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§1. Introduction.

Let K/k be a finite extension of number fields. Let J¢ be the idele group of K and
Ngi the norm map from K to k. The group Ny,K™ of global norms is a subgroup of
finite index in k™ N Ng,Jx. We say that the Hasse norm principle (abbreviated to HNP)
holds for K/k if k* N Ny,Jx= Nk, K*. We simply say that HNP holds for K if HNP
holds for K/Q. The classical Hasse norm theorem asserts that if K/k is a cyclic extension,
then HNP holds for K/k.

Several authors have studied the validity of HNP for abelian extensions. In [3]
and [4], Gerth and Gurak independently gave necessary and sufficient conditions for
HNP to hold for Q(¢,,), where m#2 (mod 4) is a positive integer and {,, is a primitive
m-th root of unity. If HNP holds for Q({,), then it holds also for its maximal real
subfield Q(,)* (Proposition 1 below). However, the converse is not always true. In
this paper, we will give a necessary and sufficient condition for HNP to hold for ()" .

§2. Theorems.

Let m#2 (mod4) be a positive integer, and let p,, p,, p3 and p, be distinct odd

primes, and e, a,, a,, a,, a, non-negative integers. We denote by (1) the Legendre
*

symbol and define ¢; and ¢; ; (€ {0, 1}) by (—1)* =<i> and (—1)& =(—pl), respectively.
p.

pPi

(A) Suppose that m has at most three distinct prime divisors and that m # 2°p7'p3?,
e>3. In this case, we know necessary and sufficient conditions for HNP to hold for

O, (cf. [3, 4]).
THEOREM 1. HNP does not hold for Q(,,) but does hold for Q(,)* if and only if
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it holds for every maximal subfield of Q({,,)* whose Galois group over Q has odd prime
exponent, and moreover, one of the following five conditions is satisfied:

(1) m=4p$ and p, =1 (mod 8).

(2) m=2{', e>3 and p, =7 (mod 8).

(3) m=p?p3, p;=1, p;=3 (mod 4) and (—:;—2)= 1, where {i,j}={1, 2}.
1

4) m=4pi'p3,

(@) p,=p,=1 (mod4) and (fz—>= —1, or
P

(b) p:i=1, p;=3 (mod4) and (p—z)aé(z—), where {i,j}={1, 2}, or
D1 DPi

(© pi=p,=3 (mod4) and at least one of (i) and (—p—‘) is equal to 1, where
i pP;j
{i,j}={1, 2}.
() m=p{'pr’ps’, ,
@ pi=1, pj=p,=3 (mod4) and (ﬂ>¢<-pi>, where {i, j, k} ={1, 2, 3}, or

DPi Di

() pi=p;=1, p,=3 (mod4) and (2 )= —1, where {i,j, k}={1, 2, 3}, or
J

Pj
(©) pi=p,=p;=3 (mod4), and (P_z) = (p—3) = (ﬂ) does not hold.
Py P2 Ps3

(B) Suppose that m=2°p{'p%, e>3 or that m has more than three distinct prime
divisors. Then HNP does not hold for @(,,) (cf. [3, 4]).

THEOREM 2. HNP holds for ((,,)* if and only if one of the following four conditions
is satisfied:
(1) m=2°pi'p3*, e>3,
HNP holds for Q({e,ps,), and p;=3 (mod 4), p;=3, 5 (mod 8), {i,j}={1, 2}.
(2) m=4pP'p3*pP,
HNP holds for Q({ e, ps2pss) and
Px

(a) piE3’ ijpkEl (m0d4)’ (p_)= _1 and 8k8,-'j;é'818k,i, Where {i,j, k}=
j
{1,2, 3}, or
(®) pi=p;=3, pr=1 (mod 4) and at most one of (i), (ﬁ) and (&) is equal
D; p;

