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Abstract. We consider a positively definite self-adjoint operator P on a separable Hilbert space H which
has a compact resolvent. Then a specific example of the Ikehara Tauberian theorem is extended to the case
where the zeta function of P only has simple poles. In such circumstances, we can obtain the asymptotic
behavior of the counting function of eigenvalues with remainder terms. And we have their applications to
some partial differential operators.

Introduction.

In this paper we shall extend the result of the previous paper Aramaki [2]. To be
more precise, let P be a positively definite unbounded self-adjoint operator on a sepa-
rable Hilbert space H with the domain of definition X which is dense in H. Through-
out this paper, we assume that P has a compact resolvent. Then it is well known that
the spectrum o(P) of P is discrete. Thus we can write the eigenvalues of P by 0<4, <
A< -+, lim;, , A;= co with repetition according to multiplicity and the complete ortho-
normal basis in H consisting of eigenvectors by {e;},~, ,..... If fis a complex valued
function defined on o(P), we can define an operator f(P) with domain of definition
D(f(P)) as follows:

0.1) D(f(P))={uGH ; jg LfG) 12 (u, ej)|2<°0}

fPu= 3. fG ) e)e;,  ueDUP)

where (-, +) denotes the inner product in H. ,

If we choose f(2) =A%, >0, for se C where A~* for 1> 0 take the principal values,
we can define complex powers P~*. Of course, if we denote the spectral resolution
associated to P by {E(4); A€ R}, we can also write:

Ps= f “idED), (€.

0
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Let Np(4) be the counting function of eigenvalues:
©0.2) Np()=#{j; 4<4}, (A>0).

Then the purpose of this paper is to find the asymptotic behavior of Np(4) as A — o0
with remainder terms.
A specific example of Ikehara’s Tauberian theorem says:

PROPOSITION 0.1 (Wiener [16] and Donoghue [6]). Let the trace Tr[P~*]=
Z,Z A; * of P be holomorphic for Res>a (>0). Moreover, assume that there exists a
constant A>0 such that

A
s—a

Tr[P™]—
is continuous for Res>a. Then we have
A
Np(A)=—2%(1+0(1)) as A—o.
a

For realization P in H=L*(R") of global elliptic differential or pseudodifferential
operators, it is well known that Tr[P~°] has a meromorphic extension Z(s) in C and
a simple pole at the first singularity. Thus we can apply this proposition and then
determine the first term in the expansion of N(1). For example, if P is the unique
self-adjoint extension of the harmonic oscillator: P°= — A +| x| starting from C?(R"),
we see that the first singularity of Tr[P~*] is at s=n which is a simple pole with the
residue n/2" and Np(1)=27"A"(1+0(1)) as A— 0. (See also Seeley [14]). However, if
we use the complex powers method in order to determine the remainder terms, we must
extend Proposition 0.1 into the form of Theorem 1.1 below in §1. According to Shubin
[15], if Np(A) admits the following asymptotic expansion

(0.3) Np()=c A% +¢,A%+ - - - +c, A% +O0(A%*1)  as A— o0
where a, >a,> - >a,>a,,,, then we have

c,a
Zy= 3 2% 11, Res>a,.,

i1=1 S—al

where f(s) is holomorphic for Res>a,, ;. Then our investigation is to make a response
for the converse of (0.3) under some conditions. Of course, there are some cases where
the singularities of Tr[ P~*] have multiple poles, however, for such cases we only refer
to Aramaki [3].

The plan of this paper is as follows. In §1, we give some notational remarks and
the main theorem. Section 2 is devoted to the proof of the main theorem. The proof
consists of three parts (A), (B) and (C). In part (A), we examine the asymptotic behavior
of Tr[e™*?] as z—0 with Rez>0 where Q is a suitable power of P (cf. Duistermaat
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and Guillemin [7]). Part (B) is devoted to the study of asymptotic behavior of I{u) where

I(w)= r p(u—1)dNy(7)

- for some rapidly decreasing function p. In part (C), we get the asymptotic behavior of
Np(A) using the result of part (B). Finally, in §3 we give two applications of the main
theorem to eigenvalue asymptotics for some partial differential operators.

§1. Statements of results.

Let H be a separable Hilbert space and P a densely defined positively definite
unbounded self-adjoint operator on H with the domain of definition K. We regard K
equipped with the graph norm as a Hilbert space. We assume:

H) The canonical injection from K to H is compact .

Then it follows from (H) that the spectrum o(P) of P is discrete, i.e., both the
following hold:

(1.1) A€ o(P) is an isolated point of a(P).
(1.2) A€a(P) is an eigenvalue of finite multiplicity .

