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1. Introduction.

Horocycles are defined as submanifolds associated with the geodesic flow on the
unit tangent bundle of a two-dimensional compact connected Riemannian manifold
with negative curvature. The geodesic flow and the horocycles themselves are interesting
subjects of investigations in the theory of dynamical systems. Our interest in this paper
is to characterize a manifold with negative curvature via horocycles and we call this
characterization rigidity of horocycles.

Let $N$ be a two-dimensional compact connected orientable Riemannian manifold
with variable negative curvature, and let $M$ be its unit tangent bundle. The expanding
horocycles on $M$ are obtained associated with the geodesic flow $g$ . Let $N^{\prime}$ and $M^{\prime}$ be
defined similarly. The result is the following:

THEOREM A. Ifa homeomorphism $\varphi$ : $M\rightarrow M^{\prime}$ maps every expanding horocycle on
$M$ onto an expanding horocycle on $M^{\prime}$ and preserves their orientations, then $N$ and $N^{\prime}$

are homothetic.

In this theorem to be homothetic means that there exists a diffeomorphism from
$N$ to $N^{\prime}$ and the difference between the metric on $N^{\prime}$ and the image of the metric on
$N$ by this diffeomorphism is a constant multiple. The orientation of expanding horo-
cycles is defined in \S 2.

From a point of view of characterization of a manifold with negative curvature
via horocycle flows, i.e., rigidity of horocycle flows, there exists a typical result by M.
Ratner [R]. Let $N_{c},$ $N_{c}^{\prime}$ be complete 2-dimensional Riemannian manifolds with constant
negative curvature, and let $M_{c},$ $M_{c}^{\prime}$ be their unit tangent bundles, respectively. $I\dot{f}$ there
is a measurable isomorphism between horocycle flows on $M_{c}$ and $M_{c}^{\prime}$ , then $N_{c}$ and $N_{c}^{\prime}$

are isometric. This result provided the motivation of this work.
In this paper we give the proof of the following theorem.
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THEOREM B. Ifa homeomorphism $\varphi:M\rightarrow M^{\prime}$ maps every expanding horocycle on
$M$ onto an expanding horocycle on $M^{\prime}$ and preserves their orientations, then there exists
a constant $c\in R$ and a homeomorphism $\psi$ : $M\rightarrow M^{\prime}$ such that

$\psi\circ g_{r}(x)=f_{cr}\circ\psi(x)$ for all $x\in M$ .

In \S 2 we state properties of Anosov flows, and then give the proof of Theorem $B$

in \S 3.
We may deduce Theorem A from the following result by J. P. Otal and Theorem B.

THEOREM $C$ ([O]). If a homeomorphism $\psi:M\rightarrow M^{\prime}$ satisfies $\psi\circ g_{r}=g_{cr}^{\prime}\circ\psi$ for
some constant $c$, then $N$ and $N^{\prime}$ are homothetic. In particular, if $c=1$ then $N$ is iso-
metric to $N^{\prime}$ .

This result is contained in the latter part of the proof of Otal’s spectral rigidity
theorem.

The rigidity theorem proved by Ratner is extended to the case of variable nega-
tive curvature by J. Feldman and D. Ornstein [FO] in the following manner. The
expanding horocycle flow on $M$ is defined by using the parameterization with respect
to Margulis’ measure [M]. If there exists a measurable isomorphism $\phi$ between ex-
panding horocycle flows $k^{-}$ on $M$ and $k^{-\prime}$ on $M^{\prime}$ , then the map $\phi$ is almost every-
where of the form $\phi=k_{\sigma}^{-\prime}\phi_{0}$ , where $\sigma$ is some constant and $\phi_{0}$ is a homeomorphism
from $M$ to $M^{\prime}$ and carries $g_{r}$ to $g_{r}^{\prime}$ . We may deduce the following theorem from the
assertion above and Theorem C.

THEOREM $D$ ([FO]), [O]). Suppose there exists a measurable isomorphism be-
tween expanding horocycleflows $k^{-}$ on $M$ and $k^{-}’$ on $M^{\prime}$ . Then $N$ and $N^{\prime}$ are isometric.

The author is grateful for obtaining information on the geometric background in
\S 2 and the existence of Theorem $C$ from M. Kanai.

2. Preliminaries.

2.1. Anosov background. Let $N$ be a two-dimensional compact connected ori-
entable Riemannian manifold with variable negative curvature, and let $M$ be its unit
tangent bundle. Since $N$ has negative curvature, the geodesic flow $g_{r}$ defined on $M$ is
an Anosov flow; that is, it satisfies the following conditions:

(A) $g_{r}$ is a differentiable flow without fixed points,

(B) there is a $g_{r}$-invariant splitting of the tangent bundle $TM=E^{-}\oplus E^{O}\oplus E^{+}$ ,

(C) $E^{O}$ is the line bundle tangent to the orbits of the flow $g_{r}$ ,

(D) $E^{-}$ and $E^{+}$ satisfy:
there exist positive constants $\lambda,$

$\mu$ such that for $r>0$
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$|dg_{-r}X|\leq\lambda|X|e^{-\mu r}$ if $X\in E^{-},$

$|dg_{r}Y|\leq\lambda|Y|e^{-\mu r}$ if $Y\in E^{+}$

We remark that the constants $\lambda$ and $\mu$ can be chosen independent of the point.
From the general theory of Anosov flow, the following four submanifolds are

defined associated with the geodesic flow $g_{1}$ :
the unstable manifold at a point $x\in M$

$W^{-}(x)=\{y\in M|\lim_{r\rightarrow\infty}d(g_{-r}x, g_{-r}y)=0\}$ ,

the stable manifold at a point $x\in M$

$W^{+}(x)=\{y\in M|\lim_{r\rightarrow\infty}d(g_{r}x, g_{r}y)=0\}$ ,

the weak unstable manifold at a point $x\in M$

$W^{-0}(x)=\bigcup_{r\in R}W^{-}(g_{r}x)$ ,

the weak stable manifold at a point $x\in M$

$W^{+0}(x)=\bigcup_{reR}W^{+}(g_{r}x)$ ,

where $d$ is the distance measured by the Riemannian metric. The subbundle $E^{-}$ is
completely integrable and the corresponding maximal integral submanifold passing
through $x$ coincides with the unstable manifold $W^{-}(x)$ . Moreover, the unstable mani-
folds $W^{-}(x)$ form a foliation on $M$ denoted by $W^{-}$ . Precisely, $W^{-}$ is a partition of $M$

into submanifolds $\{W^{-}(x)\}$ such that

(E) for any $x\in M,$ $W^{-}(x)$ is a complete connected submanifold whose tangent field
is $E_{y}^{-},$ $y\in W^{-}(x)$ ,

