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1. Intrdduction.

The fundamental solution of the Schrodinger equation on R”

d v -1 4 .
(1.1) E‘¢t h Ht¢t > ¢o_ld

for a time-dependent Hamiltonian operator A, is heuristically described as the so-called
Feynman path integral (cf. [FH]):

i
(1.2 f eXp%—S(t, »n2Ly],
Q(t,x,y)

where Q(t, x, y) is the space of all paths from x to y in time ¢. 2[y] is a “measure” on
Q(t, x, y), although it is not a genuine measure. Several mathematical interpretations
have been examined by many authors (cf. [F2], [F3], [Ki], [KK], [AH], [IM], [N1]),
and (1.2) is understood as an idealized expression of a product integral in a certain
class of linear operators. Another treatment is seen in [11], [12].

The convergence of product integrals are shown in these literature under the uniform
topology for operators, the pointwise convergence topology of amplitude and phase
functions ([F2], [Ki]) or Fréchet topology of function spaces of amplitude and phase
functions ([F3], [KK]).

However, it would be natural to define the notion of product integrals on a certain
“Lie group”: We should define an infinite dimensional Lie group G so that (1.1) can
be understood as the equation of an integral curve for a time-dependent right-invariant
vector field X,, defined by X,=(,/— 1/%)H,. Furthermore the solution is given by the
product integral on G.

Indeed, this is accomplished in the Banach-Lie group. The solution of the equation

Received May 28, 1994



2 NAOYA MIYAZAKI

(d/dt)®,= X(®,) is described as the product integral &, =[], expX.dr on G (cf. [N2]).

In this paper, we shall construct a certain Fréchet-Lie group G on which the
equation (1.1) can be regarded as the equation of integral curve of a vector field on G,
and whose solution can be obtained by the product integral.

A Fréchet-Lie group is by definition a C* Fréchet manifold with a compatible
smooth group structure. Note, however, that fundamental theorems such as implicit
function theorem and the existence of solutions of ordinary differential equations do
not hold for Fréchet manifolds in general.

A Fréchet-Lie group G is said to be regular if the product integrals are well-defined
on G (see Definition 2.2).

It is known (cf. [F2], [F3], [Ki], [KK]) that the fundamental solution of (1.1) is
given by a certain class of invertible inhomogeneous Fourier integral operators of order
0 written in the form:

(1.3) Qnh)~" jfa(i, e T UMSED ~Exy () dxdE

where &-x=Y"7_ & x,.

We choose such phase function S as S=S;+f, where S5 and f is a homogeneous
function on R?"—{0} of degree 2 and degree 1 respectively. S; generates a contact
transformation @ on the unit sphere S2"~! in R?" in a similar manner to symplectic
geometry. Here, we assume that @ is sufficiently close to the identity. The amplitude
function a(x, £) is a complex valued function on R?" with the asymptotic expansion

(1.4) a(x, &)~ ag(w)+a_()p +a_(w)p % -,

for a large p, where

(1.5) p=/x3+ -+ x2+E+ -+, weS™!, (x,&)=pw.
We shall denote (1.3) by

(1.6) (F(a, f, ¢)u)x)= J Ja(i, £)e/ T UMSFED +1ED~ENy(x)ax L

where dx=(2n#)~"2dx etc.

If Sz=x-¢and f=0, then ¢ is the identity and then F(a, O, id) in (1.6) is an ordinary
pseudo-differential operator with the symbol a(x, £) in the symbol class S9 ,, but if
f#0 then F(a, f, id) is a pseudo-differential operator with the symbol a(x, &)t~ 1/ &0
which is in the symbol class S9 , (cf. [Ku] for the notations S9 ,, S{, etc.).

Using the above notations, we set GF? as the group generated by inhomogeneous
Fourier integral operators F(a, f, ¢) given in (1.6) such that a (resp. f) are close to 1
(resp. 0) and @ is close to the identity in the C® topology. (To be precise, see §3.)

The main theorem of this paper is stated as follows:
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THEOREM A. GF° is a regular Fréchet-Lie group with the Lie algebra 4 consisting
of C* functions on R*" with asymptotic expansions:

1.7y /—layw)p?+/ —la(w)p+agw)+a_(@p t+a_(wp 2+,

where a,, a, are real valued smooth functions and a,, a_,, a_,, * - - are complex valued
smooth functions.

The above theorem involves the convergence of product integrals. Hence, the
fundamental solution of the Schrédinger equation (1.1) such that (/—1/#)H,e¥ is
given as an element of GF° by the product integral @,=][{ expX,dx.

Note that the topology of GF° is given by using the C® topology on each
homogeneous functions. Hence the topology of GF? is much stronger than the operator
topology and the pointwise convergence topology of amplitude and phase functions.

As the statement of Theorem A is similar to that of [OMY]-I~1I, the difference
between GF° and the group G%° which is constructed in [OMY]-I~II and
[OMYK]-I~1V is mentioned below, although the main idea of the proof is given by
their papers:

GF° [OMYK] GF°

. compact Riemann n

base manifold manifold N non-compact R
compactification | cosphere bundle S*N S2n-1

summation of homogeneous
homogenous functions | functions ¢,(x, £) and ¢,(x, &)
phase function | ¢(x, &) of degree 1 of degree 2 and 1 with respect
with respect to & to (x, &) with certain conditions
(cf. (A-II) of [AF))

equation relative Schrodinger eq. non-relative Schrédinger eq.

ACKNOWLEDGEMENTS. The author would like to thank Professors Y. Maeda, A.
Yoshioka and H. Omori for their helpful comments and advices.

2. Several remarks on regular Fréchet-Lie groups.

Throughout this paper, we will use the notion of differentiability on a Fréchet
space as usual (cf. [L] for instance), but we recall the partial derivations as follows:

Let E, F and G be Fréchet spaces, U, V be open subsets of E, F respectively and
let f: Ux V—G be a mapping.
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DEFINITION 2.1. [ is called a partial C"-mapping with respect to the first variable
iff for each fixed veV, f(:,v): U-G is a C"-mapping and i-th derivatives with
respect to the first variable

3 ’—-i_\
Dif :UxVxEx---xE->G i=12,---,r)
are continuous mappings.

Note that the continuity with respect to ““(u, v)” is requested.

The partial derivatives for the second variable is defined similarly and are denoted
by D3 f.

The following properties of C’-mappings are well-known. (Cf. [L] for the proof.)

ProposITION 2.2. (I) Any continuous p-linear mapping f: Ex - -+ xE—-F is C®
such that DP*!f=0.

(II) Composition f-g of C"-mappings f and g is also a C"-mapping.

(II) If f: U-F is a C"-mapping, then

, —
(D'f): UXEx - -+ xE->F
is a C" " ‘-mapping for i=0, 1,2, ---,r, and
DiDif=D'*if,  for i+j<r.
Conversely, if f: U—F is a C'-mapping for some i<r and
(D'f): UXEx --- xE->F
is C"™%, then f is C". '

(AV) f:UxV-Gis C"if and only if f is C" with respect to both first and second
variables.

By using the notion of differentiability, C* Fréchet manifolds, and Fréchet-Lie
group are defined in the same manner as in finite dimensional cases.

We now recall the notion of regular Fréchet-Lie groups ((OMYK]-IV):

Let G be a Fréchet-Lie group and let A(s; t): [0, €] x [a, b] » G be a C' mapping
such that h(0; t)=identity of G for some £¢>0 and a compact interval [a, b]. Let
A® P <s<tP < <tP<t<t{”,, be divisions of interval [s, t]<[a, b] such that
| A™ | =max;| t™ —t™, | >0 (n— o), and set the product

t
@1) [T (s A= h(e— 6 1)+ Bt — 105 10 ) - (el =53 5)

s

DerFINITION 2.3. A Fréchet-Lie group G will be called a regular Fréchet-Lie group
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iff for any A, the product (2.1) converges uniformly for s, t € [a, b] with respect to the
uniform topology on G as | A™|—0 (n— o0).

The limit of {[]{(h 4™}, is written by [ (h; d7) and it is called the product
integral.