Px
to 1, where {i,j, k}={1, 2, 3}, or
(©) . py=p,=p3;=3 (mod 4),

® p;=p,=p, (mod8) and (ﬂz—)=(£i)=(£‘—), or

Py Py Ps
e p;=p;#p, (mod 8) and at least one of (fl) and (ﬂ) is equal to 1, where
P Py
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{i,j, k}={1, 2, 3}.
(3) m=2pi'p%p3’,
HNP holds for Q(Cpa, pgng3), and
(@) pi=p;=3 (mod4), p,=5 (modB) and ¢;¢;, #¢;;, or
®) p=7, p;=py=3 (mod8) and (ﬁ)-';é(—’;—)
i i
(4) m=p{'pr’p3°ps’,
the greatest common divisor of o(p'), ¢(p%), ¢(r3?) and @(ps*) is a power of 2,
where @ is the Euler function, HNP holds for Q(Cp?‘p?”,zk) (1<i<j<k<4), and
@) pi=p;=3, p=p=1 (mod4), (ﬂ)= —1 and &,¢;,#¢€,8;x Wwhere
DPx
{i,j, k, 1}={1,2, 3,4}, or
(b) pi=pj=p.=3, p=1 (mod4) and at most one of (ﬂ), (ﬂ) and (p—’> is

Di Dj Dx
equal to 1, where {i,j, k, 1} ={1, 2, 3, 4}, or
() p1=p.=p3=p,=3 (mod4),

(-2 k-0,
- (-E)-C) -0 barn-0nn

§3. Proof of Theorems.

We essentially use the following two facts which are well-known:

ProrosITION 1 (Proposition 6 of Razar [8]). Let K/k be a finite abelian extension
of algebraic number fields. If HNP holds for K/k, then it holds also for all subextensions
of K/k.

ProPOSITION 2 (Theorem 1, 2 of Gerth [2], Theorem 2 of Razar [8]). Let K/k
be a finite abelian extension of algebraic number fields. Then HNP holds for K[k if and
only if it holds for every maximal subextension of K/k whose Galois group has prime
exponent.

Case (A): If mis a power of a prime, then HNP holds for @((,,), therefore also
for Q)"

Each maximal subfield of Q({,,)* with odd prime exponent is identical with that of
0({,.). Hence to deal with the other cases, we have only to consider HNP for the
elementary abelian 2-extensions in Q((,,)™.

Case (B): If m=2°, e>2 and d is odd, then Q((,,)=0((,.)0Q({,). So HNP holds
for Q(¢,,)* if and only if it holds for both its maximal subfield of exponent 2 and Q((,).
Hence, in the same way as in Case (A), we have only to consider the elementary abelian
2-extensions in Q((,)".
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In the case where m=p{'p53p5’p3*, if the greatest common divisor d, of ¢(p?!),
o(p%), e(p%) and @(p3*) has an odd prime divisor p, then, by Theorem 10 of Garbanati
[1], HNP does not hold for the maximal subfield of exponent p of @({,,)*. So d, must
be a power of 2.

By Propositions 1 and 2, to show that HNP does not hold for @({,,)* in the case
where m has five or more distinct prime divisors, it is sufficient to show that it does
not hold for the maximal abelian subfield of exponent 2 of @({,)* in the case where
m has exactly five distinct prime divisors.

To determine whether HNP holds for elementary abelian 2-extensions of Q, we
use Theorem 7 of Gurak [5], which states that HNP holds for an abelian extension of
Q with Galois group isomorphic to (Z/2Z)" if and only if a certain matrix D has
rank n(n—1)/2 over Z[2Z.

We denote by K, the maximal subfield of exponent 2 of Q(C,,,)+ We give the list
of K, and the corresponding D in the following; we omit D if K, is cyclic, because
HNP holds for such a field K,. By calculating the rank of D and referring to the case
of cyclotomic fields, we obtain our theorems immediately.

o m=4py: K,=0/p;)-
o m=2p, e23: K,=0(/2,/p1)

pi=1), D= ;

p1=34), D=

o m=py'ps*:

p1=p>=1(4), K, = 0(/p1, /P2), D= [312]

pi=1, p,;=3@), K,=0(/p)) ; '
=p,=34), K;= Q(\/Pll’z)-
o m=4pip%: K,=O(/P1, /P2):

pi=p,=1(), D=["’“];
€1,2

&
pri=1, p;=34), D= [ ];
&)

&y +52
P1=p2=34), D=| ¢, .
1+g,,

e m=pi'p3’p3*:

€2 &3 0
=p,=p3=114), K;=0(/P1, \/P2: \/P—s), D=[ g, 0 82,3:l;

0 &3 63

p

—
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& it e
piEla pJEpkE3(4), K2=Q(\/17w \/pjpk): D=[ &;j ];

Eik

Pi=p=1, P=3). K= 0pi V). D=| |

LJ

€12+81,3 |
P1=p,=p3=34), K, = O(\/P1P2> \/P1P3) D=[ 1 +31.2+32,3:|-
€,3t823
L m=2ep¢111pgz, 823 : K2=Q(\/ 2 ’ \/PT, \/Fj),