(F) for any $x\in M$ , there exist a neighborhood $U$ of $x$ and a continuous map
$J^{-}$ : $U\rightarrow C^{r}(S, M)$ such that for each $y\in U,$ $\Gamma(y)$ embeds $S$ in $W^{-}(y)$ and
$J^{-}(y)(0)=y$, where $S=\{x\in R:|x|\leq 1\},$ $C^{r}(S, M)$ is the set of all $C^{r}$-maps from $S$

to $M$ equipped with the $C^{1}$-topology, and the value of $r>0$ depends on the
differentiability of the Anosov flow $g$ . Moreover, each $W^{-}(x)$ is an immersed
copy of $R$ .

In condition (E) we say that a submanifold $W^{-}(x)$ is complete if it is complete in the
induced Riemannian metric on $W^{-}(x)$ .

The existence of the continuous map $J^{-}$ in (F) implies that the tangent fields of the
foliation $W^{-}$ are continuous and the leaf passing through $x\in M$ depends continuously
on the point $x$ . For simplicity, we call this property the continuity of the $fo!iationW^{-}$

In the same way we can define the foliations $W^{+},$ $W^{-0}$ and $W^{+0}$ in $M$ which consist
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of the stable manifolds $W^{+}(x)$ , the weak unstable manifolds $W^{-0}(x)$ and the weak stable
manifolds $W^{+0}(x)$ , respectively. In this paper we call the unstable manifold $W^{-}(x)$ the
expanding horocycle or the $h^{-}$ -leaf and the stable manifold $W^{+}(x)$ the contracting
horocycle or the $h^{+}$ -leaf.

By using an orientation of $E^{-}$ , we can define an orientation of expanding horo-
cycles, that is, let $X$ : $M\rightarrow TM$ be a nondegenerate section of $E^{-}$ and then the section
$X$ orients each expanding horocycle. Moreover, we can choose the immersion $J^{-}(x)$ :
$R\rightarrow W^{-}(x),$ $x\in M$ such that $(j-(xX0))\cdot(X(x))>0$ where $J^{-}(xX0)=d/dr|_{r=0}(J^{-}(xXr))$ .
Then the orientation of $W^{-}(x)$ corresponds with the one of the real line $R$ . It is clear
that we can give an order to points on $W^{-}(x)$ .

From the definition we immediately have that the foliation $W^{-}$ is $g_{r}$-invariant,
i.e., $g_{r}(W^{-}(x))=W^{-}(g_{r}x)$ for all $x\in M,$ $r\in R$ . By the condition (D) we obtain that the
foliation $W^{-}$ is expanding and the foliation $W^{+}$ is contracting with respect to the
geodesic flow $g_{r}$ , that is,

$d^{-}(g_{-r}x_{1}, g_{-r}x_{2})\leq\lambda e^{-\mu r}d^{-}(x_{1}, x_{2})$ for any $x\in M,$ $x_{1},$ $x_{2}\in W^{-}(x),$ $r\geq 0$ ,

$d^{+}(g_{r}y_{1}, g_{r}y_{2})\leq\lambda e^{-\mu r}d^{+}(y_{1}, y_{2})$ for any $y\in M,$ $y_{1},$ $y_{2}\in W^{+}(y),$ $r\geq 0$ ,

where $d^{-}$ and $d^{+}$ are the distances measured along the leaves of $W^{-}$ and $W^{+}$ by the
induced Riemannian metric on each of them, respectively.

We define neighborhoods of $x\in M$ in the unstable manifold and the weak stable
manifold, respectively, in the following way:

$B_{\epsilon}^{-}(x)=\{y\in W^{-}(x)|d_{x}^{-}(x, y)<\epsilon\}$ ,

$B_{\epsilon}^{+0}(x)=\{y\in W^{+0}(x)|d_{x}^{+0}(x, y)<\epsilon\}$ ,

where $d_{x}^{-}$ and $d_{x}^{+0}$ are the distances measured by the induced Riemannian metrics on
$W^{-}(x)$ and $W^{+0}(x)$, respectively. Since the subbundles of the Anosov splitting $TM=$
$E^{-}\oplus E^{0}\oplus E^{+}$ are transverse, we can introduce the following canonical coordinates [M].

LEMMA 2.1. For sufficiently small $\eta>0$ , there exists $\zeta=\zeta(\eta),$ $ 0<\zeta<\eta$ such that if
$ d(x, y)<2\zeta$ for $x,$ $y\in M$ then In$(x, y)\equiv B_{\eta}^{-}(x)\cap B_{\eta}^{+0}(y)$ consists of one point. Moreover,
In$(\cdot, \cdot)$ is continuous on $\{(x, y)\in M\times M:d(x, y)<2\zeta\}$ .

The points $x$ and $y$ which satisfy the condition in Lemma 2.1 are connected by the
segments of the geodesic, the $h^{-}$ -leaf $W^{-}(x)$ and the $h^{+}$ -leaf $W^{+}(y)$ . Let $H^{-}$ and $H^{+}$

be nondegenerate sections of $E^{-}$ and $E^{+}$ , respectively. The section $H^{-}$ defines the
l-parameter group of transformations $h^{-}$ of $W^{-}$ . (For the definition of a l-parameter
group of transformations, we refer the reader to the chapter I of [KN].) Similarly we
obtain the l-parameter group of transformations $h^{+}$ of $W^{+}$ from the section $H^{+}$ . Then,
by Lemma 2.1, we can choose continuous functions $r(x, y),$ $s(x, y)$ and $t(x, y)$, and by
using them we can describe $y=h_{t\langle x,y)}^{+}g_{r\langle x.y)}h_{s\langle x,y)}^{-}x$ where we set $h_{s\langle x,y)}^{-}x=In(x, y)$ .

The following is a well-known property of the foliations associated with the geo-
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desic flow defined on the unit tangent bundle of a compact surface with negative
curvature. (See Theorem 15 in [A].)

