Transformation \tilde{G} of Analytic Functionals with Unbounded Carriers and Its Applications

Kunio YOSHINO

Sophia University

1. Introduction.

In [1] and [8], Avanissian and Supper considered transformation \tilde{G} for analytic functionals. They applied transformation \tilde{G} to study arithmetic entire functions of exponential type in Abel sense and derived Abel summation formula for entire functions of exponential type in C^n by using the sequence $\{D^nF(n)\}$. They also showed some relations between analytic functionals and classical special functions using transformation \tilde{G} . In this paper we will consider transformation \tilde{G} for analytic functionals with unbounded carrier. As application, we derive some theorems for holomorphic (non-entire) functions of exponential type defined in direct product of half planes by using the sequence $\{D^{-n}F(-n)\}$.

2. Notations.

 $U = \{ \zeta = r \exp(i\theta) \in \mathbb{C}^n : 0 \le r < (\pi - |\theta|) / |\sin(\theta)| \}. \ \Phi(\zeta) = \exp(-\zeta) / \zeta. \ \Phi \text{ is biholomorphic mapping between } U / \{0\} \text{ and } \mathbb{C}/[-e, 0] \ ([4]). \text{ We put } \psi = \Phi^{-1}.$

For set L in C^n , $L_i = \operatorname{pr}_i(L)$ denotes i-th projection of L. $\langle z, t \rangle = z_1 t_1 + \cdots + z_n t_n$ for $z = (z_1, \dots, z_n), t = (t_1, \dots, t_n) \in C^n$. $H_L(z) = \sup_{t \in L} \operatorname{Re}\langle z, t \rangle$.

d(F) denotes transfinite diameter of compact set F in C. For the details of transfinite diameter, we refer the reader to [6].

$$D_x^{-n} f(x) = \frac{1}{(n-1)!} \int_0^\infty f(x-y) y^{n-1} dy . \qquad (n \in \mathbb{N})$$

Under suitable conditions, $D_x^n D_x^{-n} f(x) = f(x)$ valids for ordinary differential operator D_x . We put

$$D^{-m} = D_{x_1}^{-m_1} \cdots D_{x_n}^{-m_n}, \quad |m| = m_1 + \cdots + m_n \quad \text{for } m = (m_1, \cdots, m_n) \in \mathbb{N}^n.$$

 $\operatorname{Exp}(D:L) = \{\text{holomorphic functions in } D \text{ satisfying condition (*) in theorem 2} \}$.

Let K be a number field of degree d = [K: Q] = r + 2s. $K^{(i)}$ $(1 \le i \le r)$ and $\overline{K}^{(r+j)} = K^{(r+s+j)}$ $(1 \le j \le s)$ are its conjugate fields. \mathcal{O}_K and $\mathcal{O}_K^{(j)}$ denote the rings of albebraic integers on K and $K^{(j)}$ respectively. If $a \in \mathcal{O}_K^{(i)}$, $a^{(j)} \in \mathcal{O}_K^{(j)}$ are conjugates of a. For $f(w) = \sum a_n w^n \in K[w]$, we denote $f^{(i)}(w) = \sum a_n^{(j)} w^n \in K^{(j)}[w]$. We put $\delta = d$ if $K \subset \mathbb{R}$, $\delta = d/2$ if $K \not\subset \mathbb{R}$. For algebraic integer a, $|a| = \max\{|a_1|, \dots, |a_k|\}$ where a_1, \dots, a_k are conjugates of a over Q.

3. Fourier-Borel transform of analytic functionals with unbounded carrier.

In what follows, L denotes closed convex set bounded in imaginary direction in C^n . We put

$$Q(L:k') = \lim_{\varepsilon > 0, \varepsilon' > 0} \operatorname{ind} Q_b (L_{\varepsilon}:k' + \varepsilon')$$

where $Q_b(L_{\epsilon}:k'+\epsilon') = \{f \in C(\bar{L}_{\epsilon}) \cap H(L_{\epsilon}): \sup_{z \in L_{\epsilon}} |f(z) \exp((k'+\epsilon')z)| < \infty \}$, L_{ϵ} is ϵ -neighbourhood of L and \bar{L}_{ϵ} is closure of L_{ϵ} . $C(\bar{L}_{\epsilon})$ and $H(L_{\epsilon})$ denote the space of continuous functions on \bar{L}_{ϵ} and holomorphic functions in L_{ϵ} respectively. Q'(L:k') denotes the dual space of Q(L:k'). An element of Q'(L:k') is called an analytic functional with carrier in L and of type k'. $T \in Q'(L:k')$ can be represented by measure. Namely, we have

PROPOSITION 1 ([7]). Let $T \in Q'(L:k')$. For all $\varepsilon > 0$, $\varepsilon' > 0$, there exists a measure μ on L_{ε} such that $\langle T, h \rangle = \int h(t) \exp(k't + \varepsilon'|t|/2) d\mu(t)$, for $h \in Q_b(L_{\varepsilon}:k'+\varepsilon')$.

