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Abstract. We show that the algebraic structure of the group C*-algebra C*(G) of a simply connected,
connected nilpotent Lie group G is described as repeating finitely the extension of C*-algebras with T,-
spectrums by themselves and one more extension by a commutative C*-algebra on the fixed point space (G*)¢
of ®* under the coadjoint action of G. Using this result, we show that C*(G) has no non-trivial projections.

1. Introduction.

It is generally a difficult problem to determine the algebraic structure of its C*-
algebra C*(G) when a connected Lie group G is given. In the representation theory, it
is hard to study the spectrum G of G if G is a connected solvable Lie group of non-type
I. However, if G is a simply connected, connected nilpotent Lie group, then it is known
that G is homeomorphic to the quotient space ®*/G of ®* under the coadjoint action
of G. This is called the Kirillov-Bernat (K-B) correspondence. Therefore, the study of
the representation theory of G in this case is equivalent to the analysis of G*/G.

In this paper, we first study ®*/G more precisely. We next describe the structure
of the C*-algebra C*(G) of a simply connected, connected nilpotent Lie group G as
repeating finitely the extension of C*-algebras with T,-spectrums by themselves and
one more extension by a commutative C*-algebra on the fixed point space (6*)% under
the coadjoint action of G. Secondly, using this result, we prove that C*(G) has no
non-trivial projections. Lastly, we comment about non-trivial projections of C*(G) in
case that G is an exponential Lie group.

2. Preliminaries.

Let G be an n-dimensional simply connected, connected nilpotent Lie group, and
® its Lie algebra, and G* the real dual space of . Let {®;}";! be the descending
central sequence of &, where 6,=[®, ®,_,] (1<i<m+1), 6,=6, 6, ,=0.

Let & be the real dual space of ®,, and ®; be the subspace of G* annihilating
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on ®,. Then we have G*=G6* @ ®; as a vector space. Every element ¢ in &} can be
identified with ¢ @0 in G*. Let X¥%,, X%,,---, X%, be a basis of ;. Similarly, let
X¥*, X%, -+, X% be a basis of 6FnG;,, (1<i<m) and U; (0<i<m) be the sub-
spaces of G* spanned by them. They are naturally identified with a;-dimensional
Euclidean spaces R* (0<i<m). Every element ¢ in G* can be parameterized with
d=(ag, Ay, 0z, * *» &), ;€RY (0<i<m). This parameterization is essential to our

Theorem 4.
Let Ad be the adjoint representation of G in Aut(®), and Ad* the coadjoint action

of G in G* defined by Ad*(g)p(X)=P(Ad(g~1)X), (X e ®, p € 6*, geG). Let (6*)€ be
the fixed point space of &* under Ad*. Using the above parameterization, put

Vo={¢=(20,0, -, 0)e G*| ¢y e R®} .
Then, we can see that:
LEMMA 1. V,=(6*)°.
PROOF. Let ¢ be an element of V,,. By definition, ¢ is in G1. Then we have
Ad*(g)dNY)=p(Ad(g™)Y)=p(Ad(exp(—X))Y),  where g=exp(X)
= ¢(exp(ad(—X))Y)
(=p"

m!

=¢(Y—[X, Y] +%ad(X)2Y~ ot ad(X)"'Y)=¢(Y)

for every g in G and Y in G*. So ¢ is in (6*)°.
On the contrary, let ¢ be an element of (6*)¢. By the same calculation, we have

1 _1ym
¢(Y)=¢<Y—[X, Y]+7ad(X)2Y— R ( 1') ad(X)"'Y)
! m!
for every X, Y in G*. It implies that
1o (=
ol —[X, Y]+—2—'ad(X) Y—---+ ' ad(X)"Y}=0.
. m!

Then, replacing Y with ad(X)™~ 'Y, we have that ¢(ad(X)"Y)=0. Moreover, replacing
Y with ad(X)*Y (1 <k <m—2), we have that ¢ (ad(X)**Y)=0 (1 <k<m—2). Therefore,
we conclude that ¢([X, Y])=O0 for every X, Y in *. So ¢ is in V. O

Next, put
Vi={d=(do» %y, """, %, 0, -+, 0)e6*|a;e R¥O0< j<k—1), 0, e R™\{0}},
(1 <k<m). Then we can decompose ®* into

VouViuV,,u---uV,u---ul,
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consisting of m+ 1 pieces of subsets of G*.

