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1. Introduction.

Let V, be a Fermat type algebraic surface of degree n, that is,
Vo={[z0:21:2,:2,]€ CP? | z3 — 2z} — 2% +2z3=0} .

We consider a fibration f: ¥,—CP?! given by
z57 i z37t if zo=2z, and z,=z
f:[zo:zlzzz:za]r--»{[2 e o 2

Zo—Z2,:2Z,—23] otherwise.
07 21:22—23

A general fiber of f is a Riemannian surface of genus (n—2)(n—3)/2. If n<4, a
general fiber is a sphere or a torus and the singular fibers and their monodromies are
known. (See [K].). In the case n=35 the genus of a general fiber is 3. Matsumoto
calculates in his notes [M] the positions and homeomorphism-types of all singular
fibers appearing in the fibration f: ¥V,—CP! for general n. From his results we know
the conjugate class of the local monodromy for each singular fiber.

In this paper we suppose n=5 and we give an algorithm to calculate the global
monodromy map

[f,]: n,(CP'—SF, 6o) > My=Autn,Z,/Innn, %,
using numerical analysis of algebraic curves in CP2. Here
SF={o | F,=f"'(0) is a singular fiber} .
First we define a branched covering map
h,: F,— CP!

for each general fiber F,=f"1(0). Its branch loci are obtained as solutions of certain
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equations /;(x)=0. (Lemma 2.5.)
Let c: [0, 1]>CP! —SF be a continuous path. We define a homeomorphism
between fibers on the ends of this path as follows. Let 4, be a map defined by

h.: L, Fypy — [0, 1] x CP?
Fo 2 x> (8, hyyy(X)) .

Let p(c): [0, 1] x CP*—CP! be a homeotopy of the base space of h,,, preserving its
branch loci, that is, p(c) is continuous, p(c)(¢, ) is a homeomorphism, p(c)(0, -)=id,
and p(c)(, D)) = D.), Where D, is a set of branch loci of k. For any y in CP* we
consider a path y, on [0, 1] x CP! defined by

7y: [0,11-[0, 11X CP': 1 (1, p(c)(t, ¥)) -

We define a map (c) : Fg)— Fy1) by x> 7,(1), where y=h_,(x) and 7, is a lifting
of y, with its starting point x. §(c) is a homeomorphism.

Secondly we show that there exists an injection p, from n,(CP' — SF, 6,) to a free
group denoted by (T, g,) which is generated by four elements [y,], [y,]1, [7.1, [¥s],
where T=(CP'—SF)/{w), and w=exp(2n,/—1/5). (Lemma 5.2.) For any [y] in
n1(T, 0o), [v] is represented by a path y connecting o, and ¢;=w’s,, and j is a length
of y, which is defined in 5.2. Fix y,, 7, 7,, and y, as in section 5, and let =T be a free
group of loops on T generated by y;’s. For any [y]en,(T, 6,) we take a realization y
of [y] in =nT.

Finally we calculate §(y) for [y]en,(T, o,) in the following way.

(1) Notice that D, =D, .. (See 2.5.) p(y) determines a braid on C* = CP* — {0, 0},
where we may perturb y;’s such that any branch loci of 4., are not 0 nor co. Now we
define a homomorphism py: 27— Bg(C™), where Bg(C™) is a braid group of degree §
on C*. (Proposition 5.3.) Remark that oo is a branch locus if and only if 0 is also a
branch locus. (See Lemma 2.5.)

(2) Forabraid g of degree 8 on C*, it induces a homeomorphism on C*. Suppose
p is represented by a map

B: {8 points} x [0, 1]-C* : x, )—p(x,1).

Let pp: Cx[0, 1]-C be an extension of B, that is, p, is continuous, pp(*, 1) is a
homeomorphism, p4(0, #) =0, and py(x, t) = B(x, t) for x € {8 points}. The homotopy type
of pg depends only on a braid class of f. This extension induces an automorphism of

n,(C— {8 points}, 0). This automorphism only depends on a braid f and we define a
homomorphism

pp: Bg—Autzn,(C—{8 pts}, 0) .

If we take {8 pts} =D, then we have p(y), = pgo pr(y). (Proposition 5.5.)
(3) We calculate g(y): h;ol(O)—vh;jl(O). (Proposition 5.6.)
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(4) For * in h; '(0), the diagram

PV - <
nl(Fao—hﬂ_ol(Dao)’ *) - nl(Fd'j—hdjl(de), p('}))(*))

1 hdo# l hd'j*
P

n,(CP'—D, ,0) — n,(CP' D, 0)

commutes, where §(y) is a monodromy homeomorphism which will be given in section
2. And §(y),=hg 4 ° pg° pro h,,, induces a homomorphism

Pt T1(Foor %) 271 (F,p, p(7)(*)),

where A ji is a lifting with its starting point §(y)(*). Because this diagram commutes,
Ppe° Pro hyy(x) has a lifting for any xe n,(F, +o» *). In section 4, we have an algorithm to
get this lifting.