Remark that any Fréchet space is an abelian regular Fréchet-Lie group, because
the product integral is the ordinary integral on an interval. Several fundamental
properties and examples of regular Fréchet-Lie groups are shown in [OMY]-I~II,
[OMYK]-III ~ VIIL For example, 2,(S%"~ 1), the group of all contact transformations
with respect to the standard contact 1-form 6 on S?"~1, is known to be a regular
Fréchet-Lie group in the paper [Om], [OMYK]-IIL.

As is seen in the above definition, the notion of product integrals can be defined
on local Fréchet-Lie groups. It is easy to see the following:

LEMMA 2.4. Topological group G is a regular Fréchet-Lie group if and only if its
universal covering group G is a regular Fréchet-Lie group.

Obviously, the direct product G x H of regular Fréchet-Lie groups G, H is a regular
Fréchet-Lie group. A little calculation shows also that a semi-direct product G><, H
with a C* action ¢ of G onto H as an automorphism group is a regular Fréchet-Lie
group. More generally, the following lemma is known (cf. [OMYK]-III):

LeEMMA 2.5. Given a short exact sequence of Fréchet-Lie groups:

i

(2.2) l—s NG H—1.

Suppose

(1) Nis a closed normal regular Fréchet-Lie group (with respect to the relative topology),

(2) H is a regular Fréchet-Lie group,

(3) i, = are smooth,

(4) there exists a local section Jj, that is, j is a C®-mapping of an open neighborhood Uy
of the identity € of H into G such that mo j=1dy..

Then G is also a regular Fréchet-Lie group.

We shall use the above lemma successively for the proof of Theorem A. Note that
the above lemma can be applied, even if the projection = in (2.2) is not a surjective
homomorphism, but a local homomorphism which covers a neighborhood of the identi-
ty of H. This is because that if n: U,—»H is a local homomorphism defined on a
neighborhood U, of the identity e of G and the image contains a neighborhood of the
identity é of H, then there exists a homomorphism # of the universal covering group
G onto the identity component H,, of the universal covering H of H such that = may be
identified with the restriction of 7 on a neighborhood.
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3. Outline of the proof.

At first, we shall fix notations and spaces which will be used throughout this paper:
With the quantity p in (1.5), we set

(3.1 G E>=/1+p%.

Fix a cut off function k€ CP(R?") such that 0 <«(x, £)<1 and
0 if p<1/)2)
1 Gf p=1).

Let C(S%"~ 1) be the space of all K (R or C)-valued C*® functions on the unit
sphere S2"~! of R?", and let U; ,’s be open sets on S2"~! given by

1/2 1
Ui = (D,"‘,i 1— w2 ,---’CO”>;1_ (D2> }s
'+ {< ! { Jgi J} 2 JZ:I' 7T n+1

where (w,, -, w;_;, W;44, " *, @,,) are coordinate functions on U, ;.
The space Hg' of all smooth homogeneous functions of degree —i (ieZ) is
naturally identified with C2(S2"~1)p ~'. Hg 'is a Fréchet space by the system of norms

(3.3) Ifli= ). maxsup|of|

|yl<k & Ups

(3-2) K(x, ¢)= {

on CR(S?"~ 1), where 0’f means the ordinary derivative of f on U, .

DEerFINITION 3.1. For any non-negative integer L, we define the space Bl as
follows:

By ={re CRR?>") | Va, B, 3C, 5; {x; £ X" 0308r(x, &)< Cppp} -

This is a Fréchet space with a system of norms:

34 el = X sup{x; EHF| 8508r(x, &) .

lal+18| <k (.9
Consider the space
3.5 i™m M=H"@H ™ '@ - -@HMPBM ! (—M<—m).
Forany f=YM" f p 7 '@®r_y_(f)eZg™ ™, we define the norm | f[_,,, (k= M) by
M
(3.6) ”f”—M,k= Z If=ille—i+ M7 —pg— 2O = pg— 1 k-1 -
Zx™ ™M is a Fréchet space by the system of norms {]f_ .}, Note that the family

{Zg™ M, iZ¥ "1} forms a projective system of Fréchet spaces, where i=¥~1 is the
inclusion mapping iZ¥~1: yom-M-1_,53-m~M oiven by
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M+1 M
(3.7 i:%_1< ; f—ip_i@)r—M—Z):._Z f—ip—iG'){Kf—M—lpﬂM—l'}'r—M—Z}'

By X ™ we denote the projective limit m v 2Zx™ M with the projective limit topology.
Associating with this system, we have the following:

LEMMA 3.2. The projective limit space g™ is identified with

91£m={f€C?(R2") VM=2m,3f -, fo € CR(SP )

M
such that f—x( > f_ip‘i>e§B§M_1}.

PROOF. Any element {372 f ;07 '@®r_p_1}m>m—1 of Zg™ is written as

M
(38) r—m(_f—-mp_m®r—m—1(— e Z f—ip_l@r—M—l(_ B

i=m

where r_,=xf_,p " +r_,- 1€A™
Conversely, any element f of g™ corresponds to the element

(3.9) {ﬁmf—ip_i@<f_"<ﬁmf"‘p_i»}u

of g™ O
The following lemma is useful (cf. [Ku]):
LEMMA 3.3. Let g_; (i=m,m+1, --+) be functions of C®(S*"~'). For any

M=m,m+1, ---, and any 6 >0, there exists ge Xg™ such that
M .
(3.10) g—x Y g_p leBgM 1,
M .
(3.11) . ﬂg —k2g-ip lomme1<9.
PrOOF. We shall choose ¢_; such that
m+N+1 . 0 .
(3.12) gx, &)=Y, xg_;rri+ Y Kk gojr
j=m j=m+N+2

satisfies (3.11), where x,_ (x, &) =xK(e- ;(x, &)).
First we take into account that
Kx, £)—0 (¢ =0, uniform convergence on each compact set),
(3.13) 0308k (x, £)—>0 (>0, uniformly, |a|+|B|>0),
|0208K,(x, &) | < C, p<x; &) 71HI7IAL,
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Next we choose ¢_; so that they satisfy

(3.14) e-;>0, f_-i.>8_j_1>.”—>0’
Coyap"8-yS0-27071 (Yo, B latBI<)).
Then we see

if {x; £><eZ} then k,_;(x, £)=0,

(3.15) ) . )
if (x;&>>eZj then C; , p<xE><C,_,, 48

Therefore

(316) |a;ag{xs_j(x, é) .g_j. r—i} IS Cg—j.a,ﬁ<x; é)-l(x; §>—j—|a+ﬂ|+1

SCy_ g KX EYTITIHBINL <5 0mi= 1 g gy mdmlatBl+L

Thus we obtain

m+N+1 . (—m—N)
(3.17) 'g(x,é)— Z Kg_j-r—’
j=m m+N+1
0 |(=m—N) © .
< Y Ke g-jor I <sup{x; é)"‘*”“{ > Ixe_jg_j-r‘fl}
j=m+N+2 m+N+1 j=m+N+2
<sup{x; €>m+N+1{ Z 52—j—l<x; €>—i}s_6_ . O
j=m+N+1 2

For any ae 22, we define the pseudo-differential operator P(a) as follows:
(3.18) (P(a)u)(x)=Os- j Ja(i, £)et ~1UMIE- ) Sy(x)dxdt ,

where Os-[ | means the oscillatory integral. As P(a) corresponds uniquely to its symbol
a, we identify P(a) with a, and define the product c=a=*b, iff P(c)= P(a)- P(b), i.e.

(3.19) o(x, &)= Os-j Ja(x, EB(X, &)e ~UMeE-DE-Da57E .

The following is well known (cf. [Ku]):

LEMMA 3.4. Under the notations as above, we have

(20) cx&)= T —Balx, £)3b(x, )

O0<la|<N O!

N+1
+ 2
ja|=N+1 o!

where Bz = (#// —1)0z.

Os- f f f (1—0)" P2a(x, &+ 07)d,b(x + 7, &)de = 1PT3g5a7 |
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The proof of Theorem A is based on the successive use of Lemma 2.5. So we first
have to define several subgroups of GF°.