Next we can see explicitly the coadjoint orbit for every element in ¥V, of G*. In the
following we denote by ¢,, the functional corresponding to ¢=(0, - - -, 0, &, 0, - - -, 0).
For example, we have that:

LEMMA 2. The orbit Ad*(G)¢ for an element ¢ =(ay, 1,0, -+, 0) in V, of G* is
given by the subset
{(@p—ad*(X)a;, 2,,0, -+, 0) | Xe B},
where (ad*(X)p, (Y) = ¢,,([X, Y]), Y€ ® when o; in R*\{0} is identified with @, in G*.

Proor. The functional corresponding to ¢ =(aq, ®;,0, - -+, 0) in ¥, is given by
®q, + P4, By the direct computation, we have

Ad*(G)(bay + Pa NY) = Ad*(g)(@, N ¥) + Ad*(g) (¢, (Y)
= .(Y) + ¢, (Ad(g™)Y)

=¢>a0(Y)+¢aI<Y—[X, Y] +%ad(X)2Y

(=nm
m!

= d)ao(Y) + ¢a1(Y - [X’ Y])

=huo(Y) —(@d*(X)$, NY) + &,,(Y) .

We next show that ad*(X)¢,, is in V,. By the direct computation, we have

_...+

ad(x)™ Y), where g=-exp(X)

Ad*(h)(ad*(X)$, X Y)=(ad*(X)¢,, )(exp(ad(—Z))Y),  where h=exp(Z)

= (ad*(X)anl)( Y—[Z Y]+ %ad(Z)z Y—-+ (_ml')m ad(Z)" Y)
= ¢a1< [X,Y]—[X,[Z Y]]+ -;Tad(X)ad(Z)Z Yoo _’nl')m ad(X)ad(Z) Y)

= ¢,,([X, Y1) =(ad*(X)¢, (Y) .

It then follows that Ad*(G)(ad*(X)¢,,) =ad*(X)¢,,, so that ad*(X)¢,, is in V. O

In general, the orbit Ad*(G)¢ for an element ¢ = (0, oy, 0ty ==+, %, 0, <« -, 0) in V;
of ®* is given by the subset
{(%o—ad*(X)a; +(21) " 'ad*(X)?ay + - - - +(— DD ™ 'ad*(X)fe
o —ad*(X)a, + - - - + (= D H{(k— 1)) lad* (X)) Lo, ,
oy —ad*(X)os + - - - +(— 1) 2((k—2)) " lad*(X)*~ 2q, ,
------ . O—g—ad*(X)y, o, 0, -+, 0)| X € 6}
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where a; is identified with ¢ in ®&* (i=0,1, - - -, k).

In the subsets V,, V4, - - -, V,, of ®*, the coadjomt action of G effects to parameters
on the left side of a non-zero parameter on the right end. Furthermore, we decompose
V, into the subsets {V;}32"! of ®*, which are combinationally defined by whether
each of the parameters {/,,}L, about {X¥;}{L, is zero, greater than zero or less than
zero. For example, V,, is given by the subset

{(20, ®1, 0, - -+, 0) | 2o €R®, &y =(/14,0, -, 0),/,,>0},
and V,, is given by the subset
{(g, 21,0, -+, 0) | apeR™, 00 =(/14,0, -, 0),1,, <0},
and V,, is given by the subset
{(tgs 21,0, -+, 0) | ageR™, a; =(0, /15,0, -+, 0),/,,>0} .
More generally, V,; for some i is given by the subset

{(ao’“u O’ o 90) l aOERaos a1=(llla 1125 113’ ©e "llja 09 T '90)9
111>O, 112—_—0, ll3<0’ ° vt l ‘>0} .

Furthermore, we decompose V, (k=2, - - -, m) into the subsets { V;,} 32223~ 13%~1D
of ®*, which are combinationally defined by whether each of the parameters {/;;}{L,
(1<j<k)about {X%}7., (1 < j<k)is zero, greater than zero or less than zero. Therefore
we can decompose (5* into 143 —1)+3%(3%2—1)+ - - +3%13%2 .- - 3%-1(3% 1) 4

- 4391392 ... 39m-1(39m _ 1) (say /) pieces of subsets of G*.