Fourier-Borel transform $\tilde{T}(z)$ of $T \in Q'(L:k')$ is defined as follows:

$$\widetilde{T}(z) = \langle T_t, \exp(\langle t, z \rangle) \rangle$$
.

Following Paley-Wiener type theorem characterizes Fourier-Borel transform of Q'(L:k').

THEOREM 2 ([7]). Suppose that $T \in Q'(L:k')$. Then $\tilde{T}(z)$ is holomorphic function in $D = \prod_{i=1}^{n} \{z_i \in C : \operatorname{Re} z_i < -k'\}$ and satisfies following estimate: For any $\varepsilon > 0$ and $\varepsilon' > 0$, there exists $C_{\varepsilon,\varepsilon'}$ such that

$$|\tilde{T}(z)| \le C_{\varepsilon,\varepsilon'} \exp(H_L(z) + \varepsilon |z|) \qquad (\operatorname{Re} z_i \le -k' - \varepsilon', \ 1 \le i \le n).$$

Conversely, if holomorphic function F(z) in D satisfies above estimate (*), then there exists $T \in Q'(L:k')$ such that $\tilde{T}(z) = F(z)$.

4. Transformation \tilde{G} .

In this section we put following assumptions (i) and (ii).

(i) $0 \le k' < 1$ and

(ii) For some positive constants a_i and b_i , L_i is contained in

$$U \cap \{\zeta \in C : \operatorname{Re} \zeta \geq a_i, |\operatorname{Im} \zeta| \leq b_i < \pi\}$$
 for $i = 1, \dots, n$.

We put

$$\widetilde{G}_L(T)(w) = \left\langle T_i, \prod_{i=1}^n (1 - w_i t_i \exp(t_i))^{-1} \right\rangle$$

for $w = (w_1, \dots, w_n) \in \prod_{i=1}^n (C/\overline{\Phi(L_i)})$. $\tilde{G}_L(T)(w)$ has following properties.

PROPOSITION 3. (1) $G_L(T)(w)$ is holomorphic in $\Pi_{i=1}^n$ $(C/\overline{\Phi(L_i)})$ and vanishes at the infinity.

(2) Following expansion holds:

$$\tilde{G}_L(T)(w) = (-1)^n \sum_{m \in \mathbb{N}^n} D^{-m} \tilde{T}(-m) w^{-m} \qquad (|w| \gg 1).$$

(3) For any $\varepsilon > 0$ and $\varepsilon' > 0$, there exists $C_{\varepsilon,\varepsilon'} > 0$ such that

$$|\tilde{G}_L(T)(w)| \le C_{\varepsilon,\varepsilon'} |w|^{-k'-\varepsilon'} \qquad (b+\varepsilon \le |\arg w| \le \pi).$$

(4) (Inversion formula)

$$\widetilde{T}(z) = \frac{1}{(2\pi i)^n} \int_{\Gamma} \widetilde{G}_L(T)(w) \exp(z\Psi(w)) dw/w$$

where $\Gamma = \Gamma_1 \times \cdots \times \Gamma_n$ and Γ_j is a contour surrounding $\Phi(L_j)$.

PROOF. (1) can be proved by proposition 1, Morera's theorem and Fubini's theorem.

(2)
$$(1 - wt \exp(t))^{-1} = -\sum_{m=1}^{\infty} w^{-m} t^{-m} \exp(-mt) ,$$

$$t^{-n} \exp(-nt) = \frac{1}{(n-1)!} \int_{0}^{\infty} \exp(-t(a+n)) a^{n-1} da .$$

From these equalities we obtain

$$\widetilde{G}_{L}(T)(\mathbf{w}) = (-1)^{n} \sum_{m \in \mathbb{N}^{n}} D^{-m} \widetilde{T}(-m) w^{-m},$$

for sufficiently large w.

(3) Our proof is almost similar to that of proposition 3 in [5]. By the definition of toplogy of Q(L:k'), we have

$$\begin{aligned} |\widetilde{G}_{L}(T)(w)| &\leq C_{\varepsilon,\varepsilon'} \sup_{t \in L_{\varepsilon}} \left| \exp((k' + \varepsilon')t) \prod_{i=1}^{n} (1 - w_{i}t_{i} \exp(t_{i}))^{-1} \right| \\ & \cdot |\exp((k' + \varepsilon')t)(1 - wte^{t})^{-1}| \\ &= |te^{t}|^{-1 + k' + \varepsilon'} |t|^{-k' - \varepsilon'} |w - t^{-1}e^{-t}|^{-k' - \varepsilon'} |w - t^{-1}e^{-t}|^{-1 + k' + \varepsilon'} \\ & \cdot |w - t^{-1}e^{-t}| \geq |w| \sin \varepsilon, \\ |te^{t}|^{-1 - k' + \varepsilon'} |w - t^{-1}e^{-t}|^{-1 + k' + \varepsilon'} \leq (\sin \varepsilon)^{-1 + k' + \varepsilon'} \end{aligned}$$

for w such that $b+\varepsilon \le |\arg w| \le \pi$. From these estimate, we obtain our desired estimate (cf. [6]).