If a=1+h and h is sufficiently close to 0 in X¢™ (m=0, 1,2, - - -), then P(1+h) in
(3.18) is known to be invertible (cf. §4). Let GEZ ™™ (m=0, 1, 2, - - -) be the group of all
pseudo-differential operators generated by 1 + P(h) such that #€ Z¢ ™ and k4 are sufficiently
close to 0 so that 1+ P(k) is invertible. Using Lemma 2.5, we have the following: (See
§4 for the proof.)

PROPOSITION A. GZX° is a regular Fréchet-Lie group with the Lie algebra X2.

Next, we give properties on inhomogeneous Fourier integral operators F(a, f, )
given in (1.6) as follows (cf. §7):

PROPOSITION B. (i) There are a neighborhood U of 1 of 22 and a neighborhood
W of the identity of @,(S*"~ 1) such that if F(a, f, )=F(a’, f', §') fora,a’e U, f, f'e Hy
and @, @'e W, then a=a’, f=f', $=¢  (¢f. Lemma 5.1).

(ii) There are a neighborhood U’ of 1 in 22 and a neighborhood W' of the identity
of D (S*~ 1) such that for any (a,f, @), (b,g,¥)eU x Hyx W', the composition
F(a, f, 3)oF(b, g, §) is written in the shape F(c, h, o) so that ce U, he H}, Goje W.
Moreover, ¢ (resp. h) depends smoothly on(a, b, f, g, @, V) (resp.(f, g, &, V). In particular,

F(a, f,id)< F(b, g, id)=F(c, f+g,1d) .

(iii) There are a neighborhood U" of 1 in X2, a neighborhood V" of 0 in Hg and
a neighborhood W" of the identity of 2 .(S*"~ ') such that for any (a, f, p)e U" x V' x W",
the operator F(a, f, $) is invertible, and the inverse F(a, f, )~ ' is written in the shape
F(c,h, $~ 1) so that (c,h, $~)e Ux Hi x W. Moreover, c (resp. h) depends smoothly on
(a, 1, @) (resp. (f, §)).

Note that (i) in the above proposition shows that (a, f, #) may be understood as
the coordinate of the operator F(a, f, @).
Set the group GF?° as the group generated by

{Fa,£,0);(a f,@)eU"x V"' xW"}.

Proposition B (ii), (iii) implies that the group operations are smooth on the
neighborhood of identity. We easily see that the map (cf. Proposition B (i))

(3.21) {: U—>GF°; (a, f, §)— F(a, f, §),

where 4 =U"@® V" @ W”, is an injective mapping satisfying the following conditions:

(1) 1Q1,0,idg s2n-1)) =idgo.

(2) For any u,, u, e % such that {(u,) - {(u,) e Im{, there exist open neighborhoods %,
of u, in % and %, of u, in % such that {~*(( )+ ¢( )): U, x U,—~U is well-defined
and smooth.

B3) 7Y )™ Y: - is smooth.
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Therefore, by the standard method, we can give the topology to GF° through the
mapping {. Since we can identify the neighborhood of idg_szn-1, of 2,(S*"~ 1) with the
neighborhood of x:¢& of H2 (cf. (5.40)), the tangent space at identity of GF° is
J-1Hi® . /—1H}® 2. Thus, we obtain the following:

PROPOSITION C. GF?° is a Fréchet-Lie group with the Lie algebra

(3.22) J—1H:®./—1HL®Z?.

By Proposition B (ii), (iii), GZ° is a normal subgroup of GF°, and obviously closed.
For the group GF°/GZ°, the coset F(a, S;, 3)oGZ° corresponds univalently to (S, S;)
by Proposition B (i). Therefore, H2 @ H3 is the model space of GF°/GZ°.

By Proposition B, we see that the map

(3.23) £: 4% - GF°|GZ°;  (Sp S1)—F(1, Sy, $)oGZ°,

where % =W" @ V", is injective and satisfies the following conditions

(1) didg, s2m-1ys 0)=e. L N _

(2) For any u,, u, €% such that {(u,) - {(u,) e Im{, there exist open neighborhoods %,
of u, in % and %, of u, in % such that {=2(( )-{( )): %, x ¥,—~% is well-defined
and smooth.

3) &N ) Y): W% is smooth.

Therefore GF°/GX° is a Fréchet-Lie group.
By Proposition B (ii),

(3.24) F(a, f,id)o F(b, g, id)= F(c, f+g,1d) .

(3.24) means that i,: f+ F(1, f, id.) of (3.27) is well-defined as a homomorphism. On
the other hand,

(3.25) n.: fla, f, )&

gives a local homomorphism of GF°/GZ° into 2,(S?"~ ') which covers a neighborhood
of the identity of 2,(S?"~1). The kernel of =, is isomorphic to the space Hy of all
homogeneous functions of degree 1. Moreover, we see that

(3.26) Je: ¢—F(1,0, §)

is a local section. Therefore we can consider the following local exact sequence:

(3.27) 0 » HY I » GF°/GX° . D (S 1),

where “local” means 7, is a local homomorphism and Imi,=Kern,. Here Hy is a regular
Fréchet-Lie group, because it is a Fréchet space (cf. Remark after Definition 2.2).

As 2,(S%" 1) is a regular Fréchet-Lie group, the above local homomorphism
combined with Lemmas 2.4 and 2.5 yields the following proposition:
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PROPOSITION D. GF°/GY.° is a regular Fréchet-Lie group.

Once Proposition A and Proposition B are established, then the proof of Theorem
A goes as follows: On the exact sequence

(3.28) 1—Gz° L GF° " GF°/GZ° —— 1,

Proposition A shows that GZ° is a regular Fréchet-Lie group. Proposition C shows
that GF° is a Fréchet-Lie group. Proposition D shows that GXZ° is a closed normal
subgroup of GF° with respect to the relative topology and GF°/GX° is a regular
Fréchet-Lie group. Furthermore, we now see that the mapping '

(3.29) j: HE® HL3(S,, Sy)— F(1, S;, @s,) € GF®

gives a local section, where @g, is a contact transformation on S2"~1  Therefore, by
applying Lemma 2.5, we see that GF° is a regular Fréchet-Lie group. Theorem A is
thereby proved.

Therefore, to complete the proof of Theorem A, we have only to prove Proposition
A and Proposition B.

4. Proof of Proposition A.

In this section, we shall prove Proposition A in §3. Since the proof is fairly long,
it will be splitted into several lemmas:

By the definition of * in (3.19), it is easy to see that = is a continuous bilinear
mapping of Z¢ix ¢ into Zg ¢+ (i, j>0). However, to see the convergence of product
integral, we need further the following property for the norms given in (3.6):

PROPOSITION 4.1. Form>2n+ 1, the following inequality holds: forany f,ge Zc™,

4.1) 1f*xgll-pma< Ck,Ml]fﬂ—M,kUgﬂ—M,ék (M=m),

Cy.u» is a positive constant depending on k, M, and 0, is a positive integer such that 6, >k
depending on k.

By a similar argument as in [OMYK]-V the above lemma yields the convergence
of product integrals of GZ~™ for m>2n+1. To prove Proposition 4.1, we need the
following lemma:

LEMMA 4.2. For any reBcM ™1, qgeBc™ (m=>2n+1), 6€[0, 1] we have

{x; EYyMH1

fjr(x, E+0mq(x+y, E)e” UM dndy

< Csup{x; EHYM ¥ r(x, &)| Ly Sp <x; &)™ 0%0%a(x, &)1,

|+lul<2
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where C is independent of r, q, 0, and | is any integer such that 2I>M+n+12>3n+
M—m+2.

ProoF. First, we divide the domain of integration into two parts as follows:
L={,m;n<<&>B},  L={n);n|><&>/3; .
On the set I,, there exists C (>0) such that \
CHxE)<{xé+m>)<C<{x;&), 0€[0,1].

Using this, we obtain

‘ J r(x, &+ 0n)q(x +y, E)e M gyan
I £1

%]

up<%; E+ 0™+ n(%; E+ 6| §gr;<f+i;5>'"lq(f+ﬁ;5)l
x’y!

5.&
O ESMH 8 ety oo

®

dydn .

