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1. Introduction.

Let $F$ be a field of characteristic different from 2. Let $W(F)$ be the Witt ring of
quadratic forms over $F$. We denote by $W_{t}(F)$ and IF the maximal torsion subgroup of
$W(F)$ and a fundamental ideal of $W(F)$ generated by all even dimensional quadratic
forms respectively. For a positive integer $n\geqq 2$ , we denote n-th power of IF by $I^{n}F$.
For elements $a_{1},$ $a_{2},$

$\cdots$ , $a_{n}$ of the multiplicative group $\dot{F}$ of $F,$ $\langle a_{1}, a_{2}, \cdots, a_{n}\rangle$ denotes
a diagonal quadratic form $a_{1}X_{1}^{2}+\cdots+a_{n}X_{n}^{2}$ . A quadratic form of the form
$\langle 1, a_{1}\rangle\otimes\cdots\otimes\langle 1, a_{n}\rangle$ is called an n-fold Pfister form.

Let $\varphi_{1}$ and $\varphi_{2}$ be two n-fold Pfister forms. If there exist an $(n-1)$-fold Pfister
form $\sigma$ and two l-fold Pfister forms $\tau_{1}$ and $\tau_{2}$ such that $\varphi_{i}\cong\sigma\otimes\tau_{i}(i=1,2)$ , we say $\varphi_{1}$

and $\varphi_{2}$ are linked (cf. Definition 2.2 of [4]). Further we say $I^{n}F$ (resp. $I^{n}F\cap W_{t}(F)$) is
linked if any pair of n-fold Pfister forms (resp. torsion n-fold Pfister forms) is linked.
If $F$ is non-formally real, then we know $W(F)=W_{t}(F)$ (cf. [4]). Thus, in this case, the
notion $I^{n}F$ is linked coincides with the notion $I^{n}F\cap W_{t}(F)$ is linked. Let us denote by
$u(F)$ the u-invariant of $F$, which is defined to be the maximal dimension of anisotropic
torsion quadratic forms over $F$. Elman and Lam showed following results (cf. Theorems
3.4, 4.3, of [4]).

(1.1) Let $I^{2}F$ be linked. Then possible value of $u(F)$ is $0,1,2,4$ or 8. Further
$u(F)\leqq 4$ if and only if $I^{3}F\cap W_{t}(F)=\{0\}$ ,

(1.2) Let $F$ be formally real. Assume $I^{n}F\cap W_{t}(F)$ is linked for every positive
integer $n$ . Then possible value of $u(F)$ is $0,2,4,8,16$ or 18.

If the condition of (1.1) is replaced by that $I^{3}F$ is linked, then the linkage property
of $I^{3}F$ seems to limit $cu(F)$ , which is the maximal dimension of anisotropic torsion
forms with trivial Witt invariant, rather than $u(F)$ . We show in this paper:
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THEOREM 1.1. Let $I^{3}F$ be linked. Then we have
(1) $cu(F)=0,1,2,8$ or 16,
(2) $cu(F)=0,1,2$ or $8\Leftrightarrow I^{4}F\cap W_{t}(F)=\{0\}$ .
Further we determine possible value of $cu(F)$ under a condition weaker than that

of (1.2). We know the condition of (1.2) is equivalent to the assertion (T) (cf. Proposition
4.1 of [4]):

(T) For any positive integer $n$ , any form of $I^{n}F\cap W_{t}(F)$ is congruent to an n-fold
Pfister form modulo $I^{n+1}F$.

Let us consider the following assertion $(T_{l})$ which is weaker than (T), where $l$ is a
positive integer $\geqq 3$ .

$(T_{l})$ For any positive integer $n\geqq l$, any form of $I^{n}F\cap W_{t}(F)$ is congruent to an
n-fold Pfister form modulo $I^{n+1}F$.

Then we show:

THEOREM 1.2. Let $F$ be formally real. Assume $(T_{3})$ . Then we have
(1) $cu(F)=0,2,8,16$ or 18,
(2) $cu(F)=0,2$ or $8\Leftrightarrow I^{4}F\cap W_{t}(F)=\{0\}$ .

