, 3] \mapsto \begin{cases} (11/10)(1-t) + (\alpha + 1/10)t & 0 \le t \le 1 \\ (\alpha + 1/10) \exp(2(t-1)\pi i/5) & 1 \le t \le 2 \\ (\alpha + 1/10)\omega(3-t) + (11/10)\omega(t-2) & 2 \le t \le 3 \end{cases}.$$

Here $\alpha = \sqrt[5]{4}$.

LEMMA 5.1. $\pi_1(T, \sigma_0)$ is a free group generated by $[\gamma_0], [\gamma_1], [\gamma_2], [\gamma_3]$.

PROOF. T is homeomorphic to $C-\{0, 1, -1/4, -4\}$ by $z \mapsto z^5 : T \to C-\{0, 1, -1/4, -4\}$. T is homotopic to a bouquet of four S¹'s and hence $\pi_1(T)$ is a free group.

Let $p: \mathbb{CP}^1 - SF \to T$ be a projection. Since p is a covering map, we have the following lemma.

LEMMA 5.2. (1) $p_*: \pi_1(\mathbb{CP}^1 - SF, \sigma_0) \rightarrow \pi_1(T, \sigma_0)$ is injective.

(2) Let len: $\pi_1(T, \sigma_0) \to \mathbb{Z}/5\mathbb{Z}$: $[\prod_i \gamma_i^{\varepsilon_i}] \mapsto \sum_i \varepsilon_i \mod 5$ be a length map. Then the sequence

$$0 \longrightarrow \pi_1(\mathbf{CP^1} - SF, \sigma_0) \xrightarrow{p_*} \pi_1(T, \sigma_0) \xrightarrow{len} \mathbf{Z}/5\mathbf{Z} \longrightarrow 0$$

is exact.

Let πT be a free group of loops on T generated by γ_0 , γ_1 , γ_2 , and γ_3 . For any $[\gamma] \in \pi_1(t, \sigma_0)$ we take realization γ of $[\gamma]$ in πT .

Step 2: Consider the following equation.

$$H_t(x) = \left\{ \frac{(x-1)^4}{16t^5} - (x^4 + x^3 + x^2 + x + 1) \right\} \left\{ \frac{(x-1)^4}{4t^5} - (x^4 + x^3 + x^2 + x + 1) \right\}.$$

From Lemma 2.5, the solutions of $H_{\sigma}(x) = 0$ give all of branch loci of $h_{\sigma}: F_{\sigma} \to \mathbb{CP}^{1}$. From Lemma 2.6, $H_{\sigma}(x)$ has multiple solutions only if F_{σ} is a singular fiber. Hence

$$C_H = \{ \sigma \mid F_\sigma \text{ is a general fiber} \} = CP^1 - SF.$$

For $[\gamma] \in \pi_1(C_H, \sigma_0)$ we denote $\{x_j(t)\}_{j=1,2,\dots,8}$ by the solutions of $H_{\gamma(t)}(x) = 0$, where $\{x_j(0)\} = \{\overline{D}, \overline{C}, \overline{B}, \overline{A}, A, B, C, D\}$.

We regard $\{x_j(c)\}$ as a braid in $\mathbb{C}^\times = \mathbb{C}P^1 - \{0, \infty\}$. Notice that for any $[\gamma]$ we take a representation γ from πT such that neither 0 nor ∞ are solutions of $H_{\gamma(t)}(x) = 0$. Thus we define $\rho_T \colon \pi T \to B_8(\mathbb{C}^\times)$, where $B_8(\mathbb{C}^\times)$ is a braid group of degree 8 on \mathbb{C}^\times .

We illustrate it in the following way. For example if $\gamma = \gamma_1^{-1} \gamma_2$ then $\{x_j(c)\}$ is given by Figure 5.1.1 and we illustrate the braid by Figure 5.1.2. Let β_1, \dots, β_8 be braids on C^{\times} given by Figure 5.2.

We have numerical solutions of $H_t(x)$ when t runs along γ_0 , γ_1 , γ_2 , γ_3 and we obtain the following proposition.