THEOREM 2.1. Each leaf of the foliations $W^{-}$ and $W^{+}$ is dense in $M$.
2.2. Geometric background. The arguments described below in which we intro-

duce an affine connection on $M$ are due to \S 2 in [K]. It is well-known that the unit
tangent bundle of a Riemannian manifold is a contact manifold. Then we can choose
the canonical contact form $\theta$ of the unit tangent bundle $M$ and state the relations
between the contact form $\theta$ and the Anosov splitting $TM=E^{-}\oplus E^{0}\oplus E^{+}$ which are
necessary for the following arguments.

(a) $d\theta(V_{1}^{-}, V_{2}^{-})=d\theta(V_{1}^{+}, V_{2}^{+})=0$ for all $V_{1}^{-},$ $V_{2}^{-}\in E^{-}$ and $V_{1}^{+},$ $V_{2}^{+}\in E^{+}$ ,

(b) $ d\theta$ is nondegenerate on $E^{-}\oplus E^{+}$ .
By using the contact form $\theta$ we can define the pseudo-Riemannian metric $g$ on $M$ : for
$X,$ $Y\in TM$

$ g(X, Y)=d\theta$($X,$ I $Y$) $+\theta(X)\theta(Y)$ ,

where $I$ is the continuous map defined by $I|E^{\pm}=\pm id$ and $I|E^{0}=0$ .
We need that the splitting of the unit tangent bundle $TM=E^{-}\oplus E^{0}\oplus E^{+}$ is $C^{1}-$

differentiable in order to define an affine connection on $M$ by using this pseudo-
Riemannian metric $g$ . It is shown that if $N$ is of dimension two, then the splitting of
$TM$ is $C^{1}$ -differentiable. For detailed arguments of this fact we refer the reader to [HP].
Therefore in our context we can define a unique affine connection $\nabla$ on $M$ satisfying
the following conditions:

(i) $\nabla g=0$ ,
(ii) $T(X, Y)=d\theta(X, Y)G$ for $X,$ $Y\in TM$,

where $T$ denotes the torsion tensor of $\nabla$ and $G=d/dr|_{r=0}g_{r}$ . We state some properties
of the affine connection $\nabla$ :

(c) $\nabla_{G}X=[G, X]$ for any vector field $X$ on $M$,

(d) the vector field $\nabla_{X}V^{-}$ and $\nabla_{X}V^{+}$ are sections of $E^{-}$ and $E^{+}$ , respectively, for
any vector fields $X$, any sections $V^{-}$ of $E^{-}$ and $V^{+}$ of $E^{+}$ .

We describe the property of the foliations associated with the geodesic flow by
using the vector fields generating them.

LEMMA 2.2. If $V^{+}$ is a section of $E^{+}$ such that $[V^{-}, V^{+}]\equiv 0$ for any section $V^{-}$

of $E^{-}$ , then $V^{+}$ has to vanish everywhere.

PROOF. By the condition (ii) which the affine connection satisfies and the defini.
tion of the torsion tensor, we obtain the equation:
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$\nabla_{\gamma-}V^{+}-\nabla_{V^{+}}V^{-}-[V^{-}, V^{+}]=T(V^{-}, V^{+})=d\theta(V^{-}, V^{+})G$ .

Then $d\theta(V^{-}, V^{+})G=0$ from the assumption and the property (d). Since $ d\theta$ is non-
degenerate on $E^{-}\oplus E^{+},$ $V^{+}$ has to vanish everywhere. $\square $

Let $X$ and $Y$ be vector fields on $M$ which generate local l-parameter groups of

local transformations $x_{s}$ and $y_{t}$ of $M$, respectively. (See [KN].) If $x_{so}\circ y_{t_{O}}=y_{t_{O}}\circ x_{s_{O}}$ for

some $s_{0},$ $t_{0}\in R$ , then we say that $x_{s}$ commutes with $y_{t}$ . Let $k_{s}^{-}$ and $h_{t}^{+}$ denote local 1-

parameter groups of local transformations generated by sections $p-of.E^{-}$ and $R^{+}$ of
$E^{+}$ , respectively. Then, by the calculation in the proof of the lemma described above and
Corollary 1.8 in [KN], $k_{s}^{-}$ does not commute with $k_{t}^{+}$ when $|s|$ and $|t|$ are sufficiently

small.

3. Proofs.

We proceed with the proof of Theorem $B$ under the assumption that the homeo-
morphism $\varphi$ maps every expanding horocycle on $M$ onto one on $M^{\prime}$ and preserves their
orientations.

Let $h^{-\prime}$ and $h^{+}’$ be l-parameter groups of transformations of $W^{-}$ and $W^{+}$ gen-
erated by nondegenerate sections $H^{-}’$ and $H^{+}’$ of $E^{-}$ and $E^{+}$ on $M^{\prime}$ , respectively. We
then have the following:

LEMMA 3.1. There exist $\tilde{r}>0$ and continuous functions $o(r),$ $p(x, r)$ such that

$\varphi(g_{1}x)=g_{o(r)}^{\prime}h_{p(x,r)}^{-}\varphi(x)$ for all $0<r\leq\tilde{r}$ and $x\in M$ .
$PR\infty F$ . Letx be any point inMand let $\eta>0beasufficientlysmallconstantin$

Lemma 2.1. Take $\tilde{r}>0$ so that we can apply Lemma 2.1 to the images of $x$ and
$y=g_{r}x,$ $0<r<\tilde{r}$ under the mapping $\varphi$ . We can obtain such a constant $\tilde{r}$ because the
spaces $M$ and $M^{\prime}$ are compact and the mapping $\varphi$ is continuous. In the following
discussion we set $r\leq\tilde{r}$. By the assumption the expanding horocycles through $x$ and $y$ ,

i.e., $W^{-}(x)$ and $W^{-}(y)$ are mapped onto the expanding horocycles $W^{-}(\varphi(x))$ and
$W^{-}(\varphi(y))$ , respectively. If we set $z=g_{r}w$ for we $W^{-}(x)$, then $z\in W^{-}(y)$ since $W^{-}(y)=$