This algorithm gives a monodromy map of a fibration f. We have some remarks.

(Remark 1) y+> j(y)is not a homomorphism because j(y) is not an automorphism
on 7(F,,, *). p(y) only gives an element [5(y)] in Autrn,(F,,)/Inn=,(F,).

(Remark 2) p.(y), p(y), p(y) depend on a choice of y ;’s. Hence for any
[ylen (T, a5), p(y) depends on a choice of the realization y. But on the other hand
[y1— [A(y)] is well-defined and it is sufficient to calculate p for one realization y.

(Remark 3) This algorithm does not depend on the degree n of the surface V,.
Generally for any fibration from a smooth surface to a smooth line we can determine
its singular fibers and its global monodromy map using a similar algorithm.

(Remark 4) It is known that M, is generated by Dehn twists along simple closed
curves on 2. In our cases, for some loops on CP' — SF we easily give monodromy map
using a product of Dehn twists. See Proposition 5.8.

The author would like to thank Professor Yukio Matsumoto and a referee of this
paper for their suggestions and encouragement. The author is also grateful to his father
Hachiro Ahara for his supporting to use a graphic tool for figures in this paper.

2. Singular fibers and branched covering of genetal fibers.

In this section we quote some results from Matsumoto’s notes [M] and prepare

some fundamental properties.
In the sequel we regard CP' as Cu co. For 6e CP!, let F,=f"1(¢) be a ﬁber In

this section we suppose n>4.

PROPOSITION 2.1. F, is a singular fiber if and only if 6=0 or 6=00 or for some
j’k=19 25 o .an_zs

"= a “wﬁ—1)n_1
(1“w£—1)”_1 ’
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where w,_ , =exp(2rnif(n—1)).

COROLLARY 2.2. Ifn=>5 and F, is a singular fiber then =0 or 6 =0 or 6°= —1/4
or 1 or —4.

The proof is given by Matsumoto ([M]). Matsumoto determines the homeo-
morphism-type of all of singular fibers. In case n=35 we have

PROPOSITION 2.3. Let a=3/—4.

(1) Fy~F,~ Bouquet of 4 §%’s.

(2) Forj=0,1,2,3, 4, F,; is homeomorphic to the singular fiber shown in Figure 2.1.

(3) Forj=0,1,2,3,4, F, i~ F,- 1,4 is homeomorphic to the singular fiber shown in
Figure 2.2.

(4) If F, is a general fiber then F,~ X4 and F, is smooth.

FIGURE 2.1 FIGURE 2.2

For ¢ such that 6 #0 nor o # c0 we define a branched covering map
h,: F,~»CP': [z0:21:25:23]—[20:2,] .
LemMma 2.4. (1) Suppose ¢ +#0 and ¢ # .
F,{zo#0}={(x,¥) | 9.(x, )=0,x#1}u{(1,») | y" ' =0},
where g (x, y)=1—x"—y"+(y+(x—1)/o)". And h, is given by
h,: (x,Y)eF,Nn{zo#0} — x=2z,/z,€C.

Q) F,n{ze=0}=h; (). _
(3) If F, is a general fiber then h, is a branched covering map.

We leave the proof of this lemma to the readers.

LEMMA 2.5. (1) IfF, is a general fiber then the branch loci x=z,/z, of h, is given
by the solutions of 1;(x)=0, (j=1,2, - - -, n—2), where

+(=D"x"" 14 -+ x+1),

2mi
w”_1=exp n_l .
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(2) If the degree of I;(x) is less than n— 1 for some j then x= co is one of the branch
loci.

(3) For any branch locus, its monodromy group is Z|2Z.

Proor. (1) If x is a branch locus of 4, and x#1 and x# oo then

0
_ga(xa y)=0 s
Oy
-1 n—1
—ny"_1+n<y+x ) =0.
o

Therefore for some je {0, 1, - - -, n—2} we obtain

o x—1
y wn—l y+ .
g

From the assumption x#1, we have j#0 and

_ x—1
Y~ e

Substituting this for g, (x, y)=0,
—1 n .
1—x"—<_x.“_> (1—wi)=0,
(0,2 —1)o
(x_ l)n—-l
(=27 a"

The condition ¢#0 implies that h,([zo:2,:2,:23])=1 if and only if x=1, y"~ =0,
and hence x=1 is not a branch locus. It is easy to check that /;(1)#0.
(2) Since 6#0 and o # o0,

