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Let $M$ be a compact $C^{\infty}$ -manifold with $n=\dim M\geq 3$ . For any Riemannian metric
$g$ on $M$, we denote its scalar curvature by $S_{g}$ , and its volume form by $dV_{g}$ . Yamabe
[9] considered the problem of finding a metric which minimizes the functional
$I(g):=\int_{M}S_{g}dV_{g}/(\int_{M}dV_{g})^{\langle n-2)/n}$ in a given conformal class. Such a metric is called a
Yamabe metric and has constant scalar curvature. This problem was solved completely
by Schoen [7], and we know that there is a Yamabe metric in any $\infty nformal$ class.
Conversely, a metric $g$ with constant scalar curvature is a Yamabe metric, if $S_{g}\leq 0$ or
$g$ is an Einstein metric ([5]). The Yamabe metrics conformal to $S^{1}(r)\times S^{n-1}(1)$ are also
known in explicit form ([2], [3], [8]).

In this paper, we give a sufficient condition for a metric to be a Yamabe metric,
and examples of non-Einstein Yamabe metrics with positive scalar curvature.

THEOREM. Let $g$ be a Yamabe metric on a compact $C^{\infty}$-manifold $M$ with $S_{g}>0,$ $h$

a metric on $M$ with constanf scalar curvature, and $\varphi$ a diffeomorphism of $M$ such that
$dV_{\varphi h}=\gamma dV_{g}$ for some number $\gamma$ . If $\varphi^{*}h\leq(S_{g}/S_{h})g$ , then $h$ is also a Yamabe metric.
Moreover, $\iota f\varphi^{*}h<(S_{g}/S_{h})g$, then $h$ is a unique Yamabe metric (up to a homothety) in the
conformal class $[h]$ of $h$ .

REMARK. For any two metrics $g$ and $h$ , there is a diffeomorphism $\varphi$ such that
$dV_{\varphi h}=\gamma dV_{g}$ for some $\gamma$ (see [4]).

$PR\infty F$ . It suffices to show the case when $\varphi=id$. For any metric $\kappa=u^{4/(n-2)}h\in[h]$ ,
we have

$I(h)=\frac{\int_{M}(a_{n}|\nabla_{h}u|^{2}+S_{h}u^{2})dV_{h}}{(\int_{M}u^{p}dV_{h})^{2/p}}$ ,
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where $a_{n}=4(n-1)/(n-2)$ and $p=2n/(n-2)$ . If $h\leq(S_{g}/S_{h})g$ , then

$I(h)=\frac{\int_{M}(a_{n}|\nabla_{\hslash}u|^{2}+S_{\hslash}u^{2})\gamma dV_{g}}{(\int_{M}u^{p}\gamma dV_{g})^{2/p}}$

$\geq\gamma^{1-2\prime p}\frac{S_{h}}{S_{g}}\frac{\int_{M}(a_{n}|\nabla_{g}u|^{2}+S_{g}u^{2})dV_{g}}{(\int_{M}u^{p}dV_{g})^{2\prime p}}=\gamma^{1-2/p}\frac{S_{\hslash}}{S_{g}}I(u^{p-2}g)$

$\geq\gamma^{1-2/p}\frac{S_{h}}{S_{g}}I(g)=I(h)$ .

Therefore $h$ minimizes $I|_{[h]}$ or $h$ is a Yamabe metric. Moreover, if $h<(S_{g}/S_{h})g$, then
$I(\emptyset=I(h)$ holds only when $u$ is a constant, namely, $h$ is a unique Yamabe metric in
$[h]$ . q.e. $d$ .

Our result applies typically in the following

COROLLARY. Let $\{g_{t}|T\leq t\leq T^{\prime}\}$ be a variation ofRiemannian metrics on $M$ with
constant scalar curvature satisfying the conditions: (1) $g_{T}$ is a Yamabe metric; (2) $S>0$
for $t<T^{\prime}$ ; and(3) $S_{g\tau},\equiv 0$ . Then $g_{t}$ is also a Yamabemetricfor any tsufficiently close to

$ltT^{\prime}$ .
$PR\infty F$ . By the proof of Moser [4, Theorem], it is clear that there is a family

$\{\varphi_{t}|T\leq t\leq T^{\prime}\}$ of diffeomorphisms, which is continuous with respect to the parameter
$t$, such that $dV_{\varphi*^{*}g_{t}}=\gamma_{t}dV_{g}$ for some $\gamma_{t}$ . Therefore the assertion above follows from our
theorem. q.e. $d$ .

Now, let us give such examples with $\varphi=id$.
EXAMPLE 1. Let $\pi:(M, g)\rightarrow(B, g)$ be a Riemannian submersion with totally

geodesic fibers, $g_{t}$ the canonical variation of $g$ , and $A$ the O’Neill tensor (see [1], [6],
etc.). Suppose $g_{T}$ is Einstein for some $T,$ $S_{g_{T}}>0$ and $A\not\equiv O$ . Then $g_{t}$ is a Yamabe metric
on $M$ for any $t\geq S_{\delta}/|A|^{2}-T$.

EXAMPLE 2. Let $\{X_{1}, X_{2}, X_{3}\}$ be a left invariant orthonormal frame of the
standard metric on $S^{3}=SU(2)$ . For any $t\geq s\geq 1$ , define a metric $g_{s,\iota}$ on $S^{3}$ by

$g_{s.t}(X_{1}, X_{1})=1$ , $g_{s,t}(X_{2}, X_{2})=s$ , $g_{s,t}(X_{3}, X_{3})=t$ ,

$g_{s.t}(X_{t}, X_{j})=0$ for $i\neq j$ .
Then $S_{g..t}=2\{2(s+t+st)-(1+s^{2}+t^{2})\}/st$, and $g_{s.t}$ is a Yamabe metric if $t\geq s+\sqrt{s}+1$ .
We can also construct Yamabe metrics ofthis type on other simple compact Lie groups.
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EXAMPLE 3. Let $g_{t}$ be a Yamabe metric on $S^{n-1}$ given in Example 1 with a Hopf
fibration. $\pi:S^{2m+1}\rightarrow CP^{m}(t\geq 2m+1),$ $\pi:S^{4q+3}\rightarrow HP^{q}(t\geq(4q+5)/3)$ or $\pi:S^{15}\rightarrow S^{8}$

$(t\geq 3)$ . Then $r^{2}d\theta^{2}+g_{t}$ is a Yamabe metric on $S^{1}\times S^{n-1}$ if $r\leq 1/\sqrt{n-2}$ . The same
assertion holds also for $r^{2}d\theta^{2}+g_{s,t}$ , where $g_{s.t}$ is a Yamabe metric on $S^{3}$ given in Example
2.

The author would like to thank Professors O. Kobayashi and Y. Sakane for helpful
advice.
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