000
P1=18), p,=1(8), D=| * * = |;

*x %k 3k

0 * =*
pi=18), p;=5@8), D= 0 = x |;
0 % =

QO =

p1=3(8), p2=3(8), D=

11 0

P1=5@8), p,=5@8), D= 0 &, :I;

0

0

0

1

1

0

0

P1=7(8), p,=7(8), D= 0

0

0

P;EI(S),PJE3(4),D= 0 00 5

pi=34), pj=£3@8), D=

*r * O O =
* x O

o m=4p7p3:p5* : Ky=Q(\/P1> P2> /P3)s
21,2 &,3 0
P1=Pr2=EP3= 1(4)s D= €120 0 &3 5

0 &3 &3
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p—

g & 0

& &x O

g; 0 ¢,
0 & &,

Pi=3,p;=p=14), D=

g+e & 0

= = = — & j &k Eix .
pi=pj—39 pk—1(4)9 D 1+8i.] 0 £ N

L 0 &y &ateu
&y +82 &4 +83 0

+e
=p,=p.=3(4). D= 81,2 £1,3 81,2F813
P1=p,=p3=3(4), l+el R S S,

I4+e3 & 3+¢65,

® m=2ep;1pgzp €>3 KZ_Q(\/—_ \/—1"\/_2’ \/__)

P1 Epzsp3E](4) D is a 4 x 6 matrix;

[ 1.0 0 00 0 ]
0 ¢ ¢ 000
_ o _1 0 0 0 ¢ ¢ 0 .
p,—3, Pi=ED= 1(4)9 D= g &; &, 0 0 O ’
0.8, 0 ¢ 0 ¢,
| 0 0 &y 0 & &, |
1 0 o0 o0 o 0
0 &+¢ ¢ 0 O 0
_ 0 0 0 8‘+81 & 0 .
Pi=p;= 3 n=1@), D= & &; &x & O Eix ’
0 l+81_j 0 gj 0 Eix
| 0 0 &k 0 & Exte |
~ 1 o 0 0 0 0 ]
0 & +e, & +e, 0 0 0
0 0 0 & +e & +e¢ 0
=p,=ps=3(4), D= T
P1=DP>2=p; ()’ & & &3 &y & 812+83
0 l+81'2 0 €y 0 l+81'2+81_3
| 0 0 I+e,3 O £ &1,3+623

® m=pi'p3’p3’ps*:
P1=EPr=p3=p,=14), K, = Q(\/—_n \/— \/P:a \/;;), D is a 4 x 6 matrix;
Pi=3, p;=p,=p,=1(4), Kz—Q(\/PT, \/I;;, \/_),

[ &y &x O

D= &; 0 &, 5

| 0 & g,

Pi=p;=3, p=p,=14), K= OW/P: P} \/Pr> P1)-

Eix &1 0
D= & &, O
&kt 0 €k

0 Eute;y &y
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Pi=p;=p,=3, p,=14), K, = O\/PiPj> \/PiPxs \/E),

8,5tk & &
8,- +8 +]- E; 0
D= it &k it :
EixtEjx 0 xt
| 0 ety gy teg
P1=p,=p3=p,=314): K, = Q(\/P1P2, \/Plpa, VP1P4)s
[ €1,2F¢€;1,3 €1,20F&5,4 €1,3+81,4
D_ 1+£1_2+32’3 1+81'2+82'4 0
€1,3+8653 0 I4+e;3+83,4
0 £14t834 €1,4+83,4

o m=4p{'p3p5pit: K= QW/P1> NP2> /P35 \/Pa)s
p;=1 (mod4) for all i, D is a 4 x 6 matrix;

pi=3 (mod4) for some i, D is a 5 x 6 matrix.
o m=2p3pTpLpst, €23 Ky=0W/ 2, pr> o P P
p;i=1 (mod4) for all i, D is a 5x 10 matrix;
pi=3 (mod 4) for some i, D is a 7 x 10 matrix.
® m=pi'p3’p3°pPaps*: ,
D1 EPZEP3EP4EPSEI(4)’ K2=Q(\/E’ '\/p_Zs \/p_3’ \/P—;, J}:),
D is a 5 x 10 matrix; .
pi=Epi=p=p=1, p,=34), K, = Q(\/Ea \/171" \/pAk’ \/i’_l)’
D is a 4 x 6 matrix;
piEpj EpkE 19 plEpm = 3(4): K2 = Q(\/E, \/p_ja \/p_k’ \/plpm)’
D is a 5 x 6 matrix;
Pi=p;=1, pu=p,=p,=34), K, =0W/Pi, \/Pj» PiP1s NPiPm):
D is a 5 x 6 matrix;
pi=1, pj=p.=p,=p,=34), K, = Q(\/;n \/Pija \/i’kpls \/Ple),
D is a 5 x 6 matrix;
Pi=P;=Di=p=Pn=3(4), Ky = Q(/DiPjs \[D;Pis \Pil1> \/P1Dm)>
D is a 5 x 6 matrix.