Thus we can denote the sequence of eigenvalues with repetition according to multiplicity
by 0<11 Slzs St limk..m Z‘k': <+ o0.
Since complex powers of P are defined as in introduction, we can define

TP]=Y A
j=1

which denotes the trace of P~* if P~ is of trace class.

On the other hand, for ze C, Rez>0, choosing f(A)=e~?*, 1>0, as a function in
(0.1), we also define an operator e ~P. If we can assume that there exist constants ¢, C>0
such that A;~ Cj° as j— o, it is easily seen that e”F is of trace class and Tr[e **] is
holomorphic for Rez>0. For z=it (te R), we can define an tempered distribution

Trle *F]: ¢ e L(R)—Ti[H(P)]= '21 ) .
j=
Here #(R) denotes the set of all rapidly decreasing smooth functions on R and ¢ the
Fourier transformation of ¢. We note that
Trle” C+OP] o Trle™#F] as t/0 in &(R)

where &'(R) denotes the totality of tempered distributions on R. Thus we may assume
that Tr[e "] is a holomorphic function in z for Rez>0 and a tempered distribution
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with respect to t=ImzeR.
Now we state the main theorem.

THEOREM 1.1. Let P be a positively definite self-adjoint operator on H satisfying
the condition (H). Moreover assume that
(i) P7*is of trace class for large Res>0 and Tr[P~*] has a meromorphic extension
Zp(s) in C whose singularities {ay, a,, a,, * - * } are all simple poles distributed on the real
line with the residues {Aqy, A, A, - - -} respectively and satisfy: A,>0, ag>0 and

(1.3) ag>a;>a,>: -

(ii) There exists an integer n>1 such that the tempered distribution on R:
[ o]
1.4 Trle P )= ) e 4"
i=1

has t=0 as an isolated singularity.

In the particular case where we can choose the above n as n=1, we moreover suppose
that Zp(s) is holomorphic at s=0.
(iii) Zp(s) is at most of polynomial order uniformly with respect to Ims in all vertical
strips, excluding neighborhoods of poles, i.e., we can find a constant N>0 such that for
any d, <d, there exists a constant C=Cy, 4,>0 such that

(1.5) | Zp(s)| < C(1 +|Ims ¥

Sfor all.sell,, 4,={seC;d,<Res<d,,|Ims|>1}.
Then we have the asymptotic formula of Np(4):

(1.6) Np)= ¥ AL jaopo-1eomy a5 1o co
ji=0 aj

where p=max{j ; a;>(n—1)a,/n}.

Before the proof, we have some remarks. If we replace P with Q=P we see
that the eigenvalues y; of Q satisfy u;=(4,)°/", Zy(s)=Zp(aos/n) and N y(A) = Np(A*/%).
Since Zy(s) has the simple poles b;=a;n/a, with residues B;=nA;/a,, thus the proof is
reduced to the case a,=n. Therefore, from now we concentrate on the case ao,=n.

If we note that Z,(s) has the first singularity at s=n which is a simple pole with
residue A,, we obtain from Proposition 0.1 that

(1.7) N,(A)=—/:li}."(l+o(l)) as A—oo.

Therefore, since it follows from (1.7) that A;~c~!/"j!/* where c=Aq/a, (cf. [15]), we
can define a tempered distribution Tr[e~#"] on R.
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§2. Proof of Theorem 1.1.

In this section, we shall prove Theorem 1.1. The proof consists of three parts (A),
(B) and (C). Let P be the operator satisfying the hypotheses of Theorem 1.1 with g, =n.

(A) If we put
2.1) 0p(z)=Tr[e~F]= ), e "4,
i=1
it follows that 6,(z) exists and holomorphic in ze IT,={ze C; Rez>0}.

In fact, by (1.7), we see that A;~ ¢~ !/"j1/" Therefore, for any a> 0, if Rez>a, there
exists a constant C,>0 such that

s

a0
le"H[<C, ¥ 1/j2< 0.

J J

“Thus Z;'; . |e~*%| is absolutely and uniformly convergent in the wider sense in ,.
On the other hand, by the inverse Mellin transformation, we can rewrite 0,(z) in
the form:

2.2) 0p(2)= L f z27Zp(s)I(s)ds
2 Res=d
where d>0 is large enough. Here I'(s) is the Gamma function:
F(s)=j " le Res>0
o

and for Res<0, I'(s) is defined by the analytic continuation:

B I(s+k)
 (s+k—1)s+k—2)---s

Since t=0 is an isolated singularity of Tr[e~*F] by the hypothesis of Theorem, we can
choose T, >0 such that

2.3) [— Ty, Tolnsingsupp Trle *F]={0} .