(4) By virture of (3) in this proposition and proposition 1, we can change the order of integration. After change of variable $t = \Psi(w)$, we obtain inversion formula by residue theorem.

REMARK. If L is a compact convex set satisfying assumption (ii) in this section, then inversion formula (4) is equals to Supper's formula. By Lagrange-Bruman formula for inverse function ([6]), we have

$$\Psi(w) = \sum_{n=1}^{\infty} \frac{(-n)^{n-1}}{n!} w^{-n} \qquad (|w| > e) .$$

Hence $\lim_{|w|\to\infty} \Psi(w) = 0$. So our inversion formula is equals to Supper's one by Cauchy's integral theorem.

5. Relations between transformations.

Suppose that $L = \prod_{i=1}^{n} L_i$ and L satisfies condition (ii) in sec. 4. For $F \in \text{Exp}(D:L)$, we define $M^{-1}(F)(w)$ as follows:

$$(M^{-1}F)(z) = (2i)^{-n} \int_{-\infty}^{(0+1)} (\sin(\pi z)\Gamma(z))^{-1} w^{-z} \int_{0}^{\infty} F(-z-a)a^{z-1} da dz.$$

Integral signs denote n-fold integrals.

 $\mathcal{O}_0(\prod_{i=1}^n (C/\overline{\Phi(L_i)}))$ denotes the space of all holomorphic functions which satisfies (1), (2) and (3) in proposition 3. For $g \in \mathcal{O}_0(\prod_{i=1}^n (C/\overline{\Phi(L_i)}))$, we put M(g)(z) as follows:

$$M(g)(z) = (2\pi i)^{-n} \int_{\Gamma} g(w) \exp(z\Psi(w)) dw/w,$$

where Γ is the same countour as in (4) in proposition 3.

We have following commutative diagram:

$$\begin{array}{ccc}
\operatorname{Exp}(D:L) & & & \\
\operatorname{FB} & & & & M^{-1} \\
Q'(L:k) & & & & & \mathcal{G} & & \mathcal{O}_0(\prod_{i=1}^n (C/\overline{\Phi(L_i)}))
\end{array}$$

where FB denotes the Fourier-Borel transform.

6. Applications.

In this section we will show some applications. In what follows we assume (i) and (ii) in Sec. 4.

THEOREM 4. Suppose that $F(z) \in \text{Exp}(D:L)$. If $D^{-m}F(-m) = 0$ $(m \in \mathbb{N}^n)$, then F vanishes identically.

PROOF. By theorem 2, there exists $T \in Q'(L:k')$ such that $\tilde{T}(z) = F(z)$. From (2) in proposition 3 and the assumption $D^{-m}F(-m) = 0$, $\tilde{G}_L(T)(w) = 0$. By Inversion formula (4) in proposition 3, F(z) = 0.

REMARK. In theorem 4, condition (ii) in section 4 is crucial. $F(z) = \exp(sz) - \exp(\bar{s}z)$ (Re s > 0 and $s \in \partial U$) satisfies all conditions in theorem 4. But F(z) does not vanish.

COROLLARY 5. Suppose that $F \in \text{Exp}(D:L)$ and satisfies following conditions:

$$D^{-i}F(-i) \in \mathbb{Z}, \qquad (i \in \mathbb{N}^n).$$

$$D^{-i-j}F(-i-j) = D^{-i}F(-i)D^{-j}F(-j), \qquad (i, j \in \mathbb{N}^n).$$

If $a > \Psi(1) = 0.567 \cdot \cdot \cdot$, then F vanishes identically.

REMARK. $\Psi(1)$ is crucial. $F(z) = \exp(z\Psi(1))$ satisfies above condition. But it does not vanish.

THEOREM 6. Suppose that $F \in \text{Exp}(D:L)$ satisfies following conditions:

- (iii) $D^{-m}F(-m) \in \mathcal{O}_k \ (m \in \mathbb{N}^n).$
- (iv) $\limsup_{|m|\to\infty} \frac{1}{|m|} \log |\overline{D^{-m}F(-m)}| \le c$, (c is a positive constant).

If $\log(d(\overline{\Phi(L_i)})) < -(\delta-1)c$ for $i=1, \dots, n$, then F(z) is exponential polynomial.