§4. Numerical results.

We give all m<1200 such that HNP fails to hold for Q((,). If HNP fails to hold
for Q(¢,)*, we put m in boldface.
(1) m=4pi:
68, 164, 292, 356, 388, 452, 548, 772, 932, 964, 1028, 1124, 1156.
2) m=2°p{, ex>3:
56, 112, 136, 184, 224, 248, 272, 328, 368, 376, 392,
448, 496, 544, 568, 584, 632, 656, 712, 736, 752, 776,
784, 824, 896, 904, 992, 1016, 1088, 1096, 1136, 1168.
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(3) m=pi'p3*
39, 55, 95, 111, 117, 145, 155, 183, 203, 205, 219,
221, 259, 275, 291, 295, 299, 305, 323, 327, 333, 35I,
355, 371, 377, 395, 407, 445, 471, 475, 505, 507, 543,
545, 549, 559, 579, 583, 605, 655, 657, 667, 687, 689,
695, 723, 725, 731, 745, 755, 763, 775, 791, 793, 799,
831, 873, 895, 901, 905, 939, 943, 955, 959, 979, 981,
995, 999, 1003, 1011, 1025, 1027, 1043, 1047, 1053, 1055, 1067,
1119, 1139, 1145, 1159, 1191, 1195.
(4) m=4piy'p3*
156, 220, 380, 444, 468, 580, 620, 732, 812, 820, 876,
884, 1036, 1100, 1164, 1180, 1196.
(5) m=pipr’p3*
165, 285, 435, 465, 495, 609, 615, 663, 777, 825, 855,
885, 897, 915, 969, 1015, 1065, 1105, 1113, 1131, 1185.
6) m=2°p{'ps% e=3:
120, 168, 240, 264, 280, 312, 336, 360, 408, 440, 456,
480, 504, 520, 528, 552, 560, 600, 616, 624, 672, 680,
696, 720, 728, 744, 760, 792, 816, 880, 888, 912, 920,
936, 952, 960, 984, 1008, 1032, 1040, 1056, 1064, 1080, 1104,
1120, 1128, 1144, 1160, 1176, 1200.
(7) m=A4p1'p3*p3*:
420, 660, 780, 924, 1020, 1092, 1140.
() m=2°pi'p3’p3*, e=3:
840.
9 m=pi'p3’p3’ps*
1155.

§5. Remarks.

(1) To determine that HNP holds for a biquadratic field, we can also use Corollary
5.3 of Gurak [4], Example 1 of Razar [8] or Corollary 7 of Garbanati [1].

(2) For a triquadratic field X, it follows from Theorem 2 of Horie [6] that HNP
holds for K if and only if it holds for every biquadratic subfield of K. Hence using this
and biquadratic case, we can also determine whether HNP holds for X or not.

Let p,, p,, p; be distinct primes congruent to 1 mod4. It is already shown (cf.
Corollary 8 of Garbanati [1]) that HNP does not hold for L= 0Q(,/p;, /P2, \/P3)- Hence,
by Proposition 1, HNP does not hold either for any abelian field containing L, say

O/ 2, \/P1> /P25 \[P3)-

(3) Jehne’s paper [7] contains an error, in which he states that HNP holds for
K=0(/P1> \/P2, \/P3), Where p; = — 1 (mod 8), p, =3 (mod 8), p; =5 (mod 8) are primes.
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He uses the theorem of Scholz-Tate (cf. [7] P. 221 or [9] P. 198), by which HNP holds
for K if there exists a prime which is not decomposed in K; he states that 2 is such a
prime, hence HNP holds for K. But it is easily seen that 2 is always decomposed in K.
So HNP does not always hold. Our calculation in the case m=4p$'p3°p3* shows that

HNP holds for K if and only if (51>= —1or (p—3>= —1.
P P2
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