In this part (A), we shall search for the asymptotic behavior of 8,(z) as z | 0, i.e., z—0
with Rez>0 (| z|<T,). In order to do so, we must list up all the poles of Zp(s)I'(s) in
the integral (2.2). Since Z,(s) and I'(s) have the sets of the singularities {a,, a,, - - -} and
Z_={0, —1, —2, -- -}, respectively which are all simple poles and a;>0 for 0<j<p,
we denote the rearrangement of {a,.,a,43, -} UZ_ by {@,41,a,4, -} so that
dp+1>a,, > - . Here we note that if a,,,=a,.,, = —le Z_ for some k' > 1, Zp(s)I'(s)
has a double pole at s= —1I and if a},,, ¢ Z_ for k>1, Zp(s)I[(s) has a simple pole at
s=a,.,. Now we shall prove:

I'(s) if Res>—k, k>0.
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ProrosITION 2.1 (cf. Helffer and Robert [9; Theorem 6.6]). Under the reduced
hypotheses of Theorem 1.1, for every large integer N, we can write

N-1 1
24 0p(2)= i A;Il(a)z" % + Z A},,‘z—“9(logz)"+0}"(z) R
j=o j=p+1k=0

for Rez>0and 0<|z|<T,.
Here A, (j=p+1) are some constants, ;=0 if a; is a simple pole of Zp(s)I'(s) and
l;=1if aj= —1 is a double pole of Zp(s)I'(s), ay<by<ay_, and we have

1
07 (2)= py 27 Zp()(s)ds=0(z""™),

Res=bn

asz|0,ie., Rez>0,z-0.

REMARK. If P is the unique self-adjoint extension in L2(R"™) of the harmonic
oscillator: P,= —A+|x|? starting from C&(R"), the Weyl symbol of e ~** is equal to

oz ; x, p)=(coshz) "exp{ —(tanh 2)( x| +| p|*)}
for Rez>0 and z#i(2k + 1)n/2, (k € Z). Therefore we have 0,(z)=(2sinh z) ~" for Rez>0
and zs#ikrn, (ke Z). Thus by a simple calculation, we have, for 0<|z|<m,

0p(z)=(2sinhz)™"= ) B;z "+
j=0

where B,=2"", B, = —n/(3:2®*V), B,=n(5n+2)/(2"*3 - 32.5), etc. In this case, since
P is a differential operator, the logarithmic terms disappear (cf. Robert [13]).
For the proof of Proposition 2.1, we firstly need the following Lemma.

LEMMA 2.2. Let Rez>0. If we put s=1+ic (1,0 € R), then for any d, <d,, there
exists a constant C=C, 4, 4,>0 such that

|27 Zp(s)[ () | < Celelsessl ~lamaa(q | g |z N =172
Jor all sell,, ,, where N is as in (1.5).
PrOOF. By the Stirling formula, there exists a constant C, such that
2.5) |F(s)| < C e F|s|-~2e~lollarssl |

Here for any 6>0, the estimate (2.5) is uniformly in D,={seC; |args|<n—4d}. On
the other hand, by the hypothesis (iii) of Theorem 1.1, there exists a constant C,>0
such that

| Zp() | <Ca(1+] 0DV
for seIl,, 4,. Therefore there exists a constant C; >0 such that

lZ_'Zp(S)I'(S) | $C3 l z I—t(l + | o ')t+ N- I/Zeangz—lallurgsl
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for all sell,, 4,. This completes the proof.

PROOF OF PROPOSITION 2.1. For fixed z with Rez> 0, there exist M >0 and g, >0
such that |argz|—|args|< —¢, for all s=t+iocell;, 4, and |oc|=M. Then it follows
from Lemma 2.2 that

d2
J |z=CMNZ (c 4 M) (z +iM) | dt

dy

<C(Rez) e eoM(1 + M)?+N-12(g _d)>0 as M—ooo.