<
Inl<<&>/3
As m>2n+1, the above quantity is bounded by

4.2) CIW{sggu;bM“Mx,é)l}{ sup <x;¢>'"|a;agq(x;c)l}.
jAl+|uls21
On I,, as
g &+ ™M <™,
and

In]~ 21{(—5/ [/ 1)2Ay}le—(i/ﬁ)y-'l =g~ @WMyn

hold, we have the following estimate:

. j r(x, &+ 0nq(x +y, E)e™ P aydn
I,

1 supgye<% E+ O™ H(F; E+6) |

n |21 <x>M+ 1
Inl><&>/3
S SWPgE+ 3 EM B/~ 1P AN G+ 5 O
{x+y; &

We choose / such that 21> M+ 1+4n. By using {x) "M 1EY M < (x; €™M, the
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above quantity is bounded by

1
43 G o BT {5:1?@; EXMFr(x, &) |}{ sup <x; E>™| 030%q(x, &) |} -
’ ' [l + w21
By (4.2) and (4.3), we have the lemma by setting C=max{C,, C,}. O

PRrROOF OF PROPOSITION 4.1. For any feX¢™, we write as
M
(4.4) f=3 n i (N+r-mlf),
j=m

where n_;(f)=/_,;p 7 outside some compact subset.
By the bilinearity of (3.19), we have

frg=2ni)*n_ @)+ 2r-m(N)*n_ @)+ 2 i())*r_ @) +7-m()*7-M(9) -

To show Proposition 4.1, it is enough to see that

) ”n—i(f)*n—j(g)D—M,kSC[In—i(f)ﬂ—M,kl]n—j(g)ﬂ—M,ék ,
(4.5) () Mr-p()* 7 (DN - rr-1-m-1 < Cllir—pNOH —M—l.k—M—lun—j(g)l]—M,ak s
(i) |w_;(f)*r_m(@)I -M-1k-M-1 SC[ln—i(f)l]~—M,k”'r—M(g)”| -M—-1,5.-M—1>
(N SV AL TNV (/)] VRPN v o[} v § ) || VPR ESvEPy || SOV (") || NYSPPRy P

By applying (3.19) to the inside of the left hand side of (ii) and (iv) of (4.5), we have

r-ulf) 71c_j(g)=er—M(ﬂ|(>c,~§+»1)75~1‘(9)|(x+y,r:)e(im)y'"a‘J’a"? 5
(4.6)

rom(f)*r_plg)= fjr—M(ﬁI(x,g+n)r—M(g)l(x+y,§)e(i/my"'dyd7l .

Applying Lemma 4.2, (ii), (iv) holds by setting 5, =k + 2.
Next, we shall show (i), (iii). By applying (3.20), we have the following:
A 1
@7 n(N*n_d=2Y Y —

I=mi+j=1-2]a| O!
m<i,j<M

Bin_i(f)ozm_j(g)+r_p(m_i(f)*7m_;(9),

where
@8 rowln (e 6 O
-[[[ > a-oppim_on

Since the absolute value of the factor of homogeneous degree 0 of the derivative
of 84(f-;r~")8%g-,;r~7) of order k—(i+j+2|a|) is bounded up to constant factor by

d0e M dydn .

(x+y,%)

ai“—j(g)

(x,&+6n)
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I7_ (Dl < Im_;(g)]k it is easy to estimate the first term of the right hand side of (4.7).
Thus, it is enough to estimate (4.8). Using the Taylor’s theorem, integration by part
and the Fourier inversion formula, we see

(49)  0:0%r _m(m_i(f)*xm_(gNx, &)

gl & Y|

_ ___[ (1— g™
eitea=e €11€2! 0110;! | ivje2jal=M+1
81 +02=0
X > 6"'6"‘6"‘,5“,5@-l(f)aeza"’a“a”n_J(g)dH
Iyl +lal+le+ (61| +isM V! (x,%)

+ Z Z J{jj M+1 (-))M_A(E""Sl)glvl(l_T)A(n.m—l
. v

l+J+2|¢| I7I+Ia,l le1|
=M+1 +|8|+i=M+1

x 030383 Bim_i(f) 02090301 (g)

(x,&+0tn)

where A(g;, 6))=M+1—i—|a|—|e;|—|0; ]
Note that only 0203 B2 Bin_,(f) such that

[y +]o|+e |+, | +i<M+1+|e|+]0]

e~ WMy gy dO}dydn] ,

(x+y,8)

appears in (4.9). Then applying Lemma 4.2, we see that (i) holds by setting é, =k +2I
(k=M+1+|e|+]0)).
As for (iii), we have by the same manner that

m N rou)% D= T B (/0% -u9)

fyl+isM 7V

z H““"J (=M1~ Bin_(f)

Therefore by Lemma 4.2, we see (iii) holds. [J

(x,3)

0% —ul9)

(x,&+ )

dre MY dydy .

(x+y,%)

Next, we shall prove the following:
PROPOSITION 4.3. GX ™™ is an open subset in 1 +2¢c™.

At first, we set a positive constant ¢; by

(4.10) el=<2J<x>‘""1dxj(é>""'ldé+1)_1, .

Denote by #(R?") the space of rapidly decreasing functions on R?".

LEMMA 4.4. Let k(x, £)e S(R?™). If k(x, &) satisfies | {x; é)””k(x E)|<e,, then
there exists he S (R?") such that
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4.11) (1— P(k))o(1 + P(h)) =(1 + P(h))o(1 — P(k))=Id .

[ times

ProOF. By (3.19), we have that the product k* =k« - - - x k is given as follows:
using the convention y,=0, n,=0,

-1 -2
(412) k*l=Jf' . J 1—[ k(x+y,-, f+7],-+ 1)e _("/"){Zf;: ”i.y1_2i=1yi.”i+2}
i=0

Xdydny - -dy,_dn -, .

By the assumption of Lemma 4.4, we obtain

l

-1 1 1
4.13 K(x, £)| < &1 _<—) L E).
@1 e Ol ] s =2 P

Thus, ) 2  k*(x, £) is well-defined as a C°-function on R?".
A direct computation gives

(4.14) x5 80

3 0208kKx, &> l

) ” ” 2 - o
= = o !. B A ! l . !
=0 pOTITeIg T o! B! Ba

(y+-

< NN

t_

1
x [ 0%+ 8 vk(x +y;, E+nyy )y dny - - -dy_ dn_y | .
i=0

Denote the right hand side of (4.14) by J. If |a+ | </ in the above inequality (4.14),
then there are /—|a+ f| factors which are not differentiated. Other factors are
differentiated at most | o+ f |-times. Since

|050EWk(x, E+11) 1< Copyy poayn+2n+ 26 EFm >N 7272
X | {3 &+ YN 220400 k(x, E+11y) |
S CLxY TN+ T2,
|05008Wk(x +y1- 1, E) IS CLE ™M x+y,- )72,
the factor {x>N{&DN is cancelled out. So, we get

®© 1 \let+B8l/ 1\~ let8l ol 1
2 (C+_) (— > ! 'ﬁ !
e 2 2 BTN =S ay!ag! B! Bo!

wt+Bpy=

0 1 la+ 8] 1 I1—-|a+p]|
< Z (C‘i‘?) <?) l"’+ﬂ|<oo (VN, Vd, Vﬂ).
=0

J<
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Thus, we have ) ;2  k*' e #(R?"). The desired 4 is given by > 2 k*. O
PROOF OF PROPOSITION 4.3. First, we fix m>0. For any feXc™, let
S~femp ot T, ;€ CESTTY)
be the asymptotic expansion of /. Using { f_;} ;. .. We set the smooth functions of $2"~1:

g—m—k=_f—m—k9 O0<k<m-—1 ’

4.15) 1
9-2m1=—f—om-1— Z —,ﬂ%(f-ip'j)ai(g-jp"j)pz'”+', [>0.
2|a|i-6}i<+2j:3;n+l ol

By Lemma 3.3, for any M >m there exists ge Xc™ satisfying (3.10) and (3.11). Setting
sp=(14+f)*(1+g)—1, we see that s, S(R*") and

M M
4.16) sp=(1 +f)*"—M—1(g)+< > 7‘40))*( > “—J{g))

i=m j=m

M
+r—M—1(f)+r-M—1(ﬂ*< ; 75—j(9)> .