(—1)”“1(x—1){ +(—1)"(x"'1+"'+x+1)}=0,

hy ' (0)={(x,y) | y=x+1/o, —1—x"+(x+1/5)"=0}

and it is easy to show that the degree of /,(x) is less than n—1 for some j if and only
if —1—x"+(x+1/0)"=0 has multiple solutions. '

(3) It is sufficient to show that for any given x such that x#1 the equation
9.(x, ) =0 for y does not have any triple solutions. In fact,

0 , x—1
ga(xs J’)=0 = y=wf.—1(y+ )3
oy o

02 . x—1
Fg,(x,y)=0 = y=w{,-z(y+ )
y ag
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The condition n>4 and x# 1 implies that they have no common solutions for x, y.

LEMMA 2.6. (1) F, (6#0, 0% ) is a singular fiber if and only if 1;(x)=0 has
multiple solutions for some j.

(D IUnisodd l(x)=1,_;_,(x). If ;(x)=0 and 1;,(x)=0 have a common solution
then (i) j=j' or (ii) j'=n—j—1 with odd n.

PROOF. Let y;(x) be defined by

x—1
(0,21 —1o .
From Lemma 2.5, (—1)""'(x— 1)/;(x)=g,(x, y;(x)) holds. If F, has a singular point

(X0, Yo) € F; 0 {2z, #0}, then g, = 0g,/0x = dg,/0y =0 at (x,, y,). It follows that y, = y;(x,)
for some j and

J’j(x) =

go(x, ¥) = o(x —x0)* + B(x —x0)(y — ¥0) + (¥ — yo)* + (higher terms)
holds for some constant a, 8, y. Hence
9o(x, y;(x)) =a(x— x0)* + B(x— Xo)(y(x) —yi(xo))+ Y(y;(x) _}’j(xo))2
+ (higher terms)

d
E go(x, y;(x))

x=

= {2a(x—xo)+ﬂ{(y,-(x)—y,-(xo))+(x-xo)y}(x)}

+1(y j(x)—y,-(xo))y}(x)}

X=X
=0.
Hence we have

=0

X =X0

d
@

and x, is a multiple solution of /;(x)=0.
Suppose x, is a multiple solution of /;(x,)=0, then /;(xo)=1}(x,)=0 holds. If
L;(x)=(x—1)l;(x) then L;(x0)=L%(x0)=0.
(xo—1)"
- +(—1D)"(x5—1)=0,
(A—w 3y 1" (—1)*(x5—1)
n(x,—1)""1

(I—w;7,) 1o"

Lj(x0)=

L(xo)= +(—1ynxy ' =0,
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xp—xtl=xt—-1,
x37l=1,
Xo=Wg_y
for some k. L’(x,)=0 implies that

(1 —wﬁ—l)"_l =o_n
(1 _wrl_-jl)"—l

and hence F, is a singular fiber.

(2) Ifnisodd then (1-w, 4 )" '=(1—w, % iV~ and L j—1(x¥)=1;(x).

327

Assume that x is a common solution of l;(x)=0 and /;,(x) =0 and j#j’. Easily we

have
(x—1Dr1 . (x=1?
(-2 " (1-w,2) to"
Remark that since /;(1)#0, x#1 and we have

(-0, ' =1-05) !,

-0 =wf_(1-0,7)

for some k. Now it is. easy to show that

; j 1 i
1 —w,?,=2sin i exps| —— J )ni} .
n—1 2 n—1

And we have

sin v _ sin Y
n—1 n—1
. Vi
exp_ﬂ = exp-(_'_]i__)ﬁ .
n—1 n—1

From the assumption j#/’,
{j+j’=n-—1
—Jj=—j'4+2k (modn-—1).
We conclude that j+;j'=n—1 and #n is odd.

O

We characterize the monodromy map as follows. Let c¢: [0, 1]->CP!—SF be
a continuous path. We define a homeomorphism between F.o) and F,,,. Let
p(c): [0, 11 x CP'— CP"* be a homeotopy of the base space of h.s preserving its branch
loci, that s, p(c) is continuous, p(c)(z, -): CP'—»CP'isa homeomorphism, p(c)(0, ) =id,
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and p(c)(t, D o)) =Dy, Where D, is a set of branch loci of A, Remark that the
homotopy type of p(c) is uniquely determined. In fact,

PROPOSITION 2.7. (1) If po(c) and pi(c) are homeotopy of the base space of h.,
preserving their branch loci, then there exists a homotopy r,: CP*—CP*, se[0, 1] such

that ro=po(c)(1, *) and ry=p,(c)1, *).