If we choose d; and d, so that a;,; <d, <a;<d,<a;_; (1<j<p), Zp(s) has only one
simple pole at s=a; with residue A4; in {seC; a;,, <Res<a;_,}. Therefore by the
residue theorem and the above argument, we have

1 1

— 27 Zp(S)(s)ds=—— 27 Zp(S)(s)ds+ A;l(a)z™ " .
27'Ei Res=d> 27” Res=d;

Similarly, if a},, <d, <aj<d,<aj_,; and qjis a double pole of Zp(s)I'(s), we see that

A" A.,-
Zp(5)I'(s)— ]'0, - ]’1, 3
S— al (S - aJ)

is holomorphic for d; <Res<d,. Then we have

1
Ty z7°Zp(s)[ (s)ds
27” Res=d;

1

= 27 Zp(S)[(s)ds+ Aj oz~ — A} 1z % og z .
270 JRes=a,

If a} is a simple pole of Zp(s)[(s), it is easily seen that we may put A1 =0 in the last
equality. In order to complete the proof, it suffices to show that the following Lemma
on the remainder term 6%%(z) holds.

LEMMA 2.3. Letb<—N—1/2 and b¢ {a,+1,a,42, - - }. Then for every non-nega-
tive integer | such that l< —b— N—1/2, there exists a constant C, >0 such that

b+l d !
z (:i?) 05(2)

Jor all z with Rez>0 and |z|<T,.

(2.6) <C

PrROOF. Put s=b+io. First of all, we must consider the integral

1
I(z)=2z* ”(-;Z—) % j z75Z p(S)(s)ds
Res=b
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— b+ (_1.)l J ss+1)--- (S+1_1)z"“'ZP(s)F(s)dS
Res=b

2mi
(_1)! o -1
— [1 (b+ioc—j)z"*Zp(b+io)[(b+ic)do .
74 —w =0 '

Then using the Stirling formula (2.5) again, it follows that the absolute value of the
integrand in the last integral is estimated by

C(l + | o |))V+l+b— 1/2 elal(largzl — |arg(b +io)])

for some constant C. Since |argz|<n/2<|arg(b+io)| and N+I+b—1/2<—1, the
integrand is estimated by an integrable function C(1 +| o N +1+8-1/2 which isindependent
of z. Thus we see that | I(z)| <C, for some constant C;. This completes the proof.

(B) In this part, we shall examine the asymptotic behavior of

(2.7) I(w= J p(p—1)dNp(7)
where the function p € #(R) and satisfies
p20, p(0)>0,
peCy(R), p(0)=1, p is an even function and

supp p = (—To, To) -

For the existence of such a function, see Helffer [8]. Since by (1.7), Np(7) is of at most
polynomial order as T — o0, it follows from the Lebesgue theorem that

¢}

I(w= lif{)! j e”*p(u—1)dNp(7)

— o0

=lim Y e **p(u—A)

el0 j=1

=lim(2n)~! jw 0p(e+in)p(t)e™ dt

el0 —®

N-1 1
=j§0 AL+ Y 2 Al ) + Ry (1)

j=p+1 k=0

where

(28) L= ligl 2m)~! on (e+it)" T (a)p(r)e™ dt,

- oo
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(2.9) L) =lim (2m)~* r (e+it)~“(log(e + it)p(t)e™ dt ,

R, (0)= lif? (2m)~! Jw 05 (e + it)p(t)e™ dt .

Now we want to get the asymptotic behavior of I(u) as y— co modulo O(u"~2) if n>2
and O(u~ 7% for some 6 >0 if n=1. For this purpose, we prove the following:’

PROPOSITION 2.4. Under the preceding situations, we have

(2.10) I(u)=j; Al () + R(p) = ZPZO A;jp* ™'+ R(u)
where
_fow? i 22,
R(#)—{O(u‘l“") for some 6>0 ifn=1.

In order to prove this proposition, we need the following three lemmas.

LEMMA 2.5 (cf. Aramaki [1]). Let O0<o<1 and p be as above. Then we have

a0 0

im | (e+if) ™7™ dt= f (it) "o e™dt .

el0 J _

-] — o0

ProoOF. The mean value theorem leads to
1
(e+it)‘”=(it)‘”—ssj (e0+it)"°~1do .
0

Here we have, with a constant C independent of ¢,

8J‘
t=1

For any 6 with 0<d <1, we have

8J‘
ltl<t

Thus if we choose d >0 such that 0 <o+ <1, the last integral is equal to
3 P

eC j |t]~° %dt= 26°C -0 as £—0.

) It <1 5(—0'_6+1)

This completes the proof.

2Ce -0 as e—0.