Since 6 (>0) in (3.11) can be chosen very small, if f is sufficiently close to 0, then
sy is small so that the assumption of Lemma 4.4 is satisfied. By Lemma 4.4, there exists
h,e (R such that (1+s,)*(1+h,)=1. Hence, (1+g)* (1 +Ay) is the inverse of 1+
It follows that GX ~™ contains a neighborhood of 1 of 1+ X¢™. By using the continuity
of the product *, GZ ™™ is an open subset of 1 +2¢™. O

By the above lemma, we see that GZ ™™ is a Fréchet-Lie group under the relative
topology in 1+ Z¢c ™. By Proposition 4.1, the product integral is well-defined on G~ ™.
Therefore, we have the following:

LEMMA 4.5. GX ™™ is a regular Fréchet-Lie group for any m>2n+1.

Note that, Zg™ is a closed subset of ¢’ for any m, [ such that m>/and GZ'n Z¢™=
GX ™. Thus, we have the following:

LEMMA 4.6. GXZ ™™ is a closed normal subgroup of GEZ~' (m>1).

We have already shown that GZ° can be identified with an open subset of Zg (cf.
Proposition 4.3) then it follows that GZ° forms a topological group under the relative
topology in X 2. Note that this topology is much stronger than the uniform topology
for operators. We have seen also that GZ ™ are closed normal subgroups of GX° for
anym=0, 1, 2, - - - (cf. Lemma 4.6). By using these subgroups, we consider the following
exact sequences:



FRECHET-LIE GROUP 17

1— Gz 2,6z L HY, —1,

(4.17) ,
1 — G i 2, et B goivi L0, (i22),

where HQ, is a multiplicative group of all C—{0} valued smooth functions of
homogeneous degree 0 which is a regular Fréchet-Lie group.

At first, we can easily see that there exist local sections jy: f+> P(1+xf) of the
second exact sequence of (4.17). Since GZ ™™ is a closed normal regular Fréchet-Lie
group for m>2n+1 under the relative topology (cf. Lemma 4.5) and Hc™*! is an
abelian regular Fréchet-Lie group, Lemma 2.5 shows that GZ~™*! is also a regular
Fréchet-Lie group. We can repeat this procedure and hence we get GX~! is a regular
Fréchet-Lie group.

On the first exact sequence of (4.17), the mapping

(4.18) Js: =Pl +xk(f—1))

defined for f which is sufficiently close to 1 of H2 , gives local section. Thus, by Lemma
2.5, we have the following corollary which includes Proposition A:

COROLLARY 4.7. GZ°, ---,GX~™*1 GX~™, --- are regular Fréchet-Lie groups.

5. Canonical transformations and generating functions.

In this section we shall investigate relations of canonical transformation with its
generating function.

It is well-known in symplectic geometry that a canonical transformation which is
close to the identity corresponds bijectively to a function close to X+ &, which is called
the generating function. This correspondence is given through another transformation,
which will be called a cross mapping in this paper. We start with analyzing this
correspondence.

Any C* function S gives a mapping yg defined by

] ) % V.S(x, &)
(5.1 ts: REH > RE5; Xs(z>=(ViS(J;, f)) .

We shall call yg the cross mapping defined by S.
The following lemma is rather well-known (See [S] for the proof):

LEMMA 5.1 (global implicit function theorem). Let

(5.2) ¥: R > R!

be a C' mapping. If there exists K>0 such that




18 NAOYA MIYAZAKI

(5.3) K '<|detd, P(x)]|, [0,Px)|I<K (VxeRY,
then ¥ is C? diffeomorphism. Here || - | is uniform norm of matrix.

If S is sufficiently close to X - £ in the certain topology, then Lemma 5.1 shows that
the following transformation ¢g is well-defined as a global diffeomorphism on R*™:
54 os: R¥y - R

w w

(5= (st
; VS €))

Since dx A dE=dx A (V VS)dE=(VV,S)dX ndE=dx And&, we see that ¢ is a canoni-
cal transformation. Such a ¢ is called the canonical transformation generated by S,
and S is called the generating function of ¢s.

Note that the relation between the cross mapping yxs and the canonical
transformation @ is given by

(5.5) (g.)=xs<§) if and only if (’;):%(z) :

The graph of cross mapping xs coincides with the graph of ¢g in the space R*".
We denote x5 also by x,,.
Conversely, the following is easy to show:

LEMMA 5.2. If(p(z)=<§> can be solved with respect to (;ﬁ), ie.
(2)-(2)-Ge o)
Ne)\e) \ew o)

(%, &) - dx+x(x, §) - d&

is a closed form, and y is a cross mapping defined by

then

1
S(%, &)= j (E(%, 18) - %+ x(1%, 1)+ €} .
0

As the generating function S is uniquely determined up to additive constants by
a canonical transformation ¢ to which Lemma 5.1 can be applied, we shall denote this
by o, i.e. S=o0,.

Given generating functions S, T, we compute the generating function o .,, of
the composition for canonical transformations ¢g, @r.

By (5.5), we have
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(3)-n(5)-Giswsy) ™ (3
; £ \VeS &) ;
x\_ X, _ VéT(x"z,é)) - <)22)= (x)
<Ez) "T(é> <V52T(fz,é) T\g )T e )

The graph of the cross mapping x,,, ., €xpresses the relation of (;) and (;ﬁ) such that

(2)-(2) (3)-42) (2)-(3)

Set &, =¢,, X, =X,, and solve the equations

(5.7) {g_vfr(x, £)=0,

where we put €=, =&,, X=X; =X,. Then, we obtain the cross mapping x,.,,-
By using Lemma 5.1, we can solve the equation (5.7) globally on R?*" as

(5.8) X=x(x,¢), E=E(%,&).
Substituting (5.8) to (5.6), we have

, ( x )z( VS, E(X, é))>=<f( é))
\&(%, ¢) V:S(%, &%, &) ’
N ¢ VT (EE, &), £) Ex, &)
Since x(pso,pT(:):(g.), we have

(5.10) wa(f>=<(vér)(§(x,_z_), é)) .
- &) \(VsS)&, &5, &)

LEMMA 5.3. The generating function o ., is given by

(5.11) S(%, &%, &) —<E&F, &) | X(x, &) + T(X(%, &), &),

where { | > means the usual inner product on R".

el S

(5.9

For simplicity of notations, we shall denote (5.11) by S®T.

ProOOF. The cross mapping XS@T(§>=<§> is given by

(5.12) <§>=<V¢(S@ T\ é)) |
¢ VAS®T)X, &)
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By using (5.7) and (5.8), we have

(3.13) VAS®T)X, &) =(VeSKE, &%, &) - VLE(%, &)
—V &%, &) X%, &) —E(%, &) VH(F, &)
+(VT)EE, &), &) VHE, &)+ (V,TYXE, &), &)
=(V.TYX%, ), &).

Similarly, we see that

(5.14) VAS®TXX, &)=(VS)%, {(%, &) -
Therefore we see, by (5.10), that

(5.15) x@(z)=x<§)

It follows that o,,.,,=S® T up to additional constants. O
S® T will be called the composed generating function of S and T.

Now, suppose S and T are elements of Hi @ Hg which are sufficiently close to x - &.
Although these functions are not necessarily defined on the whole space R?", we can
apply Lemma 5.3 to functions

(5.16) S,=kS+(1—x)x-¢&, T,=xT+(1—xK)x-¢&

instead of §, 7, where x is given by (3.2). Note that if S=5,+ S, e H3@ H}, then
Se=KkS,+KS1 + 8, - o) EZE, Where S _ o €[ ), ZE=LR?™.

In what follows, we shall investigate that S, ® T, belongs to X 2. For the construction
of S, ®T,, we have to solve the equation (5.7). Thus, we consider the inverse image of
the mapping

X
- E+ V:?Tlc(-ia é)
— X+ VzS(X, )
¢

So

(5.17)

e K O =

for the domain
(5.18) R(z,{,:)=R§-',- X {0} X {O} x R; .