(2) Let ¢, and c, be mutually homotopic paths on CP* — SF. Then there exists a
homotopy r,: CP*—-CP, se[0, 1] such that ro=po(co)(1, *) and ry=p(ci)(1, *) for
homeotopies po(co), pP1(cy)-

PROOF. (1) ry=po(c)(1, ) pole)(s, )™ " o pa(e)(s; *)

(2) Let ¢, be a homotopy between ¢, and c,. It is easy to construct a family of

homeotopies pi(c,) along c,. From (1), pi(c)(1, *) and py(c,)(1, +), are homotopic for
s=0, 1. This completes the proof. :

For any ye CP, let a path y, on [0, 1] x CP! be given by

7,1 [0, 11-[0, 1] x CP!: t—(t, p(o)(t, y) .
Let A, be a branched covering on [0, 1] x CP! defined by
h.: |, Fy—[0,1]x CP': x€ Fypy > (1, hy(x) ,
and §,: [0, 1]-L,F,, be a lifting of y, with its starting point x € h;g)(y). We define
p(c) by
P(0): Fyoy—Fory: x> 7,(1) .
Clearly the following proposition holds.

ProposITION 2.8. (1) p(c) is a homeomorphsim.
(2) If c(0)=c(1) then p(c) gives a monodromy of F,,, along a loop c.

3. Numerical analysis of 1-parameter equation.

Let f,(x) be a continuous family of polynomials of x with one parameter ¢. Assume
that for any ¢ the degree of f(x) is n. We define D, by

D,={t| f(x)=0 has a multiple root}

and let C,=CP'—D,.

Fix t,eC, as a base point. Let y be a loop in C, with a base point f, and [y]
be a homotopy class of y in n,(Cp, o). Let {x,(c), - - -, x,(c)}, (c€[0,1]) be a set
of continuous functions such that x;(¢), - - -, x,(c) are the solutions of f,,(x)=0.
(See (3.2).) Because p(0)=y(1)=ty, {x,(1), -, x,(1)} is a permutation p,(y) of
{x.(0), - - -, x,(0)}, where p is a monodromy map p,: n,(Cy, t5)—>S,. The problem we
want to solve in a special case is as follows.




TOPOLOGY OF FERMAT TYPE SURFACE 329

PROBLEM 3.1. For a given f(x), calculate the monodromy map p s

In this section we will give a partial answer using Newton approximation. The
following lemma is well-known.

LemMa 3.2. If y: [0, 11-C, is continuous then the solutions of Jye(x)=0 move
continuously.

For a polynomial f(x), let E,: CP'—CP! be a Newton approximation, that is,

o
Em={" dfGx)yax
o0 otherwise .

if x+ 00 and dfix)/dx#0

For a map E: CP'—CP! we define attracting points in CP! with respect to E.

DerFINITION 3.3. (1) peCP!(p+# )isan attracting point with respect to Eif and
only if there exist e>0 and 0 <k <1 such that
E —
|Ex)—pl _
|x—p|
if x satisfies | x—p|<e.

(2) o00eCP!is an attracting point with respect to E if and only if there exist e>0
and 1<x such that

B
|

for aﬁy x satisfying | x> 1/e.
From Dcﬁnitibn 3.3 it is easy to show the following lemma.

LeMMA 3.4.  Suppose that pe CP' (p# ) is an attracting point (if it exists). For
x such that | x—p|<e, we define a sequence {x:}iz0.1.2,... by xo=x and x;,, = E(x,).
Then the sequence {x;} converges to p.

LEMMA 3.5. Let f(x) be a polynomial of degree n and p is one of solutions of
S(x)=0. Then p is an attracting point of E e

PrOOF. Replace x with x—p. If
S =ax"+a,_x" "'+ +a,x*+a,x,
then

ax"+a,_x" 1+ +a,x?+a,x
nax""'+(n—Da,_x" 2+ +2a,x+a,

E/(x)=x—
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n—Dax" ' +({m—2)a,_x" "+ +a,x
nax" '+m—1a,_x" 2+ +2a,x+a, '

E(x)
X

The condition g, #0 implies that for x such that | x| is small

E® | -1 o1,
X 2n

Hence 0 is an attracting point with respect to E, and we complete the proof.
From Lemma 3.2, Lemma 3.4 and Lemma 3.5 we have

PROPOSITION 3.6. For a given loop y in C; there exists a partition of the interval
0=CO<CI < <Ck_1 <Ck=1

such that for any 0<l<k if we define a sequence {y}i=o.1.2.... by yo=2x;(¥(c;)) and
yis1=Egp,.,, (») for i=0,1,2, - - -, then the sequence {y:} converges to x;(y(c;+1))-

Using this proposition for given y we make a partition of [0, 1] and we calculate
xj(y(¢c;)) and the monodromy map p,.