We prove these theorems in \S 3 and \S 4 respectively. In \S 2, we give auxiliary re-
sults needed to prove the theorems. We use the following notation. For a quadratic
form $\varphi$ , the dimension (resp. the signed determinant, the Witt invariant) of $\varphi$ is de-
noted by $\dim\varphi$ (resp. $d_{\pm}\varphi,$ $c(\varphi)$). For $a_{1},$ $\cdots,$ $a_{n}\in\dot{F}=F-\{0\}$ , an n-fold Pfister form
$\langle 1, a_{1}\rangle\otimes\cdots\otimes\langle 1,a_{n}\rangle$ is denoted $by\ll a_{1},$ $\cdots,a_{n}\gg$ . We refer to Lam [5] for other basic
definitions and notation concerning quadratic forms.

2. Preliminaries.

First of all, we recall some basic results needed below in the following theorems
2. $1\sim 2.4$ .

THEOREM 2.1 (Corollary 2.8, 2.11 of [4]). Suppose $I^{n}F$ is linked. Then
(1) $I^{n+2}F\cap W_{t}(F)=\{0\}$ ,
(2) if $\varphi$ is an anisotropic form of $I^{n}F\cap W_{t}(F)$ , then $\dim\varphi=0,2^{n}$ or $2^{n+1}$ and

$\varphi=\langle x\rangle\otimes\mu_{1}-\mu_{2}$ in $W(F)$ , where $x\in\dot{F},$
$\mu_{1}$ and $\mu_{2}$ are n-fold Pfister forms.

THEOREM 2.2 ([6]). Let $\varphi$ be a quadratic form of $W(F)$ . Then we have $\varphi\in I^{3}F\Leftrightarrow$

$\dim\varphi$ is even, $d_{\pm}\varphi=1,$ $c(\varphi)=1$ .
THEOREM 2.3 ([1]). Let $n$ be a positive integer. Then the dimension ofany anisotro-

pic form in $I^{n}F$ is at least $2^{n}$ .

THEOREM 2.4 (Theorem 4.8 of [2]). Let $\varphi_{1},$ $\varphi_{2},$ $\varphi_{3}$ be n-fold Pfister forms such
that $\varphi_{1}+\varphi_{2}+\varphi_{3}\in I^{n+1}$ F. Then any pair of $\varphi_{1},$ $\varphi_{2}$ and $\varphi_{3}$ is linked.
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Let us denote by $cu(F)$ the maximal dimension of anisotropic torsion forms of
which Witt invariant is 1. Let $I_{3}(F)$ be the maximal dimension of anisotropic forms in
$I^{3}F\cap W_{t}(F)$ . Since the field $F$ is fixed throughout this paper, henceforth we write simply
$u,$ $cu$ and $I_{3}$ instead of $u(F),$ $cu(F)$ and $I_{3}(F)$ . By the definition of $cu$ and by Theorem
2.2, we have

(2.1) $I_{3}\leqq cu\leqq u$ .
If the field $F$ is formally real, then a torsion form is of even dimension (cf. Satz

22 of [7]). Therefore we have
(2.2) ifFis formally real, then cu is even.

LEMMA 2.5. For a quadratic form $\varphi$ over $F$ with $c(\varphi)=1$ , define a form $\varphi^{ass}$ by

(2.3) $\varphi^{ass}=\left\{\begin{array}{ll}\langle-1, d_{\pm}\varphi\rangle\perp\varphi, & if \dim\varphi is even,\\\langle-d_{\pm}\varphi\rangle 1\varphi, & if \dim\varphi is odd.\end{array}\right.$

Then we have $\varphi^{ass}\in I^{3}F$. Further if $\varphi$ is a torsion form, then $\varphi^{ass}\in I^{3}F\cap W_{t}(F)$ .
PROOF. By the properties of signed determinant and Witt invariant (cf. p. 38,

p. 120 of [5]), we easily obtain $d_{\pm}\varphi^{ass}=1,$ $c(\varphi^{ass})=1$ . Thus by Theorem 2.2, we have
$\varphi^{ass}\in I^{3}F$. If $F$ is non-formally real, then we see $W(F)=W_{t}(F)$ . Thus $\varphi^{ass}\in I^{3}F\cap W_{t}(F)$ .
Let $F$ be formally real. Assume $\varphi$ is a torsion form. Then $\varphi$ is hyperbolic over any real
closure of $F$. Therefore we have $ d_{\pm}\varphi$ is totally positive. This shows a form $\langle-1, d_{\pm}\varphi\rangle$

is torsion (cf. [7]). Hence we have $\varphi^{ass}\in I^{3}F\cap W_{t}(F)$ . $\square $

PROPOSITION 2.6. If $cu$ is even, then $cu=I_{3}$ or $I_{3}+2$ . If $cu$ is odd, then $cu=I_{3}+1$ .