In preparation for treating (5.17), we will need several notions as follows:
Let Z3x(R?") be the space of all mappings

pa)
(5.19) = : |: R¥»SR>
qp(Zn)
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such that ¥ ¥ e Z1(R?") for any i, 1 <i<2n. X}(R?") is a Fréchet space under the product
topology of Zi(R?"). Any element ¥ € X(R2") is written in the shape

(5.20) Y=Y +¥0,-1>
where

v vl
(5.21) Y= : |, Y¥o-p=

w PG
with

YO=9Nw)p (outside some compact subset),
(5.22) PO =9 (w)p ' (outside some compact subset, /=0, ---, L—1),
PO eBL,

The identity mapping id: R?"—R?" is obviously an element of X }(R2").
&~ ! will be computed separately on several conic domains. Here, we give the
following notion:

DEFINITION 5.4. Let & be positive cones of R"—{0} (i.e. xe R then txef for
Vt>1). For a real valued C*-function f on R™,
(1) feH'R)iff f is a homogeneous function of degree i€ Z on K,
(2) feBTHR)iff sup,.a{wH*|0%f(W)| <0 on &,
(3) feZ'(RK)iff for any LeN, there exist f; e H\(R), - - -, f_p.+, € H E*{(R) such
that f—fi— - f_ 1 €BHR),
(4) For a C*-mapping @: R"—>R™, we denote
oW
o= : |eZ}(R) (resp.eH(R))
bm
iff @M, @@ ... dMeTYQ) (resp. € H(K)) holds for any i=1,2, -+ -, m.
Using these notations, we have the following lemma:

LEMMA 5.5. Let @: R™">R™ be a diffeomorphism. Let & and K be positive cones,
such that ] < ®(K]) N D ,(KR), where @, is the part of degree 1 of Definition 5.4 (3). If
DIV (R) and D, is 1-1, then d~ 1 e TY(K).

PrOOF. Obviously, we have &7 ! e H'(K’). Associating to the decomposition in
Definition 5.4 (3), we set

(5.23) ¢=¢1+¢(0,—L)’ Where ¢(0,—L)=¢0+-.'+¢—L+1+¢F-L3
such that &_,e H () (—/<1) and &_, e B XR). Then, we have
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(5.24) ¢_l =¢i—1 °(¢_¢(O,—L))O ¢_1 =¢1_1 O(id—Q(o’_L) o ¢-1) .
Taking the Taylor expansion of (5.24) at the identity, we have

(525 o l=o7'+ ), —( Do, )0 @ o D!

1<laj<L-1 o!

1
+ Z ——'( ¢(0 L)°¢ l)a j (1_0)L6¢¢1— l(id—BQ(o’_L)°¢_l)d0 .
lal=L &: ]

Here @, e H'(R'). The third term of (5.25) is an element of B(K'), since higher order
derivatives of the remainder term in (5.25) is bounded on K. On the other hand, we
can easily see the following property:
If h_;e HJK') (j=0,1,2, ---) and
'P(DGHI(R')(-BHO(R’)('D - @HM 1(5}’)@%"’(5{’)
(i=1’29 '.‘9msl=09 132, ‘.')’

then

h_joPeH(RYOH " '(R)®---OH (R)®B 1" (R).

Substituting the right hand side of (5.25) to @~ ! of the right hand side of (5.25),
and using the above property, we see that right hand side of (5.25) is contained in
H'(K) @ H°(R)® B~ !(K'). Hence, we see inductively that right hand side of (5.25) is
contained in TY(K]). 0O

By Lemma 5.3, we have the following result:
LEMMA 5.6. Suppose S, Te HY® Hy are sufficiently close to x-&. Then, the

composed generating function S, ® T, is an element of X}. Furthermore, denoting

S, ®T,=(S,®T,),+(S,®T,), + lower degree terms
cHi®@ Hy® I3,
we have
(1) (Sc®T,), depends only on S,, T,.
2) (S,®T,), depends only on S,, T,, S,, T,.

PrOOF. For short, we write S, T instead of S,, T,. As we have mentioned in
(5.17), we have to treat the inverse of &. Consider the following positive cones:

={(% & x,&); I% &I=K, 1—e<|%, E|/I%, & <1+¢},
={(%,0,0,8); % ¢l =K'} .

Since the Jacobian matrix of &:

(5.26)
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E, O 0 0
0 —E, 050:T 8:0,T
0:0.S 9:0,S —E, 0
0 0 0 E,

(5.27) Dszzo®=

E,L 0 0 0
are close to EO,, OE" —OE,, " | uniformly on R*",

0 0 0 E,

and the same thing holds for the component &, of homogeneous degree 1, we see that
on &’

1%, &%, &)l ~ 1%, &), &, Ol ~ 1%(X, &), Ell~ 1%, &Il

where a~ b implies | 1—b/a|<e. Thus, we see that R < H(R) N &,(K). Applying Lemma
5.5 to &, we have &~ e Z}(R).
We now compute S® 7. Denote the mapping & by

C;(d)
C(P)
Cy )
€,(®)

S

(5.28)

|
I

IS TR IR
S I TR (IR

Similarly, we set

Cz(d™Y)
(P Y)
€S
n C.(67Y

(5.29) ¢!

})
< =

If the variables are restricted in the space R¥ ,,, then we denote also
Cod 1)=Cxb Hrz,, T )=Cd Hlrz,. etc.
By using these notations, we can rewrite S® 7' in (5.11) as follows:
(530) SO®TE, &)=SE E(d 1) — &S~ H|TAS )+ TEC(S7 1), ¢).
Restricting &~ ! to R¥ ), we see that the mapping
(5.31) F(S, T)=@x$7 "), 8«67 ) : RE.» > RE 5

is contained in Xi(R2").
Recall that & depends on S, T. Note that there exists a neighborhood U, , of x-¢&
in H2@® H} such that & satisfies the condition of Lemma 5.1 for any S, TeUs.,.
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Therefore, F given in (5.31) is regarded as a mapping of U, ., x U,., into Zx(R?"). In
§7, we shall show the smoothness of the mapping F (cf. Lemma 7.6).
We compute the decomposition of F. For simplicity, we put

& D=CAP )%, &), D)%, &),
and set

E=El+€_0+.'.a E‘(’-i)EH{‘,
(5.32) ) ]

X=X, +Xo+" ", xPeHy.
It is easily seen that &, (X, &) and X,(X, &) depend only on S,, T, and Ey(%, £) and X(%, &)
depend only on S,, T,, S;, T,. Substituting (5.32) to (5.30), we have

(S@ T)Z = SZ(X.’ c_l()-cic))— <é_1£i’ é) I ‘il(-)-c, €)>_+ TZ(il(iy 6)5 é)
(S®T); =(VgS)X, ¢1(X, &) - Eo(X, &)+ S4(%, ¢4(%, &)

(5-33) — (B, &) ol ) — (Bo(, &) | B1(, £))
+ Tl(xl("?a é)’ €)+(VJFT2)()EI()?’ 6)’ é) ° f0(~’-c9 é) .
Hence, we obtain the results. O

Next, we shall investigate the generating function of inverse mapping ¢g . Let Xog!
be the cross mapping corresponding to ¢g*

(5.39) ps':  RY, — R¥ 5
w w

( x )F__»(V,;S(x,é))_
V:S(x, &) 4

Applying Lemma 5.2 to x,-:, we get the generating function of the cross mapping
Xo;1- Next, we set

(5.35) §=8,® S, =the Hi® Hy-part of 6,1 .

If we make the canonical transformation corresponding to S, then by Lemma 5.6, we
see the following lemma:

LEMMA 5.7. Under the above notations, the homogeneous term of degree 1 of S® S
vanishes, i.e.

(5.36) S®S=x+&+0+ {homogeneous term of degree 0}
+ {homogeneous term of degree —1}+ - - - .

In the last part of this section, we investigate relations among contact transforma-
tions, canonical transformations and generating functions.