$W^{-}(g_{r}x)=g_{r}W^{-}(x)$ .
By the remark made above following Lemma 2.1 we obtain the unique repre-

sentation $\varphi(z)=h_{q\langle w,r)}^{+}g_{0\langle w,r)}^{\prime}h_{p\langle w,r)}^{-}\varphi(w)$ where we use $o(w, r),$ $dw,$ $r$) and $q(w, r)$ instead of
$r(\varphi(w), \varphi(z)),$ $s(\varphi(w), \varphi(z))$ and $t(\varphi(w), \varphi(z))$ in the remark since the mapping $\varphi$ is contin-
uous and the point $z$ depends on the point $w$ and the parameter $r$ continuously. In the
representation above we introduce the following notations. Let $\pi_{q\langle w,r)}+$ denote the segment
of $W^{+}(\varphi(z))$ between the points $\varphi(z)$ and $g_{0\langle w,r)}^{\prime}h_{p\langle w,r)}^{-}\varphi(w)$, and let $\iota^{+}(\hslash_{q\langle w,r)}^{+}’)$ denote the
length of the segment $\pi_{q(w,r)}+$

’ measured by the induced Riemannian metric on each leaf
$ofW^{+}$ .

Take any three points $x_{1},$ $x_{2},$ $x_{3}$ which lie on the $h^{-}$ -leaf $W^{-}(x)$ in order. We set
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$y_{1}=g_{r}x_{1},$ $y_{2}=g_{r}x_{2},$ $y_{3}=g_{r}x_{3}$ for fixed $r$ with $0<r<\tilde{r}$. By the same arguments as above,
we have $y_{1},$ $y_{2},$ $y_{3}\in W^{-}(y)$ and the unique representations

$\varphi(y_{1})=h_{q\langle x_{1},r)}^{+}g_{0\langle x_{1},r)}^{\prime}h_{p\langle x_{1},r)}^{-\prime}\varphi(x_{1})$ ,

$\varphi(y_{2})=h_{q\langle x_{2},r)}^{+}g_{0\langle x_{2},r)}^{\prime}h_{p\langle x_{2},r)}^{-}\varphi(x_{2})’$ ,

$\varphi(y_{3})=h_{q\langle x_{3},r)}^{+}g_{0\langle x_{3},r)}^{\prime}h_{p\langle x_{3},r)}^{-}\varphi(x_{3})$ .
We assert that if $ l^{+}(\pi_{q\langle x_{1},r)}+)=l^{+}(\pi_{q\langle x_{2},r)}+’)’\sim$ is not satisfied, either $o(x_{1}, r)<$

$o(x_{2}, r)<o(x_{3}, r)$ or $o(x_{1}, r)>o(x_{2}, r)>o(x_{3}, r)$ must be obtained. This is shown in the
following way. Consider the case $o(x_{2}, r)<o(x_{1}, r)<o(x_{3}, r)$ . Since $r$ is fixed, $o(x_{i}, r),$ $i=$

$1,2,3$ change continuously along the expanding horocycle $W^{-}(x)$, i.e., $o(w, r)$ is con-
tinuous with respect to $w\in W^{-}(x)$ , so there exists the point $x_{4}\in W^{-}(x)$ between $x_{2}$ and
$x_{3}$ with $o(x_{1}, r)=o(x_{4}, r)$ . Setting $y_{4}=g_{r}x_{4}$ , we have the following unique representation,

$\varphi(y_{4})=h_{q\langle x_{4},r)}^{+}g_{0\langle x_{4},r)}^{\prime}h_{p\langle x_{4},r)}^{-}\varphi(x_{4})$ .
Since $o(x_{1}, r)=o(x_{4}, r)$ and the geodesic flow $g$ preserves the foliation $W^{-}$ and since
the points $h_{p\langle x_{1},r)}^{-}\varphi(x_{1})$ and $h_{p\langle x_{4},r)}^{-}\varphi(x_{4})$ belong to the $h^{-}$ -leaf $W^{-}(\varphi(x))$ , if $l^{+}(\hslash_{q\langle x_{1},r)}^{+})\neq 0$ ,
there would be a commutation relation among the $h^{-}$ -leaf and the $h^{+}$ -leaf through
$g_{0\langle x_{1},r)}^{\prime}h_{p\langle x_{1},r)}^{-}\varphi(x_{1})$ and the $h^{-}$ -leaf and the $h^{+}$ -leaf through $\varphi(y_{4})$ . This contradicts the
remark made above following Lemma 2.2. By using the same arguments we can prove
the assertion in the other cases. Now we obtain that for fixed $r$ if $l^{+}(h_{q\langle x_{i},r)}^{+})\sim’=0,$

$ x_{i}\in$

$W^{-}(x),$ $i=1,2,3$ is not satisfied, then $o(w, r)$ , we $W^{-}(x)$ is monotone along $W^{-}(x)$ .
On the other hand $o(x, r)$ for fixed $r$ is a continuous function of $x$ , so it always has

maximum and minimum on the compact space $M$. This is inconsistent with the result
in the preceding paragraph if $l^{+}(h_{q\langle x_{i}.r)}^{+})\neq 0,$$x_{i}\in\sim W^{-}(x),$ $i=1,2,3$ . Therefore we obtain
$l^{+}(\pi_{q\langle w,r)}+)=0$ for any $w\in W^{-}(x)$ .

As the foliation $W^{-}$ is g-invariant, the value of $o(x, r)$ is constant on the $h^{-}$ -leaf
$W^{-}(x)$, i.e., $o(x, r)=o(w, r)$ for all $w\in W^{-}(x)$ . Since each $h^{-}$ -leaf is dense in $M$ and $o(x, r)$

is continuous in $x,$ $o(x, r)$ is constant for all $x\in M$ and fixed $r$, that is, $o(x, r)$ depends
only on $r$ . The same arguments as above are valid for all $r\in R$ with $0<r\leq\tilde{r}$. Finally,
we have $\varphi(g_{1}x)=g_{0\langle r)}^{\prime}h_{p\langle x,r)}^{-}\varphi(x)$ for $xeM$ and $0<r\leq\tilde{r}$. $\square $

LEMMA 3.2. The function $0$ is a linear function of $r$ and its domain can be extended
to $R$ , i.e., there exists a constant $c>0$ such that

$\varphi(g_{r}x)=g_{cr}^{\prime}k_{x}^{r}(\varphi(x))$ for all $x\in M$ and $r\in R$ ,

where $k_{x}^{r}$ is a transformation defined on each expanding horocycle and depends on $x$ and $r$ .
PROOF. At first we show the linearity of $r$ with $0<r<\tilde{r}$. Take $x\in M$ and $r_{0}$ with