PROOF. Let $\varphi$ be a cu-dimensional anisotropic torsion form with $c(\varphi)=1$ . Let
$\varphi^{ass}$ be the form defined by (2.3). Then $\varphi^{ass}\in I^{3}F\cap W_{t}(F)$ by Lemma 2.5. Since
dim $\varphi^{ass}>cu$ and $c(\varphi^{ass})=1$ , we know $\varphi^{ass}$ is isotropic. Let $m$ be the Witt index of
$\varphi^{ass}$ . Then $m\geqq 1$ and we have an isometry:

$\varphi^{ass}\cong m\langle 1, -1\rangle\perp\varphi_{0}$ ,

where $\varphi_{0}$ is an anisotropic form of $I^{3}F\cap W_{t}(F)$ . Let $cu$ be even. If $m>2$ , then we have

$\varphi^{ass}=\langle-1, d_{\pm}\varphi\rangle\perp\varphi$

$\cong\langle-1,1\rangle\perp\langle-d_{\pm}\varphi, d_{\pm}\varphi\rangle\perp(m-2)\langle-1,1\rangle\perp\varphi_{0}$ .
By Witt’s cancellation theorem, we have

$\varphi\cong\langle 1, -d_{\pm}\varphi\rangle\perp(m-2)\langle-1,1\rangle\perp\varphi_{0}$ .
Since $\varphi$ is anisotropic, we have a contradiction. Hence $m=1$ or 2. Since the dimension
of $\varphi_{0}$ is $cu-2(m-1)$ , we have

$cu-2(m-1)\leqq I_{3}\leqq cu$ .

Thus we see $cu=I_{3}$ or $I_{3}+2$ . Let $cu$ be odd. Then a similar argument shows $m=1$ .
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Thus we have

$cu-1\leqq I_{3}\leqq cu$ .

$SincecuisoddandI_{3}$ is even, we have cu $=I_{3}+1$ . $\square $

PROPOSITION 2.7. If $I^{4}F$ is torsion free and $cu>2$ , then there exists an anisotropic
cu-dimensional form $\varphi$ in $I^{3}F\cap W_{t}(F)$ . In particular we have $cu=I_{3}$ .

$PR\infty F$ . Let $\varphi$ be an anisotropic torsion form of dimension $cu$ with $c(\varphi)=1$ and
$\varphi^{ass}$ the form defined by (2.3). First of all, we prove $cu$ is even. Suppose $cu$ is odd. Since
in the proof of Proposition 2.6 we see the Witt index of $\varphi^{ass}=1$ , we have

$\varphi^{ass}=\langle-d_{\pm}\varphi\rangle\perp\varphi\cong\langle-d_{\pm}\varphi,d_{\pm}\varphi\rangle 1\varphi_{0}$ ,

where $\varphi_{0}$ is an anisotropic form in $I^{3}F\cap W_{t}(F)$ . By Witt’s cancellation theorem, we
have $\varphi\cong\langle d_{\pm}\varphi\rangle 1\varphi_{0}$ . Since $I^{4}F$ is torsion free, we know $\varphi_{0}$ is universal. This shows
$\varphi$ is isotropic. Hence $cu$ is even and Witt index $m$ of $\varphi^{ass}$ is 1 or 2. Suppose $m=2$ . Then
we have

$\varphi^{ass}=\langle-1, d_{\pm}\varphi\rangle\perp\varphi$

$\cong\langle 1, -1\rangle\perp\langle d_{\pm}\varphi, -d_{\pm}\varphi\rangle\perp\varphi_{0}$ ,

where $\varphi_{0}$ is anisotropic and $\varphi_{0}\in I^{3}F\cap W_{t}(F)$ . By Witt’s cancellation theorem, we have
$\varphi\cong\langle 1, -d_{\pm}\varphi\rangle 1\varphi_{0}$ .