4. General fiber F, .

Let 6, =1.1=11/10. In this section we consider a branched covering 4, : F, —CP,
which is given in Lemma 2.5, and characterize F, ~Z,.

The branch loci of h,, are given by solutions of

{ (x—=1)* (x—1)*

1653 453

In fact the solutions are {4, 4, B, B, C, C, D, D}, where A=+ —0.9256+0.3786i,

= —0.3800+0.9250i, C=0.2159+0.9764i, D =0.3246 +0.9458i.
If G(x)=4g,,(t, x) then we have Cc=CP*—{A4,4,B,B,C,C,D,D}. Let a, b, c, d,
a, b, ¢, and d in Figure 4.1 be generators of n,(Cg, 0). We number the solutions of
Go(x)=0 as in Figure 4.2. Using Proposition 3.6, we calculate numerically movement

"(x4+x3+x2+x+1)}{ —(x“+x3+x2+x+1)}=0-

N

X4 X

A 4
)
)

FIGURE 4.2
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Cd

x, O
x4 | /-(-\x, R
——

v
A

X3
FIGURE 4.3.1
N N
B
. xz
X4
— -
: %
FIGURE 4.3.2
N C A
7]
. x4
—_— _T -
X3
FIGURE 4.3.3
N 4}
d 1x;
) x, .‘E ’ x)
X3
FIGURE 4.3.4
of solutions of G,(x)=0 when ¢ runs along a, b, - - -, and so on. Figures 4.3.1, 4.3.2,

4.3.3, and 4.3.4 give some examples of movement of solutions of G,(x)=0.

REMARK. Since g,.(7, X)=g;,(t, X)=g,,(t, ¥), G(x)=0 if and only if G(x)=0.
Hence the movements of solutions for a, b, ¢, d are conjugations of those of a, b, c, d
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respectively.
And we have
P 11(Cg, 0>,
a-(19QG)  a—(19QR)03)
b—(12)(34) b— (13)(24)
c—(12)(34) c—(13)(24)
d—(D23)@)  d—1EI)A@).

Here for example (1)(23)(4) is an element of S, given by x; > x;, X5 X3, X3H> X5,
X4 Xg.

Let e,, e,, €5, e, be mutually disjoint simple closed curves on C; such that they
are homotopic to aa, bc, ¢b, dd, respectively in G;. (Figure 4.4.) Let D,, D,, D5, D,

n

FIGURE 4.4

be'mutually disjoint open disks in CP? such that they bound e, e,, e3, e, respectively
and let D;:=h; (D, for i=1, 2, 3, 4. Suppose CP' —| ), D, contains 0. Observing the
monodromy map p; we have the following proposition.

PROPOSITION 4.1. (1) pg(a@)=pg(bc) = pa(ch) = pe(dd) =(1)(2)(3)4).
2 ha_ol(CPI_UiDi)z(CPl_UiDi)x {x1, X2, X3, X4}
(3) Let dDi (j=1, 2, 3, 4) be components of d(h,,'(D;)) defined by

oDi=0a(h; (D)) N ((CP* =), D)) x {x;}) -
Then
D,:=h;}(D,)=DilIN{*1ID}
D, :=h;}D;)=Ni?[IN3*
By:=h (D) =N LINF®
Dy:=h;(Dy)=NZ11Di11D2,
where (a) D! is a disk such that h,(D{)=D; and 0D} =0D4, (b) N is an annulus

w
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\ 12/
N2

Ng‘ , / *
N N

) Nl3
O
CJ C J K /

-FIGURE 4.5

such that h, (N¥*)=D, and ON¥=aDi[[oD*.
(4) F, ~(CP'—|),D,)x {4 pts}11(11: D)~ Z5. (See Figure 4.5.)

Next we fix generators of n,(F,,, *,), where #; is given by *;=0xx;e(CP'—
U, D) x{x;} (j=1, 2,3, 4). We define 7,(Cg, 0); by

n1(Cg, 0);= {ren,(Cq,0) | PG(?)(xj)':xj} .

yen,(Cg, 0); if and only if y can be lifted to n,(F,,, *;). We denote the lifting map by

h;oalk: 7,(Cg, 0); — Ty (Fops *j) .

PROPOSITION 4.2. If I, =b¢a, I,=abb, l;=édc, m,=acha, m,=>bbcb, m;=cddc
then

) 1, L, I, my, my,, my are contained in n,(Cg, 0),.

(2) Their liftings to n\(F,,, *,) are generators of m,(Fs,, *,).