1
'f (0 +it)"°~1do

]

dtsCeJ [t|7° Ydt=
lth=1

1
f (0+it)="~1do
0

1
dtSsCf (€0~ 1dO|t|" " %dt .

ltiIs1JO
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LEMMA 2.6 (cf. [1]). Let 0<Res<1. Then we have

(2.11) J(5) = (2n)~1I(s) J (i) e dt=p1.
Proor. First of all, it is well known that for 0<Res<1, Rez>0, z#0,
I‘(l—s)=z“’j e ¥t %dt .
(1)

Putting z= +iu, u>0 in this formula, we have

j t™%eT¥dt=(tipy I(1—s).

o
Now, if we decompose J(s)=J *(s)+J ~(s) where

J *(s)=(2n) "I (s) ” (it)"*e*dt ,
"o

J ~(s)=(2m) "I (s) (i) *e*dt
=(2n)_1F(s) [~ (—it)"se'*dt ,
JO '

.~ we have

J(s)=J T (s)+J " (s)
= m) i (= i+ (= )y IO —s)
=Q2n)~ 2sin(as)[(S)[(1 —s)u* ' =p*~1.
This completes the proof.
LEMMA 2.7. Let 0<o<1 and j=>O0 integer. Then for every ¢ € CT(R), we have

(2.12) lim N (8+it)_‘ij¢(t)eimdt=O(ﬂc¥j—1)

el0 J_ o
as g— 0.

PROOF. Since ¢ € C(R), we may assume that supp ¢ =(—a, a) for some a>0. At
first, we shall prove (2.12) in the case j=0 and 0 <o <1. For this case, we have

_ro (e+it) "P(t)e dt=K,(u; &)+ Kx(u; &)+ K3(u; €

- o
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(2.13) Ki(u; s)=¢(0)fw (e+it)""e™dt ,

(2.14) Ky(u; 8)=‘r (e+it)~°(d(1)— Pp(0)) e dt ,

(2.15) Kiu; =40 |  (e+i)yce™dr.
ltiza

By Lemma 2.5, it follows that lim, o, K,(u; &)=0(u""') as p—co. In the integral
K;(u ; ¢), the integration by parts leads to

$(0)

™ {(e—ia) e e — (e +ia) % e}
ip

Ky(u; &)=

+260)|  (e+inotewar .
U

ltl2a

Since [(e+it)"°~1|<C|t|~° ! and 0<g <1, the integrand of (2.15) is estimated by an
integrable function independent of ¢ for |t|>a. Thus it follows from the Lebesgue
theorem that lim, o Ks(u; 8)=0(u"') as p— co. Also in the integral K,(u; ¢), the
integration by parts leads to

Ky o) =%[(e+ir)-"(¢(t)—¢(0»e-‘"']".,
+ % J‘“ (e+it)~°~ 1(d)(t) —¢(0)) ertde

—.L r (e+it)~°¢'(t)e™dt .
LTI

The first and the third terms are of order O(u~!) uniformly in &. In the second term,
since ¢(t)— p(0)=td'(6t) for some O€(0, 1), we have

|(e+it) ™"~ H(p()— O) |<C|t]|™°

where C is a constant independent of &. Therefore the second term is integrable on
[—a, a] and estimated by

c,r*f [t|~°dt=2Cu~'a'""/(1—0).

Thus using the Lebesgue theorem again, we see thatlim, o K,(u ; £)=0(u" Hasu— 0.
Next we consider the case j=0 and o=1:
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lir? j (e+it) " ‘p(t)e™dt .
el -®

Define a function:
e if u>0,
a,(u)={ L E
0 if u<O0.
Since the convolution of a, and y € #(R) becomes
7]

(a.*y¥)Xp)= f ) a,(u—Y(r)dr= f

e =YY (1)dt
for any £é>0 and
1
e+it

@®
aaz(t) =J‘ e—(e+it)ndu=
0

we have

@n)~! J'°° (e+i) " 'P()e™ dt=[a, - ¥1~ (W) =(a,*)(1)

where * denotes the inverse Fourier transformation. Thus putting ¥ = ¢, we have

(2.16) lig)l Qm)~? f " (etin - o)emdr

- f " Bedr=¢(0)— J ) P(t)dr=¢(0)+O0(u™")

for any integer N> 0. Thus (2.12) holds for the case j=0.
Let j>1. Repeating the integration by parts leads to

Lo, j i, ) | (e+it) =" ig(t)e™ dt

— a0

. 1 . ,
=—r—I(0,j—1, 4, ) +———F1(0,j—1, p, ¢
oc+j—1

Wt
T 5o (@t+j—1)(c+1)

Therefore it follows that I (s, j, u, ¢) is a linear combination of

1(0,0, u, ¢©).

w!
Ia(as Oa K, ¢(l)) ’ (I=O9 1’ o sj) .