PROPOSITION 5.3. If $\rho_T: \pi_1(T, \sigma_0) \to B_8$ is a braid representation then ρ_T is a homomorphism and

$$\begin{split} \rho_T \colon & \gamma_0 \longmapsto \beta_1^{-1} \beta_2 \beta_1 \beta_3^{-1} \beta_2^{-1} \beta_7^{-1} \beta_6 \beta_7 \beta_5^{-1} \beta_6^{-1} \beta_8 \beta_4^{-1} \beta_1 \beta_7 \\ & \gamma_1 \longmapsto \beta_1^{-2} \beta_3^{-1} \dot{\beta}_5^{-1} \beta_4^{-1} \beta_3^{-1} \beta_5^{-1} \beta_7^{-2} \beta_2^{-1} \beta_4^{-1} \beta_6^{-1} \\ & \gamma_2 \longmapsto \beta_1^{-2} \beta_3^{-1} \beta_5^{-1} \beta_4^{-1} \beta_3^{-1} \beta_5^{-1} \beta_7^{-2} \\ & \gamma_3 \longmapsto (\beta_1^{-1} \beta_3^{-1} \beta_5^{-1} \beta_7^{-1})^2 \ . \end{split}$$

For example, see Figure 5.3.

FIGURE 5.3

Step 3: We define a homomorphism $\rho_B: B_8(C^\times) \to \operatorname{Aut} \pi_1(C - D_{\sigma_0}, 0)$. Suppose a braid $\beta \in B_8$ is represented by a map $\beta: \{8 \text{ points}\} \times [0, 1] \to C^\times$. Let $\rho_\beta: C \times [0, 1] \to C$ be an extension of β , that is, ρ_β is continuous, $\rho_\beta(\cdot, t)$ is a homeomorphism, $\rho_\beta(0, t) = 0$, and $\rho_\beta(\beta(x, 0), t) = \beta(x, t)$ for $x \in \{8 \text{ points}\}$. ρ_β gives a map $C \to C: y \mapsto \rho_\beta(y, 1)$. $\rho_B(\beta) \in \operatorname{Aut}(C - \{8 \text{ points}\}, 0)$ denotes an induced map of this map. Similarly in Proposition 2.7, it is shown that this induced map $\rho_B(\beta)$ is well-defined and depends only on a braid class of β .

In our case it is sufficient to calculate ρ_B for $\beta_i \in B_8$. (Notice that β_1, \dots, β_8 do not generate B_8 .)

Proposition 5.4. ρ_B is a homomorphism and

$$\rho_{B}(\beta_{1}) \colon a \mapsto a \,, \quad b \mapsto b \,, \quad c \mapsto c \,, \quad d \mapsto d \,,$$

$$\bar{a} \mapsto \bar{a} \,, \quad \bar{b} \mapsto \bar{b} \,, \quad \bar{c} \mapsto \bar{c} d \bar{c}^{-1} \,, \quad \bar{d} \mapsto \bar{c} \,,$$

$$\rho_{B}(\beta_{2}) \colon a \mapsto a \,, \quad b \mapsto b \,, \quad c \mapsto c \,, \quad d \mapsto d \,,$$

$$\bar{a} \mapsto \bar{a} \,, \quad \bar{b} \mapsto b \bar{c} \bar{c} b^{-1} \,, \quad \bar{c} \mapsto \bar{b} \,, \quad \bar{d} \mapsto \bar{d} \,,$$

$$\rho_{B}(\beta_{3}) \colon a \mapsto a \,, \quad b \mapsto b \,, \quad c \mapsto c \,, \quad d \mapsto d \,,$$

$$\bar{a} \mapsto \bar{a} b \bar{a}^{-1} \,, \quad \bar{b} \mapsto \bar{a} \,, \quad \bar{c} \mapsto \bar{c} \,, \quad \bar{d} \mapsto \bar{d} \,,$$

$$\rho_{B}(\beta_{4}) \colon a \mapsto a \bar{a} a^{-1} \,, \quad b \mapsto b \,, \quad c \mapsto c \,, \quad d \mapsto d \,,$$

$$\bar{a} \mapsto a \,, \quad b \mapsto b \,, \quad \bar{c} \mapsto \bar{c} \,, \quad \bar{d} \mapsto \bar{d} \,,$$

$$\rho_{B}(\beta_{5}) \colon a \mapsto b \,, \quad b \mapsto b \,, \quad \bar{c} \mapsto \bar{c} \,, \quad \bar{d} \mapsto \bar{d} \,,$$

