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Abstract. We shall determine their levels of some special classes of sets of strings such as {X < Z*:
P[X]#NP[X]} in the Kleene arithmetical hierarchy on subclasses of #(Z*). We shall show that such
several classes are proper IT12, that is, they are I1{ but not 9.

Introduction.

We consider classification of some special classes of sets of strings such as
{X< Z*: P[X]#NP[X]}. That is, we determine their levels in the Kleene arithmetical
hierarchy on subclasses of 2(Z*). At first glance, this class is X3, but by using an
NP[ X ]-complete set, it is seen that this class is I1J. For the notions and notations used
above, see the following sections.

The classes we shall treat with are the following, where X ranges over subsets of 2 *:

E0={X : P[X]#NP[X]},

El={X:coNP[X]#NP[X]},

E2={X : DEXT[X]#NEXT[X]},

E3={X : coNEXT[X]#NEXT[X]},

E4={X:P[X]#PH[X]},

E5={X :NP[X]#PH[X]},

E6={X :NP[X]#PSPACE[X]},

E7={X :NP[X]#EXPTIME[X]},

E8={X : PH[X]#PSPACE[X]}, and

E9={X : PSPACE[X]#EXPTIME[X1]}.

Their inclusion relation is as follows: E1 c E0 ([BGS 75]), here — means the proper
inclusion. E3 = E2 (it can be shown that there exists a recursive oracle 4 such that
DEXT[A] #NEXT[A]=coNEXT[4]). And E2 < E0 ([BWM 82]). Since NP[X] =
PH[X] < PSPACE[X] < EXPTIME[X], we have ES, EEcE6<E7, and E9 < E7.
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Since P[X]=NP[X] (resp. coNP[X]=NP[X]) implies PLX]=PH[ X] (resp. NP[X] =
PH[X]), we have EO=E4 and E1=ES. Clearly, ES#E7. Also, E6#E0 ((BDG 90;
p. 156]). All Ei’s are not empty. For example, for E9+ ¢, see e.g., [Orp 83], though
Orponen gives a stronger result. As seen below, they are all co-meager. Further, it is
well-known that the complement —EOQ is not empty ([BGS 75]), and also —E7 is not
empty ([De 76], [He 84]). Therefore, all E#’s are not empty. These facts are needed
below in this paper.

SUMMARY: El1UE8cE6cE7=E1UESUE9,
El=E5, E6cE0=F4,
E3cE2cEQ.

The aim of this paper is to show that all classes Ei’s are IT? but not X g, in fact
not even F,.

§1. Preliminaries.

We use standard notations for structural theory of complexity and recursion theory
(see, e.g., [BDG 88], [BDG 90], and [Ro 67]). Let Z= {0, 1} be the alphabet, and >*
the set of all finite strings over ¥ with empty string A. The elements of * can be
enumerated as follows:

4,0,1,00,01, 10, 11, 000, 001, - - -.

We denote the (n+ 1)st string in the enumeration by z,. For X < X'*, sometimes X is
identified with the characteristic function X (m=1if z,e X, and =0 otherwise. w, x, ¥,
and z denote strings. Let N be the set of all natural numbers. i, j, k, m, and n denote
members of N. Let 2(Z*) be the class of all subsets of Z*. X and Y denote members
of #(Z*), and with some exceptions we call classes subsets of P(Z*). As usual, we
regard it as the Cantor space. That is, let w be the string w(O)w(1)- - -w(n—1), where
each w(i) is 0 or 1. Then, the basic open sets are {U,, : we X *}, where U,,={X : X(i)=w(i)
fori=0,1,---,n—1}.
Let E be a class, that is Ec #(Z*). E is IT? if it can be expressed in the form

XeE < VydzR(X, y, 2),

where R(X, y, z) is a recursive relation ([Ro 67; §15], though Rogers uses the notation
T instead of I19). Similarly for IT? (k>0). And E is = 5§ when it is of the dual form:

XeE < 3yVzR(X, y, 2).