By assumption, we know $\varphi_{0}$ is universal. Thus $\varphi$ is isotropic. This is a contradiction.
Hence $m=1$ and the anisotropic part of $\varphi^{ass}$ is of dimension $cu$ and is in $I^{3}F\cap W_{t}(F)$ .
This shows our assertion. $\square $

COROLLARY 2.8. Assume $I^{4}F$ is torsion free. Then we have $cu=0,1,2$ or $cu\geqq 8$ .
$PR\infty F$ . Suppose $cu>2$ . Then by Proposition 2.7 we know there exists an

anisotropic form $\varphi$ of dimension $cu$ in $I^{3}F\cap W_{t}(F)$ . By Theorem 2.3, we have $ cu\geqq 8.\coprod$

PROPOSITION 2.9. The number $cu$ equals $0,1,2$ or 8 if and only if $I^{4}F$ is torsion
free and every anisotropic form $\varphi$ of $I^{3}F\cap W_{t}(F)$ is a 3-fold Pfister form.

PROOF. Let $cu=0,1$ or 2. Then our assertion is trivial because $ofI^{3}F\cap W_{t}(F)=\{0\}$ .
Assume now $cu=8$ . Then Theorem 2.3 shows $I^{4}F\cap W_{t}(F)=\{0\}$ and the dimension of
any anisotropic form of $I^{3}F\cap W_{t}(F)$ is 8. Let $\varphi$ be an anisotropic $form\in I^{3}F\cap W_{t}(F)$ .
Then there exists $a\in\dot{F}$ and a 3-fold Pfister form $\sigma$ such that

$\varphi\cong\langle a\rangle\otimes\sigma$

(cf. Chapter 10 of [5]). Since $\langle 1, -a\rangle\otimes\varphi\in I^{4}F\cap W_{t}(F)=\{0\}$ , we have

$\varphi\cong\langle a\rangle\otimes\varphi$ .
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Therefore we have

$\varphi\cong\langle a\rangle\otimes\varphi\cong\langle a\rangle\otimes\langle a\rangle\otimes\sigma\cong\sigma$ .

Hence $\varphi$ is a 3-fold Pfister form. The converse part of our assertion is deduced from
Proposition 2.7. $\square $

3. The proof of Theorem 1.1.

In this section we give a proof of Theorem 1.1 in \S 1.
First of all, we shall prove the assertion (2) of Theorem 1.1. The only if part of

(2) $isobviousbyTheorem2.3$ . To prove the if part, $byProposition2.9$ , it is sufficient
to show the following:

If $I^{3}F$ is linked and $I^{4}F$ is torsion free, then any anisotropic form $\varphi\in I^{3}F\cap W_{t}(F)$

is a 3-fold Pfister form.
Let $\varphi$ be an anisotropic form of $I^{3}F\cap W_{t}(F)$ . Since $I^{3}F$ is linked, we may write

$\varphi=\ll a_{1},$ $a_{2},$ $ a_{3}\gg\perp\psi$ ,

where $a_{1},$ $a_{2},$
$a_{3}\in\dot{F}$ and $\psi\in I^{4}F$ by Proposition 2.1 of [4]. Since $2\varphi\in I^{4}F\cap W_{t}(F)$ and

$I^{4}F$ is torsion free, we have

$2\ll a_{1},$ $a_{2},$ $a_{3}\gg=-2\psi\in I^{5}F$ .

Since $2\ll a_{1},$ $a_{2},$
$a_{3}\gg\in I^{5}F,$ $2\ll a_{1},$ $a_{2},$ $a_{3}\gg is$ isotropic by Theorem 2.3. Now it is known

that an isotropic Pfister form is $0$ in $W(F)$ (cf. Corollary 2.3 of [2]), we deduce

$2\ll a_{1},$ $a_{2},$ $ a_{3}\gg=0=-2\psi$ .