(c+j—1)---(c+1)
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By the result of the case j=0, we see that
limI(o,j, u, =0’ *'"1) as p—oco.
el0

Similarly, for j>1, by integration by parts, we have
Ie(a’ _j9 U, ¢) = #— 1(0. —J_ 1)13(0', - (]'_ 1)’ H, ¢) + l”'_ ! Ia(a’ _ja H, ¢I) .
Thus by the similar arguments as above we see that (2.12) holds. This completes the proof.

REMARK 2.8. If we choose ¢ =p where p is as in (2.7), we see that

(2.17) lim (2m) ! r (e+it) 1p(t)e*dt=1+0u"")
. €l0 -

for any integer N >0. In fact, it suffices to note that §(0)=1 in (2.16).

ProOF OF ProposiTioN 2.4. For brevity of notations, we put a;=n—b;
(j=0,1, - -, p). Then by=0 and 0<b;<1 if 1 <j<p. Repeating the integration by parts
and applying the Leibniz formula, we have ‘

Iius &)= f (e+it) T +Pip(t)et dt

_ (__i)n—l
~ (n—1—b)---(1-b)

=Iu; ) +1{2(u; e)

J ’ (e+it)~ 1+ <%)..— l(ﬁ(t)ei“') dt

where

[ o= ur
i ;e (n—1—b)-

n— _ .~ n—1—1 ®
IPw;9=3 (" 1) e J- (e+it) 121 g0y e dt .
1=1 l (n—l—'bj)' : (l—bj) —

Applying Lemma 2.7, it follows that I{?(u ; &)=O0(u"~>~%) uniformly in &. Noting that
I{¥(u; &)=0 for n=1, we see that

ou"~? if n>2,
R ) .
Oo(u ) for some 6>0 if n=1

1 [+ 4]
T j (e+it)~1*2p()e'dt ,
J — o

as p— oo uniformly in £€ (0, 1]. Applying Lemma 2.6, Lemma 2.7 and Remark 2.8 for
0<j<p, we see

n—1-—b;

aj—1
1im(21t)_111(1)(y : 8)= U _ uv ..
610 (n—1—b)---(1—bp)l(1—b) TI(a)
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Thus we have
1{@w)=hm (2m)~ ' T(a)l {p ; &)= p™~"' + R ()
elo .

where

ow"?), if n>2,

RW™(1) =
1) {O(y""’) for some 6>0 if n=1

as u— oo.
Next we shall show that I;,(u) (p+1< j<N—1,0<k<1) are negligible, i.e., I; (1)
satisfies the same estimate as R{"(u) above.
When k=0, if we replace n in the above arguments with n— 1, we easily see that
I;0(p) are negligible. When k=1 and aj#1, the integration by parts leads to

I, (@) =lim J. (e+it)~%p(t)e™ dt
eto 1—aj J_,
+lim ,'[ (e+it)~**  log(e +i)p’(t) e dt
elo 1—a; J_

+1im —-"’J‘ (e+it)~** 1 og(e +it)p(t)e™dt .
elo 1—aj

Since for any d,>0 there exists a constant C>0 such that
| (e+it)’log(e+it)|<C

in supp 4(t), we see from Lemma 2.7 that I; ;(u)=0(u*~1*%), If n>2, it follows from
the hypothesis of Theorem 1.1 that n—1>a). However if n—1 =aj, aj is a simple pole,
so k=0. If n—1>aj, we choose J, so that aj—1+38,<n—2. Thus we see that
I; ;(w)=0(""2). When n=1, if aj=0, aj is a simple pole of Z(s)I'(s) by the hypothesis
of Theorem 1.1. Therefore we reduce to the case k=0. If a;<0, we choose d, so that
aj— 1+, < —1. Thus we see that I; ;(u)=0(u~*~?) for some 6>0.

Finally we shall estimate the remainder term R, (u).

LEMMA 2.9. Let —by>N+5/2. Then we have
(2.18) lim f (e +i)p() e dt=0u"?) as p—oo.
: el0 J _ ©

ProOOF. By the integration by parts, we have

lim J. G5 (e +it)p(t)e™ dt
el0 J_ o
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— [ ]

= lim| (8% (e+i)p(t)) e dt

ipelo J_ o

_l . @© d 2 b . A iut
=—5lim — ) (OF (e +it)p(r)e* dt .

ue oeto J_ \ dt

Then it follows from Proposition 2.3 that there exists a constant C> 0 independent of
€€(0, 1] such that

d \? A
l(z) 6 +iDp@e)|<C.

This cbmpletes the proof.

(C) In this part, we shall examine the asymptotic behavior of Np(1). Here we
only give an outline of the proof (cf. [8], [9] and [1]).
First of all, we note that it follows from (2.10) that

e e

Iw=| p(u—71dNp(1)=0(E"""') as pu—o.