$0<r_{0}<\tilde{r}$ and map the three points $x,$ $g_{r_{O}/2}x$ and $g_{r_{O}}x$ by $\varphi$ . There exist the $h^{-}$ -leaves
$W^{-}(x),$ $W^{-}(g_{r_{0}/2}x)$ and $W^{-}(g_{r_{0}}x)$ on $M$ passing through $x,$ $g_{r_{O}/2}x$ and $g_{r_{O}}x$ , respectively.
By Lemma 3.1 we have the following relation between $\varphi(x)$ and $\varphi(g_{r_{O}/2}x)$ :
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$\varphi(g_{r_{O}/2}x)=g_{0\langle ro/2)}^{\prime}h_{p\langle x,r_{O}/2)}^{-}\varphi(x)$ , (3.1)

and the one between $\varphi(g_{r_{O}/2}x)$ and $\varphi(g_{r_{0}}x)$ :
$\varphi(g_{ro/2}(g_{ro/2}x))=g_{0\langle ro/2)}^{\prime}h_{ptx,ro/2)}^{-\prime}g_{ro/2}\varphi(g_{r_{O}/2}x)$ . (3.2)

Since the mapping $\varphi$ maps every $h^{-}$ -leaf on $M$ onto an $h^{-}$ ’-leaf on $M^{\prime}$ , the leaves
$W^{-}(x),$ $W^{-}(g_{r_{O}/2}x)$ and $W^{-}(g_{r_{0}}x)$ are mapped by $\varphi$ to the leaves $W^{-}(\varphi(x)),$ $W^{-}(\varphi(g_{r_{O}/2}x))$

and $W^{-}(\varphi(g_{r_{O}}x))$, respectively. By the invariance of the foliation $W^{-}$ in $M^{\prime}$ under the
geodesic flow $g^{\prime}$ and the relations (3.1) and (3.2), we have the following equations:

$g_{0\langle r_{O}/2)}^{\prime}W^{-}(\varphi(x))=W^{-}(\varphi(g_{r_{O}/2}x))$ , $g_{0\langle r_{O}/2)}^{\prime}W^{-}(\varphi(g_{r_{O}/2}x))=W^{-}(\varphi(g_{r_{O}}x))$ . (3.3)

On the other hand, from Lemma 3.1 we have the following relation between $\varphi(x)$

and $\varphi(g_{r_{O}}x)$ :
$\varphi(g_{r_{O}}x)=g_{0\langle r_{O})}^{\prime}h_{p\langle x,r_{O})}^{-\prime}\varphi(x)$ .

Since the geodesic flow $g^{\prime}$ preserves the foliation $W^{-}$ in $M^{\prime}$ , we have

$g_{0\langle r_{O})}^{\prime}W^{-}(\varphi(x))=W^{-}(\varphi(g_{r_{O}}x))$ . (3.4)

From (3.3) and (3.4) we obtain the property of the function $0$ described by $2o(r_{0}/2)=$

$o(r_{0})$. By the same arguments as above, we can establish the following property of the
function $0$ : for any $r_{0}$ with $0<r_{0}<\tilde{r}$ and $p\in N$

$po(\frac{r_{0}}{p})=o(r_{0})$ . (3.5)

Moreover, taking $q\in N$ which satisfies $0<(q/p)r_{0}<\tilde{r}$ and applying the relation (3.5)

to $r_{\acute{0}}=(q/p)r_{0}$ and $q$, we have the relation $qo(r_{\acute{0}}/q)=o(r_{\acute{0}})$ . Therefore $o((q/p)r_{0})=(q/p)o(r_{O})$

for any $r_{0}$ with $0<r_{0}<\tilde{r}$ and $p,$ $q\in N$ with $0<(q/p)r_{0}<\tilde{r}$. From this relation and the
continuity of the function $0$ with respect to $r$ we may deduce that $o(rr_{0})=ro(r_{0})$ for $r\in R$

with $0<rr_{0}<\tilde{r}$. In particular, setting $r_{0}=1/n$ and $o(1/n)=c$ for $n\in N$ with $0<1/n<\tilde{r}$,

we obtain

$o(\frac{r}{n})=cr$ for $r\in R$ with $0<\frac{r}{n}<\tilde{r}$ . (3.6)

Next we extend the domain of $o(r)$ to $R$ . Take $x\in M$ and $r\in R$ and map the two
$pointsxandg_{r}xby\varphi$ . There is no loss of generality in assuming r $>0$ . Indeed, ifr $<0$

we can reverse the roles of $x$ and $g_{r}x$ . In order to use the relation (3.6), we decompose
the parameter $r$ as follows:

$r=\frac{r_{1}}{n}+\frac{r_{2}}{n}+\cdots+\frac{r_{l}}{n}$ , $0<\frac{r_{i}}{n}<\tilde{r}$ , $i=1,$ $\cdots,$
$l$ .

According to the decomposition of the parameter $r$, the points $x_{j}=g_{z_{i=1}^{j}(r_{i}/n)}x,j=1,$ $\cdots,$
$l$
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are obtained on the geodesic passing through $x$ . We set $x_{0}=x$ and have the expanding
horocycles $W^{-}(x_{j})$ passing through $x_{j},j=0,$ $\cdots,$

$l$ in $M$. From Lemma 3.1 and (3.6) we
see that the following relation holds between $\varphi(x_{j})$ and $\varphi(x_{j+1})$ which are the images
of the points $x_{j}$ and $x_{j+1}=g_{r_{j+1}/n}x_{j},$ $j=0,$ $\cdots,$ $l-1$ by $\varphi$ :

$\varphi(x_{j+1})=\varphi(g_{r_{j+1/n}}x_{j})=g_{cr_{j+1}}^{\prime}h_{p\langle x_{j},r_{j+1}/n)}^{-}\varphi(x_{j})$ . (3.7)

Since the mapping $\varphi$ maps every $h^{-}$ -leaf on $M$ onto an $h^{-}$ -leaf on $M^{\prime}$ , the leaves $W^{-}(x_{j})$ ,
$j=0,$ $\cdots,$