Then, letting ¢ be the quotient map from G* to 6*/G, we consider the subsets g(V)
and {q(V,)}3213e3%13%~D (1 <k<m) of G*/G. And let Q,, Q,, -, 2, be those
subsets of G*/G. Note that it happens that Q,;=Q; for i<j. In this case let Q;={}.
Under this setup, using Lemma 3.1 in [4] and Theorem 10.5.4 in [2], which are stated
later as Theorems 1 and 2 respectively, we prove our main theorems in the next section.
Before further study, we give an example here for the convenience of understanding.

ExaMPLE 1. Let G be the simply connected, connected nilpotent Lie group defined
by all 4 x 4 upper triangular real matrices with 1 on the diagonal. Then the Lie algebra
® of G is defined by all 4 x 4 upper triangular matrices with 0 on the diagonal. Then
the real dual space * of ® is defined by all 4 x 4 lower triangular matrices with 0 on
the diagonal. In our setting, every element ¢ =(/;;); <; ;<4 in ©* is parameterized with
¢ = (0, 0y, &;) Where ag=(l51, l32, l43), 1 =(l31, l42), @, =14,. The coadjoint action of
G on G* is defined by Ad*(g)¢(X)=d(Ad(g~ ) X)=Tr(Ad(g~ )X ¢) where ge G, X €,
and Tr is the natural trace on M,(R). Then computing this, we have

Ad*(9)¢=(B0a Bl’ ﬁz) >

where
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Bo=(la; —X3l3; +(— X4+ (21" 1x23x34)l41, X12031—X12X34l41 +133—X34l42
(x13+(2!)_1x12x23)l41 +x53l45+143) Bi=(s, —X34l41, Xi2la1+142) s Br=141,

forg~!=exp(X)and X =(x;;); <; j<4in ®. Then Q, is identified with R3,and Q, (1<k<4)
are identified with R x (0, c0), where representatives of €, have the form (ao, /31, /42, 0)
with either /3, =0 or /,,=0, and the closures Q, (1<k<4) are equal to Q,U ;. The
sets ©, (5<k<8) are identified with R x (0, c0) % (0, ), where representatives of £,
have the form (g, /31, /42, 0) with /3, #0 and /,, #0, and the closure U kg 5 $, contains
U o $2i- The sets Qq, Q,, are identified with R x (0, c0), where representatives of €2,
(9<k< 10) have the form (a, o, I,;) with /,; #0, and the closure Q50U Q,, are equal -
to */G.

3. Main theorems.

In this section we prove that the C*-algebra C*(G) of a simply connected, con-
nected nilpotent Lie group G is obtained by repeating finitely the extension of C*-
algebras with T,-spectrum by themselves and one more extension by a commutative
C*-algebra on a Euclidean space. Using this result, we prove that C*(G) has no non-
trivial projections.

First of all, we prove the following lemma which is stated in [4]:

LemMA 3 [4]. The image Q, of the fixed point space (6*)¢ is a locally compact
T,-space in the relative topology of Q, and closed in &*/G.

Proor. First, it is known that G is locally compact, which can be found in [1].
Using K-B correspondence we have that 6*/G is locally compact. So €, is locally
compact with its relative topology.

Next, let [¢,], [$,] be two distinct points in Q. Then ¢~ *([¢1 D) ={¢1}, 47 '([(¢.]) =
{¢,} are also two distinct points in G*. Since G* is a T,-space, there exist two open
neighborhoods U,, U, of ¢,, ¢, respectively such that U, n U, = . Since q(U,), q(U>)
are open in 6*/G, q(U,) " Q,, q(U,) N Q, are two disjoint open neighborhoods of [¢,],
[¢,] respectively in Q. ‘

Lastly, let {[¢,]} be a sequence of Q,. Suppose that [¢] is in 6*/G and [¢,]
converges to [¢]. If [¢] is not in Q,, then g~ *([¢]) N (G*)° =F. Since G is a T,-space,
{[#]} is closed in G*/G so that ¢~ '([¢]) is closed in G*. By normality of ®*, there
exists an open set O of ®* such that ¢~ }([¢])= O and O N (G*)%= . It follows that
g(0) is an open neighborhood of [¢] in */G and g(0) N Q, =, which contradicts
our assumption. O

From this result, we can consider the C*-algebra C(2,) consisting of all complex
valued continuous functions on , vanishing at infinity.
We proved the following theorem in [4], which was considered as the first key
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lemma for our main theorems. We prepare the notation for this theorem.