LeMMA 2.10 (cf.[8],[1]). Thereexists aconstanty >0 such that for all K>0and ),
(2.19) J dNp(W<y1+K)y'1+| A"~ 1.
lA—p|<K

LemmA 2.11 (cf. [8], [1]). For any £>0, there exists a constant K>0 such that
for all A>1,

(2.20) J dNp(w)<ei*~1,
lA-pl2K
(2.21) f {r p(r—#)dt}de(u)S.sA"‘l ,
u>A—-K — a0
(2.22) j {jw p(ﬂc—y)d‘r}de(/t)Saﬂf‘“1 .
u<i—-K A

For the proof of the above lemmas, see [8].
Using the above Lemmas, we have

1 ji=0 4;

(2.23) _ jt I(wydu= i ﬁ'L"’J' +0(t™) as T

where r,=n—1 if n>2 and r, = —§ for some 6>0. On the other hand, the integral
) t » J(W)dp is bounded from above. Therefore we have
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.[t {J"” p(f—#)df}dNP(ﬂ)=iﬁf“’+0(f'") as T—00.

—c - j=o0 a;
Now we can decompose the left hand side into A+ B+ C where

y { f ' p(i—u)dl}de(u),

Ju>t+K —

B= { f t p(A—u)dA}de(u),

Ju<i—K — o0

Cc= { f ’ pa—u)eu}de(u).

Jiju—-ti <K -

Here we can write B=N(t)— B, — B, where

Bl=f { f ) p(A—u)dA}de(u),
up<t—K

T
' B,= J dNp(u) .
t—K<pu<t
Therefore taking Lemma 2.10 and Lemma 2.11 into consideration, we have
A
(2.29) Np(7)= i 184 0" Y as t—00.
j=0 aj

This completes the proof of Theorem 1.1.

§3. Examples.

In this section we shall apply the results given in the Theorem 1.1 to some partial
differential operators. -

(i) Let P°= —Ag+1 on S, where Ag denotes the Laplace-Beltrami operator on
the unit sphere S, in R**1. It is well known that P° has a self-adjoint extension P in
L?(S,) with compact resolvent and the eigenvalues of P are v,=l(l+n—1)(1=0, 1,2, ---)
with their multiplicities

(e

Since

Zp(s)= i d{l(l+n—1)+ 1}~*
1=0
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has the first singularity at s=a,=n/2 which is a simple pole with residue 4,=1/(n—1)!
and Z,(s)— Ay /(s—a,) is holomorphic for Res>(n—1)a,/n=(n—1)/2. It follows from
[7] that e *F"* has t =0 as the isolated singularity. The other hypotheses of Theorem
1.1 hold (cf. [5]). Applying this theorem, we have

NP(A)=%A"’2+O(A‘"‘”/2) as A—00.

(ii) Let P° be the Schrodinger operator:
@3.D) P%= —A+q(x) on R"
where A denotes the Laplacian:

0? 0> 0?
=t
ox?  ox32 0x2

and the potential g(x) is of the form:
gx)=(1+|x*)?,  6>0 an integer .

Such operators of this type were considered by many authors (cf. Helffer and Robert
[10] and Levendorskii [11]). If we regard P° as an operator on L2(R") with the domain
C3(R™), it follows that P? is essentially self-adjoint and has the unique self-adjoint
extension P which is positively definite. Moreover, it is well known that P has a compact

resolvent. Thus we can write the eigenvalues with repetition according to multiplicity
of P by

0<)¢ISA'2S..., lim/‘.j=w.
o

We denote the counting function of eigenvalues of P by (0.2) and consider the
asymptotic behavior of N,(4) as 4 — 0.

According to Hormander [12], we can regard W=T*(R")=R"@® R" as the
symplectic vector space with the symplectic form o:

O'«X, 6)’ (y’ "))= <€s y>— <'7’ x> ’ for (xa é), (y9 ﬂ)E w.

For every (x, £)e W, we define a o-temperate metric on W:

In*+ ly|?