$l$ are mapped to $W^{-}(\varphi(x_{j}))$ by $\varphi$ . By the invariance of the foliation $W^{-}$ in
$M^{\prime}$ under the geodesic flow $g^{\prime},$ $(3.7)$ gives the relations

$g_{cr_{j+1}}^{\prime}W^{-}(\varphi(x_{j}))=W^{-}(\varphi(x_{j+1}))$ for $j=0,$ $\cdots,$ $l-1$ .
Let $\tilde{g}^{\prime}$ denote the geodesic passing through $\varphi(g_{r}x)$ . The intersection point $g_{-cr}^{\prime}\varphi(gx)$

of $\tilde{g}^{\prime}$ and $W^{-}(\varphi(x_{l-1}))$ is uniquely determined by the relation $W^{-}(\varphi(g_{r}x))=\iota r$

$g_{cr_{l}}^{\prime}W^{-}(\varphi(x_{l-1}))$ and by the way the parameter $r$ was decomposed. The intersection point
$g_{-ct+1_{l})}^{\prime}r_{l-1}\varphi(g_{r}x)$ of $\tilde{g}^{\prime}$ and $W^{-}(\varphi(x_{l-2}))$ is also uniquely determined. By using the same
argument many times, we have the intersection points $g_{-c\Sigma^{l}}^{\prime}$ $r_{i}\varphi(g_{r}x)$ of the geodesic

$\tilde{g}^{\prime}$ and the $h^{-}$ -leaves $W^{-}(\varphi(x_{j}))$ , successively. At last we obtain the intersection point
$i=j+1$

$g_{-cr}^{\prime}\varphi(g_{r}x)$ of $\tilde{g}^{\prime}$ and $W^{-}(\varphi(x))$ and define the transformation $\hat{h}_{x}^{r}$ by $\hat{h}_{x}^{r}$ : $\varphi(x)\rightarrow g_{-cr}^{\prime}\varphi(gx)$ .
Since the segments between $\varphi(x_{j})$ and $h_{p\langle x_{j},r_{j+1}/n)}^{-\prime}\varphi(x_{j}),$ $j=0,$ $\cdots,$ $l-1$ in (3.7) are in the
$h^{-}$ -leaf $W^{-}(\varphi(x_{j}))$ , respectively, and the geodesic flow $g^{\prime}$ preserves the foliation $W^{-}$ in
$M^{\prime}$ , the transformation $\hat{h}_{x}^{r}$ is a mapping on the expanding horocycle $W^{-}(\varphi(x))$ . Finally,
using $h_{x}^{r}$ we obtain $\varphi(g_{r}x)=g_{cr}^{\prime}k_{x}^{r}(\varphi(x))$ , and therefore, $o(r)=cr$ for all $r\in R$ . $\square $

By the result of Lemma 3.2 we can define the mapping $\varphi_{r}$ by $\varphi_{r}(x)=(g_{-cr}^{\prime}\varphi g_{r})(x)=$

$ff_{x}^{r}(\varphi(x))$ . It is clear that $\varphi_{r}$ : $M\rightarrow M^{\prime}$ is continuous by its construction. Our final aim is
to define, using the mapping $\varphi_{r}$ , a homeomorphism which maps the geodesic flow $g$ on
$M$ to the geodesic flow $g^{\prime}$ on $M^{\prime}$ and changes the parameter of $g^{\prime}$ by the constant $c>0$
in Lemma 3.2.

LEMMA 3.3. The continuous mapping

$\varphi_{\infty}(x)=\lim_{r\rightarrow\infty}\varphi_{r}(x)$ for all $x\in M$

is well-defined.
PROOF. Fix $r_{0}$ with $0<r_{0}<\tilde{r}$ for $\tilde{r}$ in Lemma 3.1 and get $\varphi_{r_{O}}(x)=h_{x^{O}}^{r}\varphi(x)$ . By the

compactness of $M^{\prime}$ and the continuity of the mappings $\varphi$ and $\varphi_{r_{O}}$ , there exists a constant
$A$ such that

$d^{-}(\varphi(x), k_{x}^{r_{O}}\varphi(x))<A$ for all $x\in M$ .
We note that $d^{-}$ denotes the distances measured along the leaves of $W^{-}$ in $M$ and $M^{\prime}$

by the induced Riemannian metrics. It will be clear from the context whether we use
the distance $d^{-}$ in $M$ or $M^{\prime}$ in what follows. Fix $x$ in $M$ . Let $\{x_{n}\}$ be the sequence of
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points in $M$ defined by $x_{n}=g_{nr_{O}}x$ and $\{x_{n}^{\prime}\}$ be the sequence of points in $M^{\prime}$ defined by
$x_{n}^{\prime}=\varphi_{nro}(x)=h_{x}^{\hslash r_{O}}\varphi(x)$ for $n\in N$. Note that the points of the sequence $\{x_{n}^{\prime}\}$ are on the
expanding horocycle $W^{-}(\varphi(x))$ . We will prove the existence of $\varphi_{\infty}(x)$ by showing the
existence of the limit of the sequence of points $\{x_{n}^{\prime}\}$ and by showing that $\lim_{r\rightarrow\infty}\varphi_{r}(x)$

coincides with the limit of $\{x_{n}^{\prime}\}$ .
As we observed in the proof ofLemma 3.2, the expanding horocycle $W^{-}(x_{n})$ passing

through $x_{n}$ is mapped by $\varphi$ to the expanding horocycle $W^{-}(\varphi(x_{n}))$ passing through $\varphi(x_{n})$

and the relation $g_{cr_{O}}^{\prime}W^{-}(\varphi(x_{n}))=W^{-}(\varphi(x_{n+1}))$ holds. We remark that

$\varphi(x_{n+1})=g_{cr_{O}}^{\prime}\hslash_{x_{n}^{O}}^{f}(\varphi(x_{n}))$ and $\varphi_{r_{O}}(x_{n})=k_{x_{n}^{O}}^{r}\varphi(x_{n})$ . (3.8)