This implies $\psi$ is a torsion form. Therefore $\psi\in I^{4}F\cap W_{t}(F)=\{0\}$ . Hence we have $\varphi$ is
a 3-fold Pfister $form\ll a_{1},$ $a_{2},$ $ a_{3}\gg$ .

Next we shall prove the assertion (1). Let $I^{4}F$ be torsion free. Then we have
$cu=0,1,2$ or 8 by (2). Let $I^{4}F$ be not torsion free. Then we know $cu\geqq 16$ . Thus we
have only to show $cu\leqq 16$ . To obtain $cu\leqq 16$ , we prove first the following:

(3.1) if $\psi isananisotropicformofIF\cap W_{t}(F)withc(\psi)=1$ , then dim $\psi\leqq 16$ .
Let $\psi$ be an anisotropic form of $IF\cap W_{t}(F)$ with $c(\psi)=1$ . Let $\psi^{ass}$ be the form

defined by (2.3). By Lemma 2.5, we have $\psi^{ass}\in I^{3}F\cap W_{t}(F)$ . By (2) of Theorem 2.1,
we may write $\psi^{ass}=\langle x\rangle\otimes\mu_{1}-\mu_{2}$ , where $x\in\dot{F},$

$\mu_{1}$ and $\mu_{2}$ are 3-fold Pfister forms. Since
we have

$\psi=\langle 1, -d_{\pm}\psi\rangle\perp\psi^{ass}=\langle 1, -d_{\pm}\psi\rangle-\mu_{2}+\langle x\rangle\otimes\mu_{1}$

in $W(F)$ , and the form at RHS contains at least one hyperbolic plane, we know
dim $\psi\leqq 16$ . This shows (3.1).

Next we prove that $cu$ is even under the assumption. Suppose $cu$ is odd. Let $\varphi$ be
an anisotropic form of dimension $cu$ with $c(\varphi)=1$ . If necessary, after replacing $\varphi$ by
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$\langle d_{\pm}\varphi\rangle\otimes\varphi$ , we may assume that $d_{\pm}\varphi=1$ . Let $\varphi^{ass}$ be the form defined by (2.3). Then
$\varphi^{ass}\in I^{3}F\cap W_{t}(F)$ and the Witt index of $\varphi^{ass}=1$ . Thus we have:

$\varphi^{ass}=\varphi\perp\langle-1\rangle\cong\langle 1, -1\rangle\perp\varphi_{0}$ ,

where $\varphi_{0}$ is an anisotropic form $\in I^{3}F\cap W_{t}(F)$ (cf. the proof of Proposition 2.6).

Therefore we know

$\varphi\cong\langle 1\rangle\perp\varphi_{0}$ .

Sinoe $\varphi_{0}\in I^{3}F\cap W_{t}(F)$ , we have $\varphi_{0}=\langle x\rangle\otimes\mu_{1}-\mu_{2}$ for $x\in\dot{F},$
$\mu_{1}$ and $\mu_{2}$ are 3-fold PfisteI

forms. Therefore we see
$\varphi\cong\langle 1\rangle-\mu_{2}+\langle x\rangle\otimes\mu_{1}$ .

Since $\mu_{2}$ contains a subform $\langle 1\rangle$ , we have dim $\varphi\leqq 15$ . This contradicts $cu\geqq 16$ . Thus $cu$

is even. Hence by (3.1) we have $cu\leqq 16$ . $\square $

REMARK. In the case $I^{2}F$ is linked, by (1.1), Theorem 2.1, Corollary 2.8, we know
$cu=0,1,2$ or 8. Further in this case, we see $cu=8\Leftrightarrow u=8\Leftrightarrow I^{3}F$ is not torsion free. Il
$u\leqq 4$ , then we have $cu=0,1$ or 2.

4. The proof of Theorem 1.2.

In this section, we give a proof of Theorem 1.2 in \S 1.
We begin with the proof of some Lemmas.

Lemma 4.1. Let $n$ be a positive integer $\geqq 2$ . Assume that anyform of $I^{n}F\cap W_{t}(F)$

is congruent to an n-fold Pfister form modulo $I^{n+1}F$. Then any pair of torsion n-folc
Pfister forms is linked.