$$\rho_{B}(\beta_{6}) \colon a \mapsto a \,, \quad b \mapsto c \,, \quad c \mapsto c \,, \quad d \mapsto d \,,$$

$$\bar{a} \mapsto \bar{a} \,, \quad \bar{b} \mapsto \bar{b} \,, \quad \bar{c} \mapsto \bar{c} \,, \quad \bar{d} \mapsto \bar{d} \,,$$

$$\rho_{B}(\beta_{7}) \colon a \mapsto a \,, \quad b \mapsto b \,, \quad c \mapsto d \,, \quad d \mapsto d \,,$$

$$\bar{a} \mapsto \bar{a} \,, \quad \bar{b} \mapsto \bar{b} \,, \quad \bar{c} \mapsto \bar{c} \,, \quad \bar{d} \mapsto \bar{d} \,,$$

$$\rho_{B}(\beta_{8}) \colon a \mapsto a \,, \quad b \mapsto b \,, \quad c \mapsto c \,, \quad d \mapsto \bar{d} \,,$$

$$\bar{a} \mapsto \bar{a} \,, \quad \bar{b} \mapsto \bar{b} \,, \quad \bar{c} \mapsto \bar{c} \,, \quad \bar{d} \mapsto \bar{d} \,,$$

$$\bar{a} \mapsto \bar{a} \,, \quad \bar{b} \mapsto \bar{b} \,, \quad \bar{c} \mapsto \bar{c} \,, \quad \bar{d} \mapsto \bar{d} \,,$$

$$\bar{a} \mapsto \bar{a} \,, \quad \bar{b} \mapsto \bar{b} \,, \quad \bar{c} \mapsto \bar{c} \,, \quad \bar{d} \mapsto \bar{d} \,,$$

$$\bar{a} \mapsto \bar{a} \,, \quad \bar{b} \mapsto \bar{b} \,, \quad \bar{c} \mapsto \bar{c} \,, \quad \bar{d} \mapsto \bar{d} \,,$$

$$\bar{a} \mapsto \bar{a} \,, \quad \bar{b} \mapsto \bar{b} \,, \quad \bar{c} \mapsto \bar{c} \,, \quad \bar{d} \mapsto \bar{d} \,,$$

PROOF. The action of β_1 on \mathbb{CP}^1 is given by Figure 5.3, so $a, b, c, d, \bar{a}, \bar{b}$ do not move. \bar{d} becomes \bar{c} . \bar{c} becomes $\bar{c}\bar{d}\bar{c}^{-1}$. See Figure 5.4.

From the definition of ρ_T and ρ_B , we have

LEMMA 5.5. For $\gamma \in \pi T$, $\rho(\gamma)_* = \rho_B \circ \rho_T(\gamma)$.

Step 4: We calculate a monodromy map ρ_s of $h_{\sigma_0}^{-1}(0) = \{*_1, *_2, *_3, *_4\}$. (See Figure 4.2.)

FIGURE 5.4

PROPOSITION 5.6. Let ρ_S : $\pi_1(T, \sigma_0) \to \mathfrak{S}_4(h_{\sigma_0}^{-1}(0))$ be a monodromy map of $h_{\sigma_0}^{-1}(0)$, that is, ρ_S is a monodromy map of

$$f^{o}: V_{5}^{o} \rightarrow (CP^{1} - SF)/(Z/5Z)$$
,

where $V_5^o = \{x \mid \sigma \in \mathbb{CP}^1 - SF, x \in F_\sigma, h_\sigma(x) = [1:0]\}/\sim$, $[z_0:z_1:z_2:z_3] \sim [\omega z_0:\omega z_1:z_2:z_3]$, and $f^o([x]) = [f(x)]$. Then $\rho_S(\gamma_0) = (14)(2)(3)$, $\rho_S(\gamma_1) = \rho_S(\gamma_2) = \rho_S(\gamma_3) = (1243)$.

PROOF. We prove this proposition by the numerical analysis. Let $I_t(x) = g_t(0, x)$. If t runs along γ_j (j=1, 2, 3) then the permutations of the solutions of $I_t(x) = 0$ are given by (1243) in $C/\langle \omega \rangle$, where the numbers of the solutions are given in Figure 4.2. In case of $\rho_S(\gamma_0)$ we can show this lemma similarly.