Similarly for 2 (k>0). E is F, if it is a countable union of closed sets, and E is G; if
its complement —E (=(Z*)—E) is F,. Here we temporaily use the word ‘sets’ for
subsets of (2 *) according to the traditional usage. Clearly, each X7 set is F, and each IT?
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set is G, but not vice versa.

E is-dense if it intersects every basic open set. E is nowhere dense if every basic
open set contains a basic open set which is disjoint with E. E is meager if it is a
countable union of nowhere dense sets. E is co-meager if 7E is meager. By the Baire
Category Theorem, in £(X'*) every co-meager set is not meager.

The special complexity classes such as P[X], NP[ X], etc. occurred in the definitions
of our Ei’s will be explained in §3. For further information about these classes, see,
e.g., the textbooks: [BDG 88] and [BDG 90].

Prior to our results, similar results (but different from ours) appeared in [Ha 77]
and [Gr 80]. For example, Grant showed that {ie N : ¢, is total and P[¢;]#NP[¢,]}
is IT9-complete, where {¢,:ie N} is a standard enumeration of the partial recursive
functions, and IT? is one of the second levels in the Kleene arithmetical hierarchy on
subsets of N (see [Ro 67; §14]; though Rogers uses IT, instead of IT3).

§2. The main theorem.

Let C[~] be a class of oracle-dependent sets. C[ ~] is recursively presentable if
there is an enumeration of oracle Turing machines {Mgy, M7, - -+, M, - - -} such that
for every oracle X

(1) C[X]={L(M}): keN},

where L(M) denotes the set of all strings accepted by the machine M, and (2) the relation
“M¥ accepts y” is recursive with respect to k, y, and oracle X. (We call (2) the recursive
condition for the enumeration {M; : ke N}.)

This is the relativized version of recursive presentability in [Sch 82].

An oracle-dependent set H(X) is C[X]-complete with respect to p-m-reduction
[resp. linear reduction] if H(X)e C[X] and for each LeC[X] there is a function
S Z*—X* (independent of X) computable in polynomial time [resp. in linear time]
of the length of the input such that for every y

yeL < f(y)e H(X).

Since H(X) is in C[X], the relation “ye H(X)” is recursive with respect to y and X.
For C[X], let coC[X]={L: " LeC[X]}, where "L=X*—L. C[X] is polynomially
closed [resp. linearly closed] if f~'(L)e C[X] for every LeC[X] and for every f
computable in polynomial time [resp. in linear time].

Let X = Y mean that the symmetric difference X A Y is finite. E is closed under finite
variation if X eE <> YeE whenever X =Y. Then, clearly we have

LEMMA 2.1. If E is closed under finite variation, then so is 7 E. And further, if
E is not empty, then it is dense. O

THEOREM 1. Let B[~] and C[~] be recursively presentable classes, and let
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E={X:B[X]#C[X]}. Suppose that the following conditions are satisfied:

(@) (al) B[X] < C[X] for all X, or (a2) B[X] =coC[X] for all X,

(b) there exists a C[X]-complete set H(X) with respect to either (bl) p-m-reduction
or (b2) linear reduction,

(¢) (cl) B[X] is polynomially closed, or (c2) it is linearly closed,

(d) E is neither meager nor the whole space #(Z*), and finally

(¢) E is closed under finite variation.
Then, E is proper I13; in fact, it is not F,. Here we combine (b1) with (c1), and (b2) with (c2).

LEMMA 2.2. Let E be F, and assume that it is not meager. Then, E intersects every
dense D: ENnD # 4.

PrOOF. Since E is F,, it can be expressed as follows:
E= U Ak s
k=0

where each A, is closed. Since E is not meager, there is a k such that A, is not nowhere
dense. So, the closure of A, (=A, itself) contains a basic open set. Hence, the A,
intersects every dense set, a fortiori so does E. O

PROOF OF THEOREM 1. We consider the case (al), (bl), and (cl). Then we have

€)) X ¢E < H(X)eB[X].