Now, let @ be the Kirillov-Bernat mapping from the coadjoint orbit space */G to
the spectrum G of G. Put &([¢]) = X4 for every element [¢] in Q,, where [¢] is identified
with ¢ in G*, and g, is defined by xs(exp(X)) =e*™ for every X in &. Let §, be the
element in spectrum C*(G) of C*(G) corresponding to x,. Let ker(f,) be the kernel of
% Let Jo=) (12 K€T(Xy) e the intersection of those kernels for every element [¢]
in ,. Then it is clear that J, is a two-sided closed ideal of C*(G). Then, the following
theorem holds:

THEOREM 1 [4]. The quotient C*-algebra C*(G)/3, of C*(G) by the ideal 3, is
isomorphic to Cy(£2,).

Next we investigate the difference space (6*/G)\2, corresponding to the spectrum
S, of 3,. Then the following lemma holds:

LEMMA 4. The subsets Q; (1<i<l) of ®*/G are all non compact connected T,-
spaces in the relative topology of Q;, and closed in ((5*/G)\(U' ! Q).

PROOF. We can take the subset V,; of &* for some k, j such that g(V;;)=9..
Each element of V,; can be parameterized with (o, /11, ", Loy " "5 hets " *5 D
0,---,0). Put W;=V,;. Since W, is connected, Q; which is the continuous image of W,
by g is also connected.

We next show that ; is non compact. Let U(r,, - - -, r,) be the open subsets of V,
defined by the product spaces

R x U(ry) x -+ % Ulry— 1) x (Ur\[0}) x {0} x - - x {0}

where U(r;) is the open ball in R* with the radius r; in N and center 0 (j=1, - -, k).
Since ¢ is an open map and q(U(ry, - -, )N W)=q(U(ry, - - -, r)) N 2;, the family
{aU(@ry, - -, ) " W)}, -.roen« 1S an open covering of Q, with respect to the relative
topology. It is clear that every finite subcovering does not contain Q,. Therefore, Q; is
non compact.

We next show that Q; is closed in (6*/6)\(U‘ ! o €2;)- Suppose that a sequence
([énDnen Of 2, converges to [¢] in (@*/G)\(U‘ ! Q) We show that [¢] is in Q,. If
not so, say [¢]e€Q; (j>i), there exists Yy € W; such that q)=[¢], where g(W,)=Q; as
before. We can take a small open neighborhood U of Y such that Un W,;=F since [/
has a nonzero G-invariant parameter /;, such that /, is zero for every element in W,, or
Y has [;>0 (<0) such that [, <0 (>0) for every element in W, respectively. Then
consider G-invariant open subset Ad*(G)(U) of ®*, where Ad*(G)(U) means the union
U gec Ad*(@)(U) of open subsets Ad*(g)U) in G*. Then we have Ad*(GYU)n W,=F
since every element in U has a G-invariant parameter /,, such that /,, is zero for every
element in W, or /,,>0 (<0) such that /,, <0 (>0) for every element in W, respectively.
It then follows that g(Ad*(G)}U)) N Q;= &, which is a contradiction.

We next show that Q; is a T',-space with respect to the relative topology. Let [¢]
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and [y] be two distinct points in Q,. Then the preimages ¢~ *([¢]) and ¢~ }([y]) are
disjoint. Let ¢=(y,0, ", ;, 0, -, ;,0,---,0) and Yy =(Bo, 0, -, B:,,0, ", B
0,---,0) betwo arbitrary points of g~ 1([(i)]) N W, and g~ *([¥]) n W, respectively. Since
[¢] and [y] are two distinct points in ©,, there exists a term such that a; #B; where
=151 ijai, ) Bi,=(my, 1, -y my g, )with respect to X¥,, - - -, X{,, P such that /, ;=
m; , for G- invariant parameters /; and m; of o;, and B; respectlvely, if necessary,
replacing the basis { X }}%:, (j <t<k), and there exrsts a G-invariant parameter /; , #m, ,
of o;, and B, , if necessary, replacing the basis {X¥,}t4,. Since 6* is of course T,-space,
let U¢ and U, be two disjoint open neighborhoods of ¢ and i respectively, separating /;,
and m; ,. Now put S;=q~ 1(((5*/G)\(U' ! Q))). Then we can consider two G-invariant
open subsets Ad*(G)U )N S; and Ad*(G)(U )N S; of &*. Then put Ty=Ad*(G)Uy) N S;
and T, =Ad*G)U,)nS;. Then ¢(T,) and ¢(T,) are two open neighborhoods in 6*/G
since ¢ is an open map. They are also open in (@*/G)\(U im1 0 2. Then ¢(Ty) N Q; and
q(T,) N, are disjoint and open in ;. Therefore, Q; is a Tz-space, as desired. O