PROOF. Put $a_n = D^{-n}F(-n)$, $S_i = \overline{\Phi(L_i)}$ (denotes the closure),

$$S_i^{(j)} = \begin{cases} S_i & \text{if } K = K^{(j)} \\ \overline{S}_i & \text{if } \overline{K} = K^{(j)} \\ \{w \in C : |w| \le \Phi(c)\} & \text{other case,} \end{cases}$$

$$f^{(j)}(w) = \sum_{m \in N^n} a_m^{(j)} w^{-m}$$
.

Then $f^{(j)}$ and $S_i^{(j)}$ satisfies all conditions in theorem 1 in [2]. So $\tilde{G}_L(T)(w)$ is rational function as follows:

$$\widetilde{G}_L(T)(w) = P(w_1, \dots, w_n) / \prod_{i=1}^n Q_i(w_i)$$

where $P \in \mathcal{O}_k[w_1, \dots, w_n]$, $Q_i(w_i) \in \mathcal{O}_k[w_i]$ and $\deg_{w_i} P < \deg Q_i$. Furthermore $Q_i(w_i)$ are monic (i.e. coefficient of highest degree term is unit). By virture of inversion formula (4) in proposition 3, we have our desired result.

COROLLARY 7. Put $L = \prod_{i=1}^{n} [a_i, \infty)$. Suppose that $F(z) \in \text{Exp}(D:L)$ and D^{-m} - $F(-m) \in \mathbb{Z}$ for $m \in \mathbb{N}^n$. r is a real number such that $r \exp(r) = 4^{-1}$ $(r = 0.204 \cdots)$. If $a_i > r$ for $i = 1, \dots, n$, then F(z) is exponential polynomial as follows:

$$F(z) = \sum_{i_1, \dots, i_n} (z_1, \dots, z_n) (\exp(z_1 \Psi(b_{1,i_1}) + \dots + z_2 \Psi(b_{n,i_n}))$$

where $b_{k,i}$'s are algebraic integers contained in $[0, \Phi(a_i)]$ together with their conjugates.

PROOF. In this corollary, $\delta = 1$ and $d(\Phi(L_i)) = (a_i \exp(a_i))^{-1}/4$ ([6]). By assumption on a_i , $d(\overline{\Phi(L_i)})$ is less than 1. Hence we can apply theorem 6 with arbitrary positive number c.

Now we define real numbers r_k 's as follows:

$$r_k \exp(r_k) = k^{-1}$$
 $(k=1, 2)$,
 $r_1 = 0.567 \cdots$, $r_2 = 0.35 \cdots$,
 $r_3 \exp(r_3) = (3 + \sqrt{5})/2$, $r_0 \exp(r_0) = (3 - \sqrt{5})/2$,
 $r_3 = 0.9814 \cdots$, $r_0 = 0.286 \cdots$.

COROLLARY 8. Put same assumptions in corollary 7. If $a_i > r_1$ for $i = 1, \dots, n$, then F vanishes identically.

COROLLARY 9. Put same assumptions in corollary 6 and n=1. If $a>r_3$, then $F(z)=P_0(z)\exp(r_0z)+P_1(z)\exp(r_1z)+P_2(z)\exp(r_2z)$, where P_i 's are polynomials in Q[z].

PROOF. All algebraic integers contained in $[0, (3+\sqrt{5})/2]$ with their conjugates are $0,1,2,3, (3+\sqrt{5})/2, (3-\sqrt{5})/2$ ([3]). So, we obtain corollary 8 and 9.

References

- [1] V. AVANISSIAN and R. SUPPER, Sur les fonctions entières arithmétiques au sens d'Abel de plusieurs variables, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), 781-784.
- [2] A. BAZYLEWICZ, Critère de reconnaisabilité de fonctions analytiques et fonctions entiéres, Acta Arith.

51 (1988), 311–319.

- [3] R. C. Buck, Integral valued entire functions, Duke Math. J. 15 (1948), 879-891.
- [4] A. O. Gelfond, Differenzenrechnung, Deutscher Verlag der Wissenshaft (1958).
- [5] M. Morimoto and K. Yoshino, A uniqueness theorem for holomorphic functions of exponential type, Hokkaido Math. J. 7 (1978), 259–270.
- [6] G. POLYA and G. SZERÖ, Aufgaben und Lehrsätze aus der Analysis I, Berlin (1925).
- [7] P. SARGOS and M. MORIMOTO, Transformations des fonctionnelles analytiques à porteurs non-compacts, Tokyo J. Math. 4 (1981), 457-492.
- [8] R. Supper, Exemples d'applications de la transformation G des fonctionnelles analytiques, Complex Variables 18 (1992), 201-212.

Present Address:

DEPARTMENT OF MATHEMATICS, SOPHIA UNIVERSITY, KIOICHO, CHIYODA-KU, TOKYO, 102 JAPAN.