For, suppose H(X)eB[X], and let Le C[X] be arbitrary. Then, there is a polynomial
time computable function f such that for any y

yeL <« f(y)eH(X).

Since B[X] is polynomially closed, we have LeB[X]. So, C[X] =B[X], and hence
B[ X]=C[X]. Therefore, X ¢ E. The forward direction of (3) is clear. Now, by (3), we
have

X eE <> 73kVy[ye H(X) « MY accepts y],

where M;’s are the oracle Turing machines associated with B[ ~] in the definition of
its recursive presentability. This shows E is IT9. Similarly, if (a2) holds instead of (al),
then again we have (3), since C[X] < coC[X] implies coC[X]=C[X]. Hence, E is IT?
also.

Now, suppose that E is F,. Since —E is nonempty and closed under finite varia-
tion, it is dense, by Lemma 2.1. Since E is not meager, by Lemma 2.2, we have En
T'E#¢. This is a contradiction. Consequently, E can not be F,. Similarly for the case
that (b2) and (c2) hold. O
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§3. Determining the levels of Ei’s.

Now, using Theorem 1, we shall show that all E#’s are proper IS classes.

Let P [resp. NP; ] be the k-th deterministic [resp. nondeterministic] polynomial
time bounded oracle Turing machine such that the enumeration {P; :keN } [resp.
{NP; : ke N}] satisfies the recursive condition. Let E; [resp. NE;] be the k-th
deterministic [resp. nondeterministic] 2" time bounded oracle Turing machine such
that the enumeration satisfies the recursive condition, where 25" means 2°* for some
constant numbers c. Let EP; be the k-th deterministic 2P°Y time bounded oracle Turing
machine such that the enumeration satisfies the recursive condition, where 2P means
2P™ for some polynomials p(n). Let PS; be the k-th polynomial space bounded oracle
Turing machine such that the enumeration satisfies the recursive condition. We borrow
H,; from Schoning’s paper [Sch 82; p. 99] in the relativized form. This enumeration
also satisfies the recursive condition. Then we have

P[X]={L(P¥): ke N},

NP[X]={L(NP{): ke N},

DEXT[X]={L(Ef): ke N},

NEXT[X]={L(NEY): ke N},

PH[X]={L(H}): ke N},

PSPACE[X]={L(PS¥): ke N}, and

EXPTIME[X] = {L(EP{): ke N}.

The classes P[X], NP[X], etc. (including coNP[X] and coNEXT[X]) occurred in the
definitions of Ei’s are all recursively presentable ([Sch 82] for non-relativized forms).

Let K(X), KE(X), KS(X), and JE(X) be as follows:

K(X)={0*1x10" : Some computation of NP¥ accepts x in <n steps},

KE(X)={0*1x10": Some computation of NE} accepts x in <2" steps},

KS(X)={0*1x10": PS¥ accepts x in <n spaces}, and

JE(X)={0*1x10": EPY¥ accepts x in <2" steps}.

Then, K(X), KS(X), and JE(X) are NP[X]-complete, PSPACE[X]-complete, and
EXPTIME[X]-complete with respect to p-m-reduction, respectively. KE(X) is
NEXT[X]-complete with respect to linear reduction.

All the complexity classes occurred in the definitions of Ei’s are either polynomi_ally
closed or linearly closed, and they all are closed under finite variation.

Now, we use Poizat’s result [Po 86]. So, we state an outline of parts of his paper
with some slight modification.

We consider arithmetical predicates (i.e., £ or IT? predicates for some k) of the
form ¢(X)(u), where X ranges over 2(Z*) and u over X *, as before. ¢(X)Xu) is finitely
testable if there exists a number-theoretic function « : N —» N such that for any string
u and any set X

Vnza(| u ) [S(X)Nuw)— ¢(X | n)fw)] ,
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where X |n is the initial n-segment of X.
Let C(X) be a set of arithmetical predicates of the form ¢(X)u). For d(X)u), let

[ X]={ueZ*: §(X)u) holds} ,
and let

CLX]={¢[X] : p(X)u)e C(X)} .