In what follows, we shall construct a mapping p, of a star-shaped neighborhood
U of the identity of 2,(S%"~!) into the group 2,(R?") of all canonical transformations
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on R?". For that purpose, we take U very small so that Lemma 5.1 can be applied to
the cross mapping to obtain canonical transformations. Next, let ¢, be a curve in U
such that ¢,=id, @, =@. Since @, €D, (S*"~1),, there exists h,e C(S?"~') such that
$*0=h,0 where 0 is the standard contact 1-form on S?"~!, and @0 is a pull back of
6 by @,.

Under the above notations, we define ¢ corresponding to ¢ as follows:

(5.37) R>»= R, xSt -2, R, xs§#1

w ‘ w
(ps CD) — (f(p’ CO), (T)x(Zp)(w)) ’

where

(538) f(pa w)zp/hx(Zp)(w) ’

and « is defined in (3.2).
Then p, is defined by p,(¢)=¢. p, is a mapping of U into D(R>"), and p,(P) is
positively homogeneous degree 1 outside some compact subset on R?",

LemMA 5.8.
I.fP = 1/4a then (ﬁx(Zp)(w)=id(w)a hx(2p)(w)= 1.
If p=1—1/4, then @, (w)=P(®), hyzp(w)=hy(®) .

Next, we shall define a mapping p, which gives the correspondence between elements
of Imp, and generating functions.

Applying-Lemma 5.1, we solve ¥ = ¢@z(x, &) with respect to x and set x=x(x, &),
where we write

(5.39)

o=(9z ¢3): R(Z;:;) - R(zfn,é—) .

By substituting this to £=g@#x, £) we obtain the cross mapping (x, &)= x(%, £) which
corresponds to the canonical transformation ¢(x, £)=(x, £). By Lemma 5.2, we obtain
the generating function S, of ¢ by

(5.40) S,(x, §)=J‘1 {E(tx, &)« X+ x(tx, t&) - Eydtex{HE+ H}+ & .
0

Using these notations, we define a mapping p, by

(5.41) py:Imp; 29— S,ex{Hi+HR}+F .

By the construction of (5.40), (5.38), we see that the mapping
(5.42) Us¢rS,ex{Hi+HR}+%
is C®.
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Conversely, S, which is close to x + £ in H3 corresponds to contact transformation
@s,- Though we use k{ Hz + Hg} + & in the process of making canonical transformations,
there is a bijective correspondence between the neighborhood of x-&e Hj and the
neighborhood of the identity in 2,(S"1),.

6. Compositions of inhomogeneous Fourier integral operators.

In this section, we shall consider the composition of inhomogeneous Fourier
integral operators. We want to rewrite the composition

(6.1) F(a, Sls @SZ)OF(b’ Tl’ @Tz)

in the shape of (1.4) by reducing the number of variables.

For that purpose, we employ the result of Asada-Fujiwara [AF] which will be
mentioned below:

Consider the oscillatory integral

(6.2) AW)f(x)= OS-JJ 5(x, 6, y)et == £(3)dydp
’ R™ x R"

with the following conditions: ‘

(A-1) yY(x, 0, y)is a real valued C*-function of (x, 6, y)eR" x R" xR".

(A-2) There exists a positive constant Jd, such that |det D(Y)x, 0, y)|=>3d,, where
D(y)(x, 8, y) is the (m+n) square matrix

0%Y(x, 0, y)/oxdy 0*Y(x, 6, y)/0xd0 )
0%Y(x, 0, y)/000y 02y(x, 0, y)/0600 ’

(A-3) Every component of the matrix D(y)(x, 6, y) belongs to the space Z(R"” x R™ x R")
of Schwartz, the space of all f such that for any multi-indices a, f, 7, there exists
a positive constant C, 5 , such that

1030503/ (x, 0, Y)|<C,p., -

(A-4) The amplitude function s belongs to the space Z(R" x R™ x R").

Suppose that the variable 8 € R™ splits into two class of variables 8’ e R™, 8” e R™ ™™
(i.e. 6=(0', 6")), and ¥ satisfies the following:
(A-5) There exists a positive constant ¢’ such that

D(‘/l)(x’ 0, y)=<

62
det———— ¢@(x,0',0", y)| =6’
Gora0 7
holds at every (x, 6, 6", y)eR" x R x R".
By Lemma 5.1, it is seen that the equation (8/00")Y(x, 6’, 0", y)=0 has the unique
solution 8”=60"(x, 0’, y), and the first derivatives of 8”(x, ', y) belong to the class
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ABR" x R™ x R"). Using this, we set
(63) l/’O(x, 019 y) = l//(x’ 9” ell(x’ 0,5 y)a y) s
s'(x, 0, y)=s(x,0',0"(x,0',), ).

Furthermore, we see that the new phase function Y, satisfies (A-1~3), and s’ satisfies
(A-4).

THEOREM 6.1 (Asymptotic reduction theorem [AF]). With the notations and
assumptions as above the integral transformation (6.2) is rewritten as

(6.4) AW f(x)= Os-f J S'(v, x, 0", y)e? = ToE 8D £(3)dydp’" .
le X Rn
For the detailed computation of s’, we put
02
H(xa 0’9 y)=—,7—,, l/l('x9 9’9 0”’ y) .
00”06 0" =0"(x,0',y)

(6.5) h(x, 8, y) =W(x, 8, y)— Yo(x, 0', y)

—3<H(x, 0", yN0”—0"(x, 0", ), (6" —0"(x, 0", ) -

To state the second assertion of [AF], we use the following notations:

Yol
(6.6) =) —QF,
k=0 k!
(6.7) S my (X, 0', y)=| det H(x, 0", y)l—1/2e(nJTI/4)(m—m1—21ndH(x,o',y)) .

THEOREM 6.2 (Asymptotic expansion formula [AF]). For any integer N>1,
(6.8) s'(v, x,0', )
=Qrfy)m=m2S, L (x, 0, yH{eR(s(x, 6, y)e’ RO | g gy
+ry+1(v, x, 0, y),
where Q2 stands for the operator

/ __ l 62 -1
(6.9) — Z( U(x, 0',0", y)la"=a"(x,q',y)) ae;'ao;’ )

2v 1\ 00700"

i,j

and ry . | satisfies for any multi-indices a, B and vy, there exists a positive constant C, g,
such that

(6.10) 9208037y 41(%, 8", )| < Capy ™1

To apply Theorems 6.1 and 6.2 to our situation, v, x, 6, y, 8”, 8’ are replaced by
Y %, @G, X, 8), x, (& %), £, and we set as follows:
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s(x, 0, y)=a(x, Eb(Z, &),
S, &) =x{Sx(%, &)+ S1(% O} +(1-1)x- &,
T(x, §)=x{T(x, &)+ Ty(%, )} +(1—x)x - &,
Y=5(% 8- T+T(%,§—¢ x.
Then, we see that the assumptions (A-1~5) of Theorems 6.1 and 6.2 are satisﬁec_l. To
check (A-5), we use the assumption that both S and T of (6.11) are close to X ¢ and

%+ & in HE @ Hy respectively. Hence, we can apply Theorems 6.1 and 6.2 to the following
integral:

(612) F(a9 Sl: (582)0 F(b9 Tla (ﬁTz)u()-C)

(6.11)

= Os- f f j fa(i, EVb(%, £)eVUMSED ~E 5+ TE O~ & ¥y \IxFEAXAT .

At first, take the solution (¥(X, &), (%, &)) of
x—VzS(%, £)=0
{E—V;T(f, ¢)=0,
and remark that y, in (6.3) is given by
(6.14) YolX, & ) =Y(X, &%, &), X%, £), &, x)=SOT(%, &)— ¢ x.
Substituting (6.8) and (6.14) to (6.4), we see that (6.12) equals

(6.13)

(6.15) Os—f j [32,,(2, E){eR(a(x, E)b(%, &)e ~UMMEERON |2 2o

x=x(X, &)

+pw® & h)]e“-—“"“@"f- O~ et

where 2 stands for (6.9) and py ., in the last line is a function satisfying

(6.16) 10308 Py +1(%, & A)| < Cpp <5 £ 72N 72

We remark also that 3,,(x, &) in the first line should be written 3,,(X, &, x) in the context
of (6.7). Since J,, does not involve x-variable, we omit this.