ProofF. (1) For example, pg(l,)=psbca)=(12)(34)(13)(24)(14)=(1)(23)4)
hence-/, e n,(Cg, 0);. We can prove the proposition similarly in the other cases.

(2) To prove 4.2(2) we prepare some notations and Lemma 4.3.

For yen,(Cg, 0) and for j=1, 2, 3, 4 we denote a lifting of y with its starting point
0 x x;€(CP'—| ), D;) x {x;} and with its end point 0 x x; by (y)}. (We may denote (y)}
by (y);) Then we have following lemma.

LeMMA 4.3. (1) (@);=(0)2, (@)3=(0)3, (@),=(0)2, (2)3=(0)s.

(2) @)1=(0);, (d)a=(0),, (3)1 =(0)s, (3)4=(0)4.

(3) (az)j=(bz)j=(cz)j=(dz)j=(d2)j=(52)j=(52)j=(a2)j=(0)j’ Jorj=1,2,3, 4.

(4) (dcbaabed);=(0);for j=1,2,3, 4.

Proor. (1) (2) For instance, (@), and (@), are homotopic to zero because they
are represented by loops contained in D32. (3) Since any monodromy of a, - --,d is

Z/2Z, any lifting of a2, - - -, d*> bounds a disk. (4) dcbaabéd bounds a neighborhood of
oo in Cg then its lifting is also zero.

To show Proposition 4.2(2) it is sufficient to show that for any yen,(Cg, 0)4, (7)1
can be written as a product of (}),, (m), (k=1, 2, 3). We leave the proof to the readers.




334 KAZUSHI AHARA

PROPOSITION 4.4. (1) (bc),=(m{*{ m,),.

(2) (a@a),=(m;'1;'m,),.

(3) (@) =(Usm3'13'my),.

4 If ny=bc, ny=aa, ny=ch then (nzn,n,), =(0),.

ProoF. We only prove (1) and leave (2) (3) (4) to the readers.
(lym {11 'my),(cb), = ((bca)(abca)(ach)(cddc)(ch)),
=(bcbbeddb),
=(b)1(cb)3(bcdd)3(b);.
=(b)i(cbaabcdd)3(b)}

=®)10);®);=0), . | O

5. Monodromy action on IR,.

In this section we calculate monodromy of f: V5 CP!. Let SF be
SF={oceCP' | F, is a singular fiber} .
We denote a monodromy map by
[P,]: ny(CP'—SF, 6,)»M,,

where M5 is a mapping class group of X3~ F, , that is,

[ {i}d

W, =Homeo , X,/Isotopy
~Aut(n,Z,)/Inn(n, Z,) .

The latter equivalent is proved by Nielsen [N].
We calculate the monodromy map in the followmg 5 steps
Step 1: We fix generators [y;] of n,(T, o).
Step 2: We calculate p,: np— Bg(C>).
Step 3: We calculate pg: Bg(C*)—Autn,(C— D, , 0) and show P()=pp° pT(y)
Step 4: We calculate ps: nT—5(y) € S4(h,. 1 (0)).
Step 5: We calculate g¢y), : n,(F,,, *)—>n,(F, a0 P(Y)(*)).

Step 1: We determine n,(CP' — SF, a,). If w=exp(2ni/5) then {w)=Z/5Z acts on
CP' — SF freely. Let T=(CP! — SF)/{w). We define four loops Yos V1> Y2, Y3 on T.

(14 (1/10) exp(zmi) 0<r<l1
9/10)02—8)+(1/x—1/10)(z—1) I<t<2
Yo: te[0, 5]—{ (1/a—1/10) exp(2(t —2)ri/5) 2<t<3

(1/a—=1/10)w(d— 1)+ (9/10)w(t—3) 3<i1<4
|+ (1/10) exp((7/5 — (t— A)mi) 4<1<5.
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1+ (1/10) exp(¢mi) 0<t<l
y.: te[O0, 3]+—>{(9/10)exp(2(t—1)1ti/5) 1<t<2
w+(1/10)exp((7/5—(—2))mi) 2<t<3.

y,: te[0, 17— (11/10) exp(2¢mi/S) .

(11/10)(1 — ) + (2 +1/10)z 0<t<l1
y3: te[0, 3]1——»‘ (o + 1/10) exp(2(¢t — )mi/S) 1<t<2

(@+1/10)0(B— 1)+ (11/10)0(t—2) 2<1<3.

Here oc={/—4—.

LEMMA 5.1. =n,(T, 6,) is a free group generated by [y,], [v1], [v2], L3l

ProoF. T is homeomorphic to C—{0,1, —1/4, —4} by z+—z°: T-C—{0, 1,
—1/4, —4}. T is homotopic to a bouquet of four S*’s and hence =,(7T) is a free group.