Step 5: For * in $h_{\sigma_0}^{-1}(0)$, the diagram

commutes. And $\tilde{\rho}(\gamma)_* = h_{\sigma_j *}^{-1} \circ \rho_B \circ \rho_T \circ h_{\sigma_0 *}$ induces a homomorphism

$$\tilde{\rho}(\gamma)_* \colon \pi_1(F_{\sigma_0},\, \ast) \to \pi_1(F_{\sigma_j},\, \tilde{\rho}(\gamma)(\, \ast\,)) \;.$$

Immediately we have the following proposition.

PROPOSITION 5.7. For $\gamma \in \pi T$, $\rho_B \circ \rho_T(\gamma)(l_k) \in \pi_1(C_G, 0)_{\rho_S(\gamma)(1)}$, $\rho_B \circ \rho_T(\gamma)(m_k) \in \pi_1(C_G, 0)_{\rho_S(\gamma)(1)}$.

EXAMPLE. We calculate $\tilde{\rho}(\gamma_0)_*(l_1)$ in the following way. From Propositions 5.3, 5.4,

$$\begin{split} \rho_B \rho_T(\gamma_0) \colon & a \mapsto \bar{a}^{-1} b^{-1} db \bar{a} \;, \quad \bar{a} \mapsto \bar{c} d\bar{c}^{-1} \\ & b \mapsto \bar{c} \;, \qquad \qquad \bar{b} \mapsto \bar{c} d^{-1} \bar{c}^{-1} \bar{a}^{-1} b^{-1} cb \bar{a} \bar{c} d\bar{c}^{-1} \\ & c \mapsto \bar{c} \bar{a}^{-1} b \bar{a} \bar{c}^{-1} \;, \quad \bar{c} \mapsto \bar{c} d^{-1} \bar{c}^{-1} b \bar{c} d\bar{c}^{-1} \\ & d \mapsto \bar{c} \bar{a} \bar{c}^{-1} \;, \qquad \bar{d} \mapsto \bar{c} dc b a b^{-1} c^{-1} d^{-1} \bar{c}^{-1} \;. \end{split}$$

Notice that $\rho_S(\gamma_0)(*_1) = (*_4)$. Then, for $\beta = \rho_T(\gamma_0)$, $l_1 = b\bar{c}a$, we have

$$\rho_{B}(\beta)(l_{1}) = \bar{c}(\bar{c}\bar{d}^{-1}\bar{c}^{-1}\bar{b}\bar{c}\bar{d}\bar{c}^{-1})(\bar{a}^{-1}b^{-1}db\bar{a}),$$

$$\rho_G(\rho_B(\beta)(l_1))(*_4) = *_4$$
.

Hence $\rho_B(\beta)(l_1)$ can be lifted to $\pi_1(F_{\sigma_0}, *_4)$ and we have

$$\tilde{\rho}(\gamma_0)_*(l_1) = (\bar{c}\bar{c}\bar{d}^{-1}\bar{c}^{-1}\bar{b}\bar{c}\bar{d}\bar{c}^{-1}\bar{a}^{-1}b^{-1}db\bar{a})_4^4$$

$$\sim (a)_1^4(\bar{d}^{-1}\bar{c}^{-1}\bar{b}\bar{c}\bar{d}\bar{c}^{-1}\bar{a}^{-1}b^{-1}db\bar{a})_4^4(a^{-1})_4^4$$

$$\sim (m_1l_1^{-1}n_1m_3^{-1}l_3^{-1}n_2l_2n_3^{-1}l_3n_1^{-1})_1.$$

As mentioned in Lemma 5.2,

$$\pi_1(C_H, \sigma_0) \cong \ker(\operatorname{len}: \pi_1(T, \sigma_0) \to \mathbb{Z}/5\mathbb{Z})$$