Next we investigate the relation between $x_{m}^{\prime}$ and $x_{n}^{\prime}$ . There is no loss of generality
in assuming $n>m$ . Take the $h^{-}$ -leaf $W^{-}(\varphi(x_{m}))$ passing through $\varphi(x_{m})$ and watch
the intersection points $g_{-cr_{0}}^{\prime}\varphi(x_{m+1}),$ $g_{-2cr_{0}}^{\prime}\varphi(x_{m+2}),$ $\cdots,$ $g_{-\langle n-m)cr_{O}}^{\prime}\varphi(x_{n})$ of the $h^{-}$ -leaf
$W^{-}(\varphi(x_{m}))$ and the geodesics passing through $\varphi(x_{m+1}),$ $\varphi(x_{m+2}),$ $\cdots,$ $\varphi(x_{n})$ , respectively.
The relation (3.8) holds for all $\varphi(x_{m}),$ $\varphi(x_{m+1}),$ $\cdots,$ $\varphi(x_{n})$ . Since there exists the estima-
tion $d^{-}(\varphi(x_{i}), \varphi_{r_{O}}(x_{i}))<A$ on each $h^{-}$ -leaf $W^{-}(\varphi(x_{i})),$ $i=m,$ $\cdots,$ $n-1$ and the foliation
$W^{-}$ in $M^{\prime}$ is expanding with respect to the geodesic flow on $M^{\prime}$ , we can obtain the
estimation on the $h^{-}$ -leaf $W^{-}(\varphi(x_{m}))$ that

$d^{-}(\varphi(x_{m}), g_{-(n-m)cr_{O}}^{\prime}\varphi(x_{n}))<A+A\lambda e^{-\mu cr_{O}}+\cdots+A\lambda e^{-(n-m-1)\mu cr_{O}}$

$<A(1+\frac{\lambda e^{-\mu cr_{O}}}{1-e^{-\mu cr_{O}}})$ ,

where $\lambda$ and $\mu$ are the constants coming from the definition of Anosov flow.
From the definition of the sequence of points $\{x_{n}^{\prime}\}$ we have $x_{m}^{\prime}=g_{-mcr_{O}}^{\prime}\varphi(x_{m})$ and

$x_{n}^{\prime}=g_{-mcr_{O}}^{\prime}(g_{-(n-m)cr_{O}}^{\prime}\varphi(x_{n}))$ . By the expanding property of the foliation $W^{-}$ in $M^{\prime}$ with
respect to the geodesic flow on $M^{\prime}$ we obtain

$d^{-}(x_{m}^{\prime}, x_{n}^{\prime})<\lambda e^{-m\mu cr_{O}}d^{-}(\varphi(x_{m}), g_{-\langle n-m)\mu cr_{O}}^{\prime}\varphi(x_{n}))$

$<\lambda e^{-m\mu cr_{O}}A(1+\frac{\lambda e^{-\mu cr_{O}}}{1-e^{-\mu cr_{O}}})$ .

Therefore for any $\epsilon>0$ if we take the constant $N_{O}$ such that

$\frac{\lambda A(1+\frac{\lambda e^{-\mu cr_{O}}}{1-e^{-\mu cr_{0}}})}{\epsilon}<e^{\mu N_{O}cr_{O}}$

,

then we have $ d^{-}(x_{m}^{\prime}, x_{n}^{\prime})<\epsilon$ for $n\geq N_{0}$ and $m\geq N_{0}$ . The sequence of points $\{x_{n}^{\prime}\}$ is a
Cauchy sequence and converges to some point of $M^{\prime}$ .

Next we will show that $\lim_{r\rightarrow\infty}\varphi_{r}(x)$ coincides with the limit of $\{x_{n}^{\prime}\}$ . Let $x_{\infty}^{\prime}$ be the
limit of $\{x_{n}^{\prime}\}$ . Then, for a given $\epsilon>0$, let $N_{1}$ be such that if $n>N_{1}d^{-}(x_{n}^{\prime}, x_{\infty}^{\prime})<(\epsilon/2)$ . Set
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$x_{r}=g_{r}x$ and $x_{r}^{\prime}=\hat{h}_{x}^{r}\varphi(x)$ for $reR$ . We want to show that for the given $\epsilon$ there exists an
integer $N_{2}$ such that if $r>N_{2}r_{0}$ and $n>N_{2}$ then $d^{-}(x_{r}^{\prime}, x_{n}^{\prime})<(\epsilon/2)$ holds. By setting
$N_{3}=\max\{N_{1}, N_{2}\}$ , we would then have $ d^{-}(x_{r}^{\prime}, x_{\infty}^{\prime})<\epsilon$ if $r>N_{3}r_{O}$ .

We will find such an integer $N_{2}$ using the same arguments as in the proof of the
fact that the sequence of points $\{x_{n}^{\prime}\}$ is a Cauchy sequence. Decompose the parameter
$r$ such that $r=kr_{0}+r_{1},0<r_{1}<r_{O}$ , keN and investigate the relation between $x_{r}^{\prime}$ and $x_{n}^{\prime}$ .
There is no loss of generality in supposing that $k>n$ . The relation (3.8) holds for all
$\varphi(x_{n}),$ $\varphi(x_{n+1}),$ $\cdots,$ $\varphi(x_{k})$ . Using the same arguments and calculations as in the proof
of the estimate for $d^{-}(\varphi(x_{m}), g_{-\langle n-m)cr_{O}}^{\prime}\varphi(x_{n}))$ , we have on the $h^{-}$ -leaf $W^{-}(\varphi(x_{n}))$

$d^{-}(\varphi(x_{n}), g_{-\langle k-n)cr_{O}-cr_{1}}^{\prime}\varphi(x_{r}))<A+A\lambda e^{-\mu cr_{O}}+\cdots+A\lambda e^{-\langle k-n)\mu cr_{O}}$

$<A(1+\frac{\lambda e^{-\mu cr_{O}}}{1-e^{-\mu cr_{O}}})$ .

From $x_{n}^{\prime}=g_{-ncr_{O}}^{\prime}\varphi(x_{n}),$ $x_{r}^{\prime}=g_{-ncr_{O}}^{\prime}(g_{-(k-n)cr_{O}-cr_{1}}^{\prime}\varphi(x_{r}))$ and the expanding property of
the foliation $W^{-}$ in $M^{\prime}$ with respect to the geodesic flow we get

$d^{-}(x_{n}^{\prime}, x_{r}^{\prime})<\lambda e^{-n\mu cr_{O}}d^{-}(\varphi(x_{n}), g_{-(k-n)cr_{O}-cr_{1}}^{\prime}\varphi(x_{r}))$

$<\lambda e^{-n\mu cr_{O}}A(1+\frac{\lambda e^{-\mu cr_{O}}}{1-e^{-\mu cr_{O}}})$ .