Let p: CP' — SF— T be a projection. Since p is a covering map, we have the follow-
ing lemma.

LemMa 5.2. (1) p,: n,(CP'—SF, 6o)—n,(T, 6,) is injective.
(2) Let len: ny(T, 00)—>Z/5Z: [[],7#1—).,;& mod 5 be a length map. Then the
sequence '

len

. 0 —— n,(CP' —SF, 65) -2*» n (T, 05) —— Z|SZ —0

is exact.

Let nT be a free group of loops on T generated by y,, 74, 72, and y;. For any
[yle=(¢, 0y) we take realization y of [y] in nT.

Step 2: Consider the following equation.

(x—1*

—1)*
Ht(x)={ 16t5 _(x—z_

4¢3

From Lemma 2.5, the solutions of H,(x)=0 give all of branch loci of 4,: F,—CP".
From Lemma 2.6, H,(x) has multiple solutions only if F, is a singular fiber. Hence

Cy={o | F, is a general fiber} = CP' — SF .

For [y]en,(Cy, 0,) we denote {x;(t)};=1,2,..,s by the solutions of H,(x)=0, where
{x;(000}={D,C, B, 4, A, B, C, D}. »

We regard {x;(c)} as a braid in C* =CP"'—{0, co}. Notice that for any [y] we
take a representation y from n7 such that neither 0 nor co are solutions of H,,(x)=0.

Thus we define p;: nT— Bg(C*), where Bg(C>) is a braid group of degree 8 on C*.

——(x4+x3+x2+x+1)}{ —(x4+x3+x2+x+1)}.
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We illustrate it in the following way. For example if y=y] 1y, then {x;(c)} is given
by Figure 5.1.1 and we illustrate the braid by Figure 5.1.2. Let 8, - - -, Bs be braids
on C* given by Figure 5.2.

L

o2 [N

-0

FIGURE 5.1.1 FIGURE 5.1.2
1 i i+l 8 1 2 ceee .7' 8
( AVmra
FIGURE 5.2

We have numerical solutions of H,(x) when ¢ runs along y,, y,, ¥,, 73 and we ob-
tain the following proposition.

PROPOSITION 5.3. If py: mny(T, 00)—Bg is a braid representation then p; is a
homomorphism and

Pr: Yot Bi 'BaBiB3 B3 By BeBB5 Bs *BeBi Bsbs
yi> BT 25185 1By B5 1 B5 By B3 1By 1 Bs
v2B1 283 'Bs 1By B3 Bs B2
yst> (BT B3 B5 b7 1) .

For example, see Figure 5.3.

¥

| ©

FIGURE 5.3
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Step 3: We define a homomorphism pg: Bg(C*)—Autn(C—D,,, 0). Suppose a braid
Be Bg is represented by a map f: {8 points} x [0, 1]->C*. Let pg: Cx [0, 1]-C be
an extension of B, that is, pg is continuous, py(+, ¢) is a homeomorphism, p4(0, #)=0,
and pg(B(x,0), £)=pP(x,t) for xe{8 points}. p, gives a map C—C: y+>pg(y, 1).
ps(B) € Aut(C— {8 points}, 0) denotes an induced map of this map. Similarly in Pro-
position 2.7, it is shown that this induced map pg(B) is well-defined and depends
only on a braid class of B.

In our case it is sufficient to calculate py for B,e Bs. (Notice that B4, - - -, fg do
not generate Byg.)

PROPOSITION 5.4. pp is a homomorphism and
ps(B): ara, b—b, c—c, d—d,
a—a, b—b, c—cde™', d—e,
pg(By): a—a, b—b, c—c, d—d,

ar—a, b—bch~', ¢—b, d—d,
pg(B3): ar—a, b—b, c—c, d—d,
ar—aba ', b—a, ¢—c¢, d—d,
ps(B): araaa ', b—b, c—c, d—d,
ara, b—b, ¢—é, d—d,
ps(Bs): a—b, b—bab~', c—c, d—d,
a—a, b—b, ¢—c, d—d,
ps(Bs): ar—a, brsc, crchbc™!, d—d,
a—a, b—b, ¢—c, d—d,
ps(B): a—a, b—b, c—d, d—dcd?',
a—a, b—b, c—c¢, d—d,
ps(Bs): a—a, b—b, c—c, d—d,
a—a, b—b, ¢—¢, d—ddd .
ProoF. The action of §, on CP! is given by Figure 5.3, so a, b, ¢, d, a, b do not
move. d becomes ¢. ¢ becomes ¢dc 1. See Figure 5.4. O
From the definition of p; and pg, we have
LEMMA 5.5. For yenT, p(y),=pp°pr(?).