$PR\infty F$ . Let $\varphi_{1}$ and $\varphi_{2}$ be two torsion n-fold Pfister forms. Then by assumption.
there exists an n-fold Pfister form $\varphi_{3}$ such that

$\varphi_{1}+\varphi_{2}+\varphi_{3}\in I^{n+1}F$ .

By Theorem 2.4, we have $\varphi_{1}$ and $\varphi_{2}$ are linked. $\square $

LEMMA 4.2. Let $l$ be a positive integer $\geqq 3$ . Assume the condition $(T_{l})$ given in \S 1
Then $I^{l+2}F\cap W_{t}(F)=\{0\}$ .

$PR\infty F$ . Assume $I^{l+2}F\cap W_{t}(F)\neq\{0\}$ . Then there exists a form $\varphi\in I^{l+2}F$ of
order 2 (cf. Satz 10 of [7]). Let $m\geqq l+2$ be the largest integer such that $\varphi\in I^{m}F$. $B$}

assumption, we know $\varphi=\varphi_{1}+\varphi_{2}$ , where $\varphi_{1}$ is an m-fold Pfister form and $\varphi_{2}\in I^{m+1}F$

Since $2\varphi=0$ , we have $2\varphi_{1}=-2\varphi_{2}\in I^{m+2}F$. Since $\dim(2\varphi_{1})=2^{m+1}$ , Theorem 2.3 implies
$2\varphi_{1}$ is isotropic. Thus we have $2\varphi_{1}=0$ . By Corollary 2.3 of [3], we have an isometry
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$\varphi_{1}\cong\ll-\omega,$ $a_{2},$ $\cdots,$ $ a_{m}\gg$ ,

where $a_{2},$ $\cdots,$
$a_{m}\in\dot{F}$ and $\omega$ is a sum of two squares. Consider two torsion $(m-2)$-fold

Pfister forms:

$\psi_{1}\cong\ll-\omega,$ $a_{2},$ $\cdots,$ $a_{l-2},$ $a_{l-1},$ $a_{l},$ $a_{l+3},$ $\cdots,$ $ a_{m}\gg$ ,

$\psi_{2}\cong\ll-\omega,$ $a_{2},$ $\cdots,$ $a_{l-2},$ $a_{l+1},$ $a_{l+2},$ $a_{l+3},$ $\cdots,a_{m}\gg$ .

Since any pair of torsion $l$-fold Pfister forms is linked by Lemma 4.1, we have:

$\psi_{1}\cong\ll-\omega,$ $a_{2},$ $\cdots,a_{l-2},$ $b_{l-}{}_{1}C_{l},$ $0_{l+3},$ , $ O_{m}\gg$ ,

$\psi_{2}\cong\ll-\omega,$ $a_{2},$ $\cdots,$ $a_{l-2},$ $b_{l-1},$ $d_{l},$ $a_{l+3},$ $\cdots,$ $ a_{m}\gg$

(cf. proof of Proposition 4.2 of [4]). Therefore we have following isometries:

$\varphi_{1}\cong\ll a_{l-1},$ $a_{l}\gg\otimes\psi_{2}$

$\cong\ll b_{l-1},$ $d_{l}\gg\otimes\psi_{1}$

$\cong\ll-\omega,$ $a_{2},$ $\cdots,$ $a_{l-2},$ $b_{l-1},$ $b_{l-1},$ $c_{l},$
$d_{l},$ $a_{l+3},$ $\cdots,$ $ a_{m}\gg$

$\cong 2\ll-\omega,$ $a_{2},$ $\cdots,$ $a_{l-2},$ $b_{l-1},$ $c_{l},$
$d_{l},$ $a_{l+3},$ $\cdots,a_{m}\gg$ .

Since $\omega$ is a sum oftwo squares, the above isometries imply $\varphi_{1}=0$ . Hence $\varphi=\varphi_{2}\in I^{m+1}F$.
This contradicts the choice of $m$ . $\square $

LEMMA 4.3. Assume the condition $(T_{3})$ . Let $\varphi$ be any form of $I^{3}F\cap W_{t}(F)$ . Then
there exists a 3-fold torsion Pfister form $\psi_{1}$ and a 4-fold torsion Pfister form $\psi_{2}$ such that
$\varphi=\psi_{1}+\psi_{2}$ in $W_{t}(F)$ .