Therefore for the given $\epsilon>0$ if we take $N_{2}$ satisfying

$\frac{2\lambda A(1+\frac{\lambda e^{-\mu cr_{0}}}{1-e^{-\mu cr_{0}}})}{\epsilon}<e^{\mu N_{2}cr_{0}}$

,

then $d^{-}(x_{r}^{\prime}, x_{n}^{\prime})<\epsilon/2$ for $r>N_{2}r_{0}$ and $n>N_{2}$ . We conclude that $\lim_{r\rightarrow\infty}\varphi_{r}(x)$ exists
uniquely. Moreover, since an $h^{-}$ -leaf is a complete submanifold in $M^{\prime},$ $\lim_{r\rightarrow\infty}\varphi_{r}(x)$ lies
in $W^{-}(\varphi(x))$ .

Since the arguments by which we showed the existence of $\lim_{r\rightarrow\infty}\varphi_{r}(x)$ can be
applied to any $x\in M$ , we can define the mappings $\varphi_{\infty}$ and $\hat{h}_{x}^{\infty}$ by

$\varphi_{\infty}(x)=k_{x}^{\infty}\varphi(x)=\lim_{r\rightarrow\infty}\varphi_{r}(x)$ for all $xeM$ .

Finally we state that the mapping $\varphi_{\infty}$ is continuous. Let $\{r_{n}\}$ be a monotonically
increasing sequence with $r_{n}\rightarrow\infty(n\rightarrow\infty)$ and consider a sequence of mappings $\{\varphi_{r_{n}}\}$ .
Since the way $N_{0},$ $N_{1},$ $N_{2}$ and $N_{3}$ were determined in the arguments which showed the
existence of $\varphi_{\infty}(x)$ is independent of the point, the sequence ofmappings $\{\varphi_{r_{n}}\}$ converges
to $\varphi_{\infty}$ in the sense that

$\sup_{s\in M}d^{-}(\varphi_{\infty}(x), \varphi_{r_{n}}(x))\rightarrow 0$
$(n\rightarrow\infty)$ ,
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and therefore, we conclude that the mapping $\varphi_{\infty}$ is continuous. $\square $

LEMMA 3.4. The mapping $\varphi_{\infty}$ is a homeomorphism which maps the geodesic flow
$g_{r}$ on $M$ to the geodesic flow $g_{cr}^{\prime}$ on $M^{\prime}$ , where $c>0$ is the constant in Lemma 3.2.

$PR\infty F$ . It is easy to see that the mapping $\varphi_{\infty}$ maps the geodesic flow g, onMto
the geodesic flow $g_{cr}^{\prime}$ on $M^{\prime}$ : for any $x\in M$ and $r\in R$

$\varphi_{\infty}(g_{r}x)=\lim(g_{-ct}^{\prime}\circ\varphi\circ g_{t}Xg_{r}x)t\rightarrow\infty$

$=g_{cr}^{\prime}\lim(g_{-c\langle t+r)}^{\prime}\circ\varphi\circ g_{t+r})(x)t\rightarrow\infty$

$=g_{cr}^{\prime}\varphi_{\infty}(x)$ .

Next we prove that the mapping $\varphi_{\infty}$ is one-to-one. Take two points $x,$ $y\in M,$ $x\neq y$

and suppose that $\varphi_{\infty}(x)=\varphi_{\infty}(y)$ . By the definition of the mapping $\varphi_{\infty}$ , we have $\varphi_{\infty}(x)=$

$k_{x}^{\infty}\varphi(x)$ and $\varphi_{\infty}(y)=k_{y}^{\infty}\varphi(y)$ . Since the mapping $\varphi_{\infty}$ maps the geodesic flow $g_{r}$ to the
geodesic flow $g_{cr}^{\prime}$, we obtain

$k_{g_{r}x}^{\infty}\varphi(g_{r}x)=\varphi_{\infty}(g_{r}x)=g_{cr}^{\prime}\varphi_{\infty}(x)=\varphi_{\infty}(g_{r}y)=k_{g_{r}y}^{\infty}\varphi(g_{r}y)$ . (3.9)

In the equation above $\varphi(g_{r}x)\neq\varphi(g_{r}y)$ from the injectivity of the mapping $\varphi$ . The
calculations made in the proof of Lemma 3.3 show that the transformation $k_{x}^{\infty}$ is
bounded on the $h^{-}$ -leaf $W^{-}(\varphi(x))$ . That is to say, there exists a constant $B>0$ such
that

$\sup_{x\in M}d^{-}(\varphi(x), k_{x}^{\infty}\varphi(x))<B$ .

Therefore we obtain $d^{-}(\varphi(g_{r}x), \varphi(g_{r}y))<2B$ from (3.9). Since the mapping $\varphi$ is a homeo-
morphism which maps every $h^{-}$ -leaf on $M$ onto an $h^{-}$ -leaf on $M^{\prime}$ and preserves their
orientations, for $g_{r}x$ and $g_{r}y$ there must be a constant $C>0$ such that $d^{-}(g_{r}x, g_{r}y)<C$

holds for every $r\in R$ . It contradicts the expanding property of the foliation $W^{-}$ with
respect to the geodesic flow. Therefore, the relation $\varphi_{\infty}(x)=\varphi_{\infty}(y)$ cannot hold, i.e., the
mapping $\varphi_{\infty}$ is one-to-one.

The mapping $\varphi_{\infty}$ is surjective. By the arguments of the construction of the map-
ping $\varphi_{\infty}$ , every point of $\varphi_{\infty}(M)$ is an interior point of $\varphi_{\infty}(M)$, that is, $\varphi_{\infty}(M)$ is open.
Moreover, $\varphi_{\infty}(M)$ is closed from the continuity of $\varphi_{\infty}$ . It is clear that $\varphi_{\infty}(M)\neq\emptyset$ and
$M^{\prime}$ is connected. Therefore $\varphi_{\infty}(M)=M^{\prime}$ .

As the mapping $\varphi_{\infty}$ is one-to-one, onto and continuous, it is clear that it is a
homeomorphism. $\square $

We have completed the proof of Theorem $B$ from Lemma 3.1-3.4.
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