1 1
[ €12+ <xH?? {x)?
where (x> =(1+]|x|?)!2. The dual to g, , with respect to ¢ is also defined by:

. _ lo((y, n), (z, {) 1
Gl S

gx, v, M) =

Then we have
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e é)g[ i g‘:‘{(_y’i)]lll(l EI2+{(xD?) T xp 71
om0 gz Ay, n)

- Here we note that there exists a constant C such that

h(x, §) < Cmin{{x, £ 1, {x)~1+9}

and the function p(x, {)=|&|>+<{x)2?? is o, g-temperate. Then by [11] we see that
p€S(g, p), i.e., for every multi-indices a, B, there exists a constant C, ; such that

3.2) | DD p(x, )1 < CopPlx, O<x) 71 £ 12+ (x)29)710N2
for all (x, £) e W. In general, the operator with the Weyl symbol a € S(g, p)is defined by:

a"(x, Dyu(x)=(2m)~" J. Je“"“”"a(f—;l, é)u(v)dydé , ue(R").
For such theory of pseudodifferential operators, see [11], [12] and also [15]. If we
denote the spectral resolution associated to P by {E(4); Ae R}, we can also define
complex powers P~* of P by (0.1). According to [14] and Aramaki [4], we see that
P~* are pseudodifferential operators, i.e., P~*e S(g, p~***) with the Weyl symbol:

(3.3) P-s~ 2 P-s;
Jj=0

where
p—® if j=0

P-us= 17t Ss+1) - (s+k—1)
=) k!

Here we note that d,, € S(g, h'p*) are independent of s. In particular, d, ; =0. Therefore
we can rewrite (3.3) in the form:

dp~*%  if j=1.

P_s=p *+r,

where r, belongs to S(g, h*p~***) and is holomorphic with respect to s. For s with large
real part, P~ is of trace class and the trace Tr[P~*]=I(s)+ R(s) where

I(s)=Q2n)~" JIp(x, &)~ *dxdéE , R(s)=(2n)~" f f ryx, £)dxd¢ .

By the change of variables é—{x)’¢ and then the change of x, ¢ into the polar
coordinates respectively, we have

I(s)=(2m)""| S, -, Iz-[ (1 +"2)“""""’2’r""drf (1+R?*™*R""'dR
0 o
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where | S, _; | =2n"2/I'(n/2) denotes the surface area of the unit sphere S,_, ={xeR";
| x|=1}. By the well known formula:

r_L_ ool T+ h)/2re+1-(a+1)2)
o (L+rA)1¥e " 2 I'(1+b)

for Reb> —1, Rea> —1 and Re(b—(a+1)/2)> —1, we see that

o T(6(s —n/2)—n/2)[(s—n/2)
I'(6(s—n/2))I(s)

is holomorphic for Res> a,=n(1 + d)/(26) and has a meromorphic extension in C which
is also denoted by I(s). By the theory of the Gamma functions, it is not difficult to see
that the singularities of I(s) are all simple poles: s=a;=((1+d)n—2j)/(26) (j=0, 1, ---).
In particular, the residues A4; at s=a; for j=0, 1, - - -, [(1+6)/2] where [(1+0)/2]=
max{jeZ: j<(1+38)/2} satisfy:

I(s)=2"

__ (-Dr(@—2j+28)20)
"I T(=2j+ /2T (@ + Dn—2))/23)

For the case: n=1, it is clear that if § is an odd integer and j=(1+9)/2, Zp(s) is
holomorphic at s=a;=0.

Since r, € S(g, h*p**®), it follows from [4] that by the same change of variables, R(s)
is holomorphic for Res>(n—2)(1+ 6)/(26) and has a meromorphic extension in C. If
we put Q=P/r=p@+1I23 then the principal symbol of Q is equal to q(x, &)=
p(x, &)@+ V2 1t follows that

singsupp Tr[e "¢]c ¥

where Z denotes the set of all periods of periodic Hamilton flows associated to
qo(x, E)=(| €|* +| x|2%)@* V(29 with energy 1. Here we note that g,(x, &) is the principal
symbol regarding Q as a quasi-elliptic pseudodifferential operator. Therefore we see that
t=0 is an isolated singularity of the tempered distribution Tr[e~#?] (cf. [7]). Thus all
the conditions of Theorem 1.1 hold with a;=((6 + 1)n—2)/(26), j=0, 1, - - - (cf. [4] and
Dauge and Robert [5]). Therefore applying Theorem 1.1, we have
[(6+1)/2
Np(A)= Y BAC+Dr=20/@9 4 g(@+ 1= 1/2d) as A— o0
i=o0
where
B.— (—1Y8Ir(n—2j+28)/(26))
D@+ Dn—2))j12" T T(n—2j+2)/2T((5+ Dn—2j)/(26))
In the particular case: =1, i.e., P° is the harmonic oscillator:

P°=—A+|x|?+1,




110 JUNICHI ARAMAKI

we have

1
Np(l)='2—n';'—‘ln+0().”_1) as A-—>OO .
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