Poizat considers the following 4 hypotheses:

Hypothesis 1. Each predicate in C(X) is finitely testable.

Hypothesis 2. If X=Y, then C[X]=C[Y].

Hypothesis 3. For any 4e C[X], if B= A then Be C[X].

Hypothesis 4. There is a mapping #: 2(Z*)—>P(Z*) such that (a) C[X]=
C[#X], and (b) for any 4 € C[X] there exists a predicate  in C(X) such that 4 = V#X]
and it has the following property: if Y=#Z, then y[Y]=y[#Z]. (In [Po 86], Poizat
imposes a stronger condition: if Y=Z then y[Y]=y[Z]. However, it may be hard to
show that any given concrete class satisfies this condition. This modification does not
affect the following Theorem.)

Then

Po1ZAT’s THEOREM. Let C(X) and D(X) be two sets of arithmetical predicates of
the form ¢(X)u) which satisfy the Hypothese 1 ~4 with the same mapping # : X+—#X.
Let C[X] and D[X] be the corresponding classes of sets, as before. Suppose that there
exists an oracle A such that CLA] # D[ A]. Then, the set {X : C[X]#D[X 1} is co-meager.

In order to apply our Theorem 1 we must show that all Ei’s are not meager. For
this purpose it suffices to show that all E’s are co-meager. Bennett-Gill [BG 81] noted
that EO and E1 are co-meager, and Babai [Ba 87] noted that ES is co-meager by
applying the Poizat theorem. However, since the Hypothesis 4 needs a slight correction,
here we show, as an example, that E9 is co-meager. As stated before, the class E9 is
not empty, that is, there is an oracle 4 such that PSPACE[A] #EXPTIME[ A]. So,
for our purpose it suffices to show that both PSPACE(X) and EXPTIME(X) satisfy
the Hypotheses 1 ~4 with the same mapping #.

We do this for EXPTIME(X) only. Proofs for other sets are similar.

Let ¢(X)u) <= EPY accepts u. Then

EXPTIME(X) = {¢{X)u):ie N}, and

EXPTIME[X]={¢,[X]:ieN}={L(EP):ieN}.

Now,

Hypothesis 1. For ¢(X)u), we can take a(n) =2#™+1_1 as the « in the definition
of finite testability, where f(n)=27™ is the time bound function for the machine EP[.
Because the maximal number of strings of length 7 in the enumeration of the members
of T*is2n*1_2,

Hypothesis 2. Suppose X=7Y, and let Ae EXPTIME[X]. So, for some i, uc 4
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iff ¢(X)u). Since X =Y, there exists a linear time bounded oracle Turing machine M~
such that X =L(M?"). Then we can readily find an index k such that EPM"=EP!. Here
this equality means that two machines accept the same language. So, 4€ EXPTIME[Y],
and hence EXPTIME[X] < EXPTIME[ Y]. Similarly for the reverse inclusion.

Hypothesis 3. Let Ae EXPTIME[X], and suppose B= A. So, there is an index
i and a natural number m such that

ue A iff (X )(u) iff EP¥ accepts u, and Vn=m[B(n)= A(n)].
Then we shall find a 2P°Y time bounded oracle Turing machine T~ such that
(C:)) ueB <> T accepts u .

Here we use the notation ¢ * defined by ‘z,’=n. First of all, for inputs u such that
‘W’ <m, we define a segment of the machine T~ by a finite table so that for every input
u with ‘W’ <m the segment satisfies the condition (4). On any input u with ‘w’>m, TX
simulates EPY so that T*(u)=EP¥(u) holds. Then, (4) holds for each of these u. Thus
we have Be EXPTIME[X].

Hypothesis 4. Let #X=n(Z*, X). Here = is a pairing function: *x I* > X *
which is one-to-one onto and polynomially computable. Further, for given y we can
compute the unique » and x in time O(| y|) that y=n(u, x).