PROOF. Let $\varphi beanyformofI^{3}F\cap W_{t}(F)$ . Then we write $\varphi=\psi_{1}+\phi_{2}$ where $\psi_{1}$

is a 3-fold Pfister form and $\phi_{2}\in I^{4}F$. By Lemma 4.2 we have $I^{5}F$ is torsion free. Since
$4\varphi\in I^{5}F\cap W_{t}(F)$ , we have $4\varphi=0$ . Therefore $4\psi_{1}=-4\phi_{2}\in I^{6}F$. We can verify $4\psi_{1}=0$

by Theorem 2.3 as in the first step of the proof of Theorem 1.1. Therefore $\phi_{2}$ is also
a torsion form. By the assumption, we can write $\phi_{2}=\psi_{2}+\phi_{3}$ where $\psi_{2}$ is a 4-fold
Pfister form and $\phi_{3}\in I^{5}F$. By the same argument as above, $\psi_{2}$ and $\phi_{3}$ are torsion forms.
Thus $\phi_{3}\in I^{5}F\cap W_{t}(F)=\{0\}$ . This implies $\phi_{2}=\psi_{2}$ . Therefore we obtain $\varphi=\psi_{1}+\psi_{2}$ .
Hence we have our assertion. $\square $

Now we prove Theorem 1.2. Assume $I^{4}F\cap W_{t}(F)=\{0\}$ . Then by Lemma 4.3, we
know any form of $I^{3}F\cap W_{t}(F)$ is a3-fold Pfister form. Thus from Proposition 2.9 we
deduce $cu=0,2$ or 8. Assume $I^{4}F\cap W_{t}(F)\neq\{0\}$ . Then by Theorem 2.3, we have $I_{3}\geqq 16$ .
Ifwe prove $I_{3}\leqq 16$ , then Proposition 2.6 gives $cu=16$ or 18. Let $\varphi$ be an anisotropic form
of $I^{3}F\cap W_{t}(F)$ . Then by Lemma 4.3, we can write $\varphi=\psi_{1}+\psi_{2}$ , where $\psi_{1}$ is a torsion
3-fold Pfister form and $\psi_{2}$ is a torsion 4-fold Pfister form. Since $I^{5}F\cap W_{t}(F)=\{0\}$ by
Lemma 4.2, we have $2\psi_{2}=0$ . Thus we have an isometry from Corollary 2.3 of [3]:
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$\psi_{2}\cong\ll-\omega,$ $ a_{2},a_{3},a_{4}\gg$ ,

where $a_{2},a_{3},a_{4}\in\dot{F}$ and $\omega$ is a sum of two squares. Since $I^{3}F\cap W_{t}(F)$ is linked $b\backslash $.
Lemma 4.1, $\psi_{1}and\ll-\omega,$ $a_{2},$ $a_{3}\gg are$ linked. Therefore there exists a 2-fold Pfister fom
$\sigma$ , l-fold Pfister forms $\tau_{1}$ and $\tau_{2}$ such that

$\psi_{1}\cong\sigma\otimes\tau_{1}$ , $\ll-\omega,$ $a_{2},a_{3}\gg\cong\sigma\otimes\tau_{2}$ .
Thus we have, in $W(F)$ ,

$\varphi=\psi_{1}+\psi_{2}=\psi_{1}-\psi_{2}=\sigma\otimes\tau_{1}-\sigma\otimes\tau_{2}\otimes\ll a_{4}\gg=\sigma\otimes(\tau_{1}-\tau_{2}\otimes\ll a_{4}\gg)$ .
Since $\tau_{1}$ and $\tau_{2}\otimes\ll a_{4}\gg both$ contain a subform $\langle 1\rangle$ , the dimension of the $anisotropi_{1}$

part of $\sigma\otimes(\tau_{1}-\tau_{2}\otimes\ll a_{4}\gg)\leqq 16$ . Therefore we have dim $\varphi\leqq 16$ . Hence we have $I_{3}\leqq 16$

This completes the proof of Theorem 1.2. $\subset$
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