$$\subset \pi_1(T, \sigma_0) \cong \pi T.$$

Then we determine the monodromy map

$$\begin{split} \left[\tilde{\rho}_{*}\right] &: \pi_{1}(C_{H},\sigma_{0}) \rightarrow \operatorname{Aut} \pi_{1} F_{\sigma_{0}} / \operatorname{Inn} \pi_{1} F_{\sigma_{0}} \cong \mathfrak{M}_{3} \;. \\ \text{Example.} \quad \operatorname{Let} \; \gamma = \gamma_{1}^{-1} \gamma_{2}, \; \operatorname{then} \; \rho_{T}(\gamma) = \beta_{2} \beta_{4} \beta_{6} \; \operatorname{and} \; \rho_{S}(\gamma) = (1)(2)(3)(4). \\ \rho_{B} \rho_{T}(\gamma) &: \quad a \mapsto a \bar{a} a^{-1} \;, \quad \bar{a} \mapsto a \\ b \mapsto c \;, \qquad \bar{b} \mapsto \bar{b} \bar{c} \bar{b}^{-1} \\ c \mapsto c b c^{-1} \;, \quad \bar{c} \mapsto \bar{b} \\ d \mapsto d \;, \qquad \bar{d} \mapsto \bar{d} \;. \\ \tilde{\rho}(\gamma)_{*} &: \quad (l_{1})_{1} = (b \bar{c} a)_{1} \mapsto (c \bar{b} a \bar{a} a^{-1})_{1} \\ &= (c \bar{b} a \bar{a} a)_{1} \\ &= (c b)_{1} (b \bar{c} a)_{1} (a \bar{c} \bar{b} a)_{1} (\bar{a} a)_{1} \\ &= (n_{1}^{-1} l_{1} m_{1} n_{2})_{1} \;. \end{split}$$

Similarly we have

$$\tilde{\rho}(\gamma)_{*}: \quad (l_{2})_{1} \mapsto (n_{2}^{-1}l_{2}m_{2}n_{3})_{1}$$

$$(l_{3})_{1} \mapsto (n_{3}^{-1}l_{3}n_{1})_{1}$$

$$(m_{1})_{1} \mapsto (n_{2}^{-1}m_{1}n_{2})_{1}$$

$$(m_{2})_{1} \mapsto (n_{3}^{-1}m_{2}n_{3})_{1}$$

$$(m_{3})_{1} \mapsto (n_{1}^{-1}m_{3}n_{1})_{1}.$$

REMARK. It is known that \mathfrak{M}_q is generated by Dehn twists along simple closed

curves on Σ_g . In our cases for some loops in $\pi_1(T, \sigma_0)$ we easily give their monodromy maps as products of Dehn twists. It is easy to check the following proposition.

PROPOSITION 5.8. Let N be an annulus, $D = \{z \in C \mid |z| < 3\}$ be a disk. Let $h: N \to D$ be a branched double covering map with two branch points ± 1 . If $\varphi_t: D \to D$, $t \in [0, 1]$ is a homeotopy on D such that

- (0) $\varphi_0 = id$,
- (1) $\varphi_t | \partial D = \text{id} \quad \text{for } t \in [0, 1],$
- (2) $\varphi_t |\{|z| < 2\}(z) = \exp(t\pi\sqrt{-1})z$,

then there exists a lifting $\tilde{\varphi}_1$ of φ_1 and $\tilde{\varphi}_1$ coincides with Dehn twist τ_{δ} along δ , where δ is a simple closed curve on N which is parallel to a boundary ∂N of N.

EXAMPLE. If $\gamma = \gamma_1^{-1} \gamma_2$ then $\rho_T(\gamma) = \beta_2 \beta_4 \beta_6$. We apply 5.8 to D_i 's in 4.1, (see Figures 4.4 and 5.1.1), and we conclude that

References

- [K] K. KODAIRA, On compact analytic surfaces, II, Ann. of Math., 79 (1963), 563-626.
- [M] Y. MATSUMOTO, private notes Nos. 1, 2, 3, 4, 5.
- [NU] Y. Namikawa and K. Ueno, The complete classification of fibers in pencils of curves of genus two, Manuscripta Math., 9 (1973), 143–186.
- [N] J. Nielsen, Surface transformation classes of algebraically finite type, (Collected Math. Papers vol. 2), Mat.-Fys. Medd. Danske Vid. Selsk., 21 (1944).

Present Address:

DEPARTMENT OF MATHEMATICS, MEIJI UNIVERSITY HIGASHIMITA, TAMA-KU, KAWASAKI 214, JAPAN