(a) EXPTIME[X]=EXPTIME[#X]. Proof. Let X be given, and suppose
Ae EXPTIME[X]. So, there is an index i such that ue A < EPY accepts u. Then, we
must find a 2P°Y time bounded oracle Turing machine T~ such that

(5) ‘ ueA <> T*X accepts u .

For any set Y, let p(Y)={xeZ*:3u, yeZ*[yeY A y=n(u, x)]}. Then p(Y)=X if
Y=#X. Now, given input u, T" begins to simulate the computation of EP{ on u.
Suppose that EP;” enters the query state. Let w be the queried string. Then TY writes
m(u, w) on its oracle tape (this can be done in time O(27(“D)), and queries whether
n(u, w)e Y. If the answer is yes, then we p(Y) and so T simulates the yes-branch of the
computation of EP;”. Otherwise, it simulates the no-branch. After the whole simulation
ends, TY gives the same output (=an accepting or rejecting state) as this simulation
for EP;. This is a quasi-simulation for EP?™ on u (it may not be an exact one, for
there can be a case that n(u, w)¢ Y but for other v n(v, w)e ¥ and wep(Y)). If Y is of
the form #Z, then certainly the output of T is the same as that of EPZ, since n(u, w)e Y
iff we Z. So we have (5). The T~ is a 2P°Y time bounded oracle Turing machine. Hence
we have 4 e EXPTIME[#X]. Conversely, let A € EXPTIME[#X]. Then for some k, ue A
iff ¢ (¥X)u). We define a 2P°Y time bounded oracle Turing machine M~ as follows:
Given input ¥ M* simulates the computation of EP,” on u. Suppose EP, enters the
query state. Let y be the queried string. M* calculates w such that n(u, w)=y. Recall
that w is uniquely determined and can be computed in linear time of |yl+]u]. And it
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queries whether we X. After it enters yes- or no-state, it resumes simulating. Finally,
it outputs the same value as EP;. This M~ is a 2*" time bounded oracle Turing
machine and for any u ue A iff M* accepts u. Hence 4 EXPTIME[X].

(b) For each Ae EXPTIME[X], there is a predicate y(X)u) in EXPTIME[X]
such that (bl) A=y[#X] and (b2) if Y =#Z then Y[Y]=y[#Z]. Proof. (bl) Let
- Ae EXPTIME[X]. Then, there is an index i such that ue 4 iff ¢(X)u). We take the
machine T~ obtained in the proof of (a). As was shown above, ue 4 iff T*X accepts u.
Let Y(X)u) be the predicate “T* accepts u”. Then Y(X)u) is in EXPTIME(X), and we
have A=y[#X]. (b2) Suppose Y = #Z. Then, there is a number m (depending on Y and
Z) such that

Vu, w([lu|=zm or |w|=m] = [a(u, w)e Y iff n(u, w)e$Z iff we Z]).

So, both computations of T* and T*? on u are identical with that of EPZ on u for any
u with |u|=m. Hence, y[Y]=y[#$Z].
Thus, we have shown that EXPTIME(X) satisfies the four Hypotheses.
Consequently, it is seen that all Ei’s are co-meager and hence they are not meager.
Hence, all the E/’s satisfy the conditions (a) ~ (¢) for E in Theorem 1. Therefore we have

THEOREM 2. Al the classes Ei’s are I12 but not X2, in fact not even F,.

§4. Conclusion.

We have determined the levels of the classes Ei’s in the Kleene Arithmetical
Hierarchy on subclasses of #(Z*). That is, they are proper IT{ classes. However, there
are other similar classes whose exact levels we do not know. For example, we want to
know the exact level of the class SEP={X : P[X]#BPP[X]}. (For the definition of
BPP[X], see [BDG 88] and [BDG 90].) By directly evaluating SEP based on the
definition of BPP[X], we can sce that SEP is a 9 class. However we do not know
whether it is IT, not even whether it is ITJ.
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