Using this lemma, we can consider the decreasing sequence {Sj}§=0 ([;23541)
3,={0} of C*-subalgebras of C*(G) corresponding to subsets ((ﬁ"‘/G)\(Uf= 02 0<
j<!) of G*/G. Since C*(G) is liminal, so are its C*-subalgebras {J;}\Z5. Let {€;}/23
be the quotient C*-algebras J;/3;., of 3; by J;,,, which are also liminal. Then the
spectrum %, of &, is equal to Q;, ;.

In general, the following holds. We need this result to prove our theorems:

THEOREM 2 [2]. Let U be a liminal C*-algebra with the T,-spectrum N. Let §=
((W/ker(m))r1e 9> ©) be a continuous field of elementary C*-algebras over N defined
by W. Let N be the C*-algebra defined by §. Then the correspondence from a in U to
a in W gives an isomorphism from N to N, where d is an element in O defined by
a([n])=a+ ker(n).

Applying this to the quotients {%;}'_3 in exact sequences, and using the above
results, we have the following theorem:

THEOREM 3. The C*-algebra C*(G) for every simply connected, connected nilpotent
Lie group G can be obtained by repeating finitely the extension of the C*-algebras defined
by a continuous field of elementary C*-algebras over Q; (1<i<l) by themselves, and one
more extension by Cy(€2,) with spectrum homeomorphic to R*. Moreover, Q2; is homotopic
to Euclidean space R* for some k; (1<i<]).

Proor. Using Theorem 1 and Lemma 4, we have the following exact sequences:

0 —» 35 =2 C*G) 2> Co(R0) — 0

1, q.
0—"31'—’—’3;'—1 _l"sj-—l/sj(=(gj—1)'—’0,
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where 1 <j</—1. The quotient €; (0 <j</—2) in this exact sequence has the spectrum
which is identified with Q;,;. Also, the ideal J3,_, in the last exact sequence has
the spectrum which is identified with Q,. Since 4; (0<j</—2) and J,_, are liminal
C*-algebras with T,-spectrums, we apply Theorem 2 to them. Hence, those can be
considered as the C*-algebras of continuous vector fields of continuous fields. This
shows that C*(G) is obtained by the extension of J;_,; with this property by %,_, with
this one and repeating the extension by %; (0<;j</—3) with this one, and one more
extension by Cy(€,).

We next show that Q; is homotopic to R’ for some j. Let W, be the subset of G*
corresponding to ©; as considered in Lemma 4. Suppose that W, is a subset of V,. We
can pick up G-invariant non-zero parameters for all elements in W,. Let (8,, B, " " *,
Bi, 0, - - -, 0) be the parametrization of them. We denote by S, the set of all elements
of this form. Then, we can consider the strong retraction r from W; to the subset S; of
&* defined by r; W, x I— G*,

(o, &1, " 75 &, 0, - -+, 0), )= (8o, taty, - - -, 14, 0, - - -, 0)
+((1=0)Bo, A =DBy, -, (1=0B, 0, - -+, 0),

where 7 means the interval [0, 1] and t€1, and tx, means the pointwise multiplication.
Then, it is clear that r induces the strong retraction from ; to ¢(S;). We can also show
that ¢(.S;) is homeomorphic to R’ for some j. Therefore, €2, is homotopic to R for some j.