Step 4: We calculate a monodromy map pg of h;'(0)={=*,, *,, *3, *,}. (See
Figure 4.2.) _ :




338 KAZUSHI AHARA

FIGURE 5.4

PROPOSITION 5.6. Let ps: ny(T, 00)— S4(h,,'(0)) be a monodromy map of h;}(0),
‘that is, pg is a monodromy map of
f°: Vs—>(CP'-SF)/(Z/5Z),
where V3={x|oe CP'—SF, x€F,, hy(x)=[1:01}/~, [2o:21:2;: 23] ~[®zo: w2z, :2,"
z3), and f°([x])=[f(x)]. Then ps(y0)=(19)(2)3), ps(y1) =ps(r2) = ps(y3) = (1243).

PRrROOF. We prove this proposition by the numerical analysis. Let I(x)=g,(0, x).
If £ runs along y; (j=1, 2, 3) then the permutations of the solutions of I,(x)=0 are given
by (1243) in C/<w}, where the numbers of the solutions are given in Figure 4.2. In case
of ps(ye) we can show this lemma similarly. O

Step 5: For * in h; '(0), the diagram

_4 A _ .
T (Foo—hey (Do), ) ——  wy(Fy,—hg M (D,), P(y)(*))
lhﬂo* 1"0*
Py
RI(CPI _Dd'o’ 0) e ﬂl(cpl —Dﬂ'j’ 0)

commutes. And 5(y), = h;ji o pgo proh,,, induces a homomorphism
Pyt T1(Fop *) = 1y (Fy s p(y)(*))
Immediately we have the following proposition.

PRrOPOSITION 5.7. For yenT, pgopr(y)(L)€n,(Cg, 0)osinary PrePT(V)(mMy) e
71(Co> 0)p5n01)-

ExaMpPLE. We calculate 5(y,),(/;) in the following way. From Propositions 5.3,
5.4,

pepr(Vo): ar—a ‘b 'dba, avr>édé?!
b—¢, béed ¢ 'a b chacde 1!
c—céa~lbac!, e éed e bede !

d—cac™!, d— édcbab™'c™'d ¢ 1,




TOPOLOGY OF FERMAT TYPE SURFACE 339

Notice that pg(yo)(*;) =(*,). Then, for B=p1(y,), I, =bca, we have
pe(P)(l)=c(cd~ ¢~ *bede YN a b~ tdba) ,
Pe(Pe(BYI))(*0) = %4 .
Hence pg(B)(!,) can be lifted to =,(F,,,
P(ro) () =(ced ¢ *bedc~*a~ b~ 'dba);
~(@)4(@ ‘e bede1a b dba)d(a~ )}

*,) and we have

-1 -17-1 -17 -1
~(myly “nymy Tl "nylony Tlang ),
As mentioned in Lemma 5.2,

(Cy, o) ker(len: n (T, 6,)—>Z/5Z)
cn,(T,o0)=nT.
Then we determine the monodromy map
[A,]: 7i(Cy, 0p)—>Autn, F, [Innn, F, =M, .
EXAMPLE. Let y=7y1 'y, then p(y)=B,B4B¢ and ps(y)=(1)(2)(3)(4).
pepr(y): a—aaa”', ar—a
b—c, b—bch!
ct—»ébc'l , C—b
d—d, d—d.
PWa: () =(bCa), > (chaaa™),
=(cbaaa),
= (cb),(béa),(acha),(aa),
=(n; *lymn,), .
Similarly we have
Py (D)1 (ny Hymyns),
(l3)1 > (n3 '13ny),
(my)y — (n3 'myny),
(m2)1 > (n3 'myny),
(m3) > (ny *msn,y), .

REMARK. It is known that 9, is generated by Dehn twists along simple closed
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curves on X,. In our cases for some loops in n,(T, 0,) we easily give their monodromy
maps as products of Dehn twists. It is easy to check the following proposition.

PROPOSITION 5.8. Let N be an annulus, D={ze C||z| <3} be a disk. Let h: N—»D
be a branched double covering map with two branch points +1. If ¢,: D—-D, te[O0, 1] is
a homeotopy on D such that

©0) @o=id,

1) qo,|6D=id for te[0,1],

2 ol{lz|<2}(z)=exp(tny/— 1)z,
then there exists a lifting ¢, of ¢, and ¢, coincides with Dehn twist t; along 6, where ¢ is
a simple closed curve on N which is parallel to a boundary ON of N.

ExampLE. If y=y 'y, then p;(y)=PB,B.Bs. We apply 5.8 to D;s in 4.1, (see
Figures 4.4 and 5.1.1), and we conclude that

[ﬁ(y)] =Tm;Tm2¥ny Ty Tns -
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