O

REMARK 1. &, (0<j<I!-2)and 3,_, are written as

{d: Q> U[¢]en,-+1 €;/ker(my), a(-)l € Co(L24 1)} 0<j<I-2)

and

{@: 2> g0, 3i-1/kex(my), |a(-)ll € Co(R)}

where 7, is an irreducible representation corresponding to [¢], and ||@(+)|| maps [¢]
to |la([¢D)ll. Since €; (0<j</—2) and J,_, are liminal, ¥;/ker(n,) and J,_, /ker(r,)
are isomorphic to K(#,,) and K(H,,) respectively. It is unclear whether or not those
continuous fields satisfies Fell’s condition. If so, the above continuous fields may be
written as Co(Q;,;) ®K(H), (0<j<l-—1) for a Hilbert space H. Then, homotopy
equivalence of Q; to R" for some » may be useful to the calculation in K-theory for
the above exact sequences.

REMARK 2. %, (0<j<I—2) and J3,_, have no non-trivial projections. Let 2 be
one of them. Suppose that p is a non-trivial projection in 2. Let 5 be the continuous
vector field corresponding to p. Then, p([n]) is a non-trivial projection in /ker(r) for
some [7] in ¥ so that the norm of f([x]) is one. If the inverse image || 5(+)|| ~(0) of 0
is non-empty, then | 5(-)l|~'(0), | #(-)ll~*(1) are non-empty clopen sets, and Q;=
I A(CHI =1 (O) O I B(-)II~1(1), which is impossible by the connectivity of Q. So Q;=
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|| #(+)Il ~*(1). Hence, p does not vanish at infinity, which is a contradiction. Therefore,
A has no non-trivial projections.

As a consequence of Theorem 3, the following theorem is verified:

THEOREM 4. The C*-algebra C*(G) of every simply connected, connected nilpotent
Lie group G has no non-trivial projections.

PROOF. Suppose that C*(G) has a non-trivial projection p. We use the structure
theorem of C*(G). Remember exact sequences in the proof of Theorem 3. Now, if p is
not in J,, then go(p) is a non-trivial projection in Cy(Q,), but Cy(€2,) has no non-trivial
projections, which is a contradiction. So p is in J,. Similarly, if p is not in 3, then we
have a contradiction. So p is in J;. Repeating this process finitely, we have that p is in
3,_,, but 3,_, has no non-trivial projections, which is a contradiction. Therefore, we
conclude that C*(G) has no non-trivial projections. O

REMARK 3. In Theorem 4, if G is commutative, this result is evident since C*(G)
is isomorphic to Cy(G) and G is homeomorphic to the Euclidean space R" where n is
the dimension of G. Also, if G is an exponential Lie group, this result is false in general.
For example, if G is a real ax+b group, then C*(G) has the direct sum K®K as a
closed ideal where K is the C*-algebra consisting of all compact operators on a countably
infinite dimensional Hilbert space. Therefore, C*(G) has a non-trivial projection. On
the other hand, let E be an exponential Lie group and N a simply-connected, connected
nilpotent Lie group and G=N x E. Then C*(G) is isomorphic to C*(N)® C*(E). From
the above structure theorem of C*(N), we have that C*(G) has no non-trivial projections.

REMARK 4. As an example of connected solvable Lie groups of non-type I, let G
be the 5-dimensional Mautner group. It is of the form C2><,R where a is defined by
0lzy, z)=(€"z,, €*°z,), teR, z,, z, € C, 0 e R\Q. Then it is known that C*(G) has a non-
trivial projection.

Now, let G be a semi-simple Lie group and Ad(G) the adjoint group defined by
the quotient of G by its center Z. We can consider the existence problem of non-trivial
projections of C*(G). Then the following result is known:

THEOREM 5 [5]. Let G be a real connected semisimple Lie group with finite center
Z. Then the following statements are equivalent:
(1) The tensor product C*(G) ® K has no non-trivial projections.
(2) C*(G) has no non-trivial minimal projections.
(3) AJd(G) has at least one simple factor which is isomorphic to the Lorentz group
SO,(2n+1, 1) for some n>1.

From Remarks 3, 4 and Theorem 5, the next problems may be of independent
interest:
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PrROBLEM. Let G be an exponential Lie group. Then describe the necessary and
sufficient condition that C*(G) has no non-trivial projections in terms of the inner
structure of G, and study the same thing in the case of type I Lie groups.
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