The following lemma shows the uniqueness of our expression of Fourier integral
operators:

LEMMA 6.3. Ifa, beXl, S,, T,€Hy, S,, T,€ H3, we assume that a, b are close
to 1, S,, T, are close to x-&. If F(a, S,, §s5,)=F(b, T,, ¢1,) then T,=S,, S;=T},
a(x, £)=b(x, &) hold.
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PrOOF. Suppose F(a, S;, @s,)=F(b, Ty, $r,). Then for any de F(R?*"), we have

J a(%, &)Y~ 1UMS2+SUE Oy £)gE = J B(%, &)eV ~UMT2+ TOE Dy E)GE |

hence

a(x, é)e“/ —1/A)S2 +51)(X, &) b(x, é)e(" —1/A){T2+ T1Xx, &) ,
as integrand are continuous functions. Thus, we have
(6.17) a(x, &)/b(%, &)=~ UMT2+T1-S2-51

Left hand side is in Z2. Comparing the behavior of both sides of (6.17) as p— oo with
taking (6.11) into account, we have T,=S,, S, =T,, and then a(x, £)="5b(x, &). O

We obtain the composition rule as follows.
LEMMA 6.4.
F(a, S,, (f’sz)° F(b, T, (,'57-2)=F(c(a, S, @sz, b, T,, (sz)’ (S®T1),, @(S@T)z) s
where
ca, Sy, Ps,, b, Ty, P )%, &)

=[32u(%, E){ea(®, Eb(F, &)eV UMMELZON |2 2o o + Dy 41X, & )]
x=x(X,&)

x e{MSOTE, )~ x(SOT:2BES ODE, 8} ¢ 28 ,

and Q stands for the operator (6.9). A generating function S® T satisfies
SOT—k{(S®T),+(S®T),}eZg.

We now compute the inverse of inhomogeneous Fourier integral operators.

Given an inhomogeneous Fourier integral operator F(a, S;, @s,) such that S=
S,+S; is an element of U, ., in (5.31), there exists Se Hi® H} satisfying (5.36) by
Lemma 5.7. Then, by Lemma 6.4, F(1, $,, @g,) satisfies

(6.18) F(1, 8M, ¢¢.)o F(a, Sy, §s,)=F(c, 0, ¢,.) e GF°.

By Proposition A and Lemma 4.3, we see that if S is sufficiently close to x - ¢ then
F(c,0, ¢,.,) is an invertible pseudo-differential operator contained in GX 0, We shall
denote F(c, 0, ¢,.) ' by Ps. Hence, we see the following:

LEMMA 6.5. Under the above notations,
(6’19) F(a’ Sl; ¢Sz)_1=P§OF(1’ ‘§19 ¢§2)EGFO'
Combining Lemma 6.4 with Lemma 6.5, we have the following lemma:

LEMMA 6.6. GZX° is a normal subgroup of GF°.
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Therefore we can define the quotient group GF°/GX°, which is called the phase
group.

7. Proof of Proposition B.

Before showing Proposition B, we need several preparatory lemmas.
We use notations defined in §5. The following lemma is related to the smoothness
of compositions.

LEMMA 7.1. There exists a neighborhood U,, of identity of Xx(R*") such that the
following mapping is smooth:

(7.1 c: ZgmxUgys(a, P)oacPeXy™,
where m=—1,0,1,2, ---.

PROOF. c(a, ®)=ao @ is linear in a, hence smooth in ae Z¢™. So, it is enough to
see by Proposition 2.2 (III), that c(a, ®) is smooth in .
Now, set

SO
(7.2) 5<p=< L | =6®, 46D, 1€ Zh -
sHam

Using the Taylor’s theorem, we obtain

(7.3) cla, @+ 6DXx, &)=(ao PYx, E)+ D, i'(D;c)(a, ®@; 6®)+ R_\(a, D, 6P),

1<la|<N T
where
!
(7.4) (D3ca, & 60)= ¥ ——((0°a)> @) 307,
lal=r &: )
N+1

(7.5) R_pa, ®,60)=

lej=N+1 a!

(0D)* jl (1—0)N(0%a) D+ 0 - 5P)do .
(1)

Then, the following sublemmas complete the smoothness of c.
SUBLEMMA 7.2. Under the above notations,

(7.6) (D5): ZgMx Uy x T - xZag—>Z%

is continuous.

PrOOF. Decompose aeXg™ as



FRECHET-LIE GROUP 31

a=a—m+a—m—1+ o ta_gp,
(7.7 a_, e cHg '(R*) (m<i<L-1),
L—-1
a_ =a— Y a_,eBg*®R*™  (cf.33,32).
Il=m

For any a=(a;, - * *, %z,), and —/ (> — L), we have
, 1 -
(7.8)  Hg'(R*")-term of (D5c)a, &; 5¢)={Z (545:)“7'—(45,-)7(3“”%)°¢1}(w)p Y

where

(0B, =(EOLy - - (BRZIF  (1=1),

2n

@y =@Py- @y (i=<0),

J2n

(7.9)

and summation Y.’ is taken for all multi-indices (, y, i, j) satisfying

2n 2n '
(7.10) —l=—lyl=lal=k+ X v ipt X % hp,  IyISL—L
r=1 r=

Since all terms of (7.8) are written by using higher derivatives of a, @, 6@ and a is
smooth, we easily see the smoothness of (7.8).
On the other hand,

(7.11)  BgLR)-term of (D5c)a, B; 6P)

1
=(1 "K)Z/ (5¢i)a7(¢j)y(aa+yak) oy

1
+ Z Z"(5¢i)a7(¢j)y(aa+yak)°¢1

lyl<sL-1

’” L ' -
+ 2 X 7(45(0,-u)yj (1—7)"7 1074 o (@1 + 1P, - )7 »
: 0

71=L
where the summation }” is taken over the multi-indices (a, 7, §, j) satisfying

2n 2n
(1.12) —L=—lyl=lal=k+ ¥ v, jp+ X % p-
1 p=

pP=

We see that
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(7.13) (14 p?)+2|8%r.hs. of (7.11))]
, 1
SC{Z 7ﬂ5¢:ui|ﬁ|—|u+1ﬂ‘p1ﬂlm—mﬂ

X [@* @) o Py [i—ai -1y 181 -k+1al 413141

+ 2 Y yl 16@.0% 151~ 161+ 1 1P;505, 18115141

lyl<L

ﬂ(5“+”ak)°¢1ﬂk—|¢|—|y|,|p|-k+|a|+|y|+1

+ 2 Y — 5‘15:“ Si-1+1025 0008115141
lyl=L y!

1
XJ (1_T)L—ln(aa+yak)°(¢l+t¢(0,—L))Hk—|a|—|y|,|ﬂ|—k+|a|+|y|+1dt})

0

where
2n 2n
I]édi, ﬂ?,l= kUI ”5¢(k)U;k 1> l:[ (k) Jk 1
Since Jacobian matrices of @, and @, +1(Py+ - - - + P_,) are close to E,, uniformly
on R?" we have
[1(070%) > (B1) k=121 -1y1,181-k+ 121 +171+1 S M@l 11—k +1a1+1y1+1 >

(7.14)
U(ayaaak)°(d’1 +T¢(o,—L))ﬂk—|a|—|y|,|p|—k+|a|+|y|+1SMuakUk,|p|—k+|a|+|y|+1 .

Therefore (7.13) is bounded by
(7.15) C{Z l]éfbal] 1,18]— |1|+1U¢1U1|p| |j|+1”ak[lk|ﬂl —k+laj+]yl+1

Z " 10®:05 1 51-101+ 109505181151+ 1 0@l 11 - k+|a|+|y|+1} O

Iyl

SUBLEMMA 7.3. With the same notations as above, the remainder term

0 (t=0)

7.16
(719 F-st a2, 00)= {(l/z")R M@ ®,50),  (120)

is continuous.

ProoF. Remark that Hg '-term of the non-trivial term (¢ # 0) of (7.16) is given by
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(7.17) {I |=sz+1 Z'ml—)t@d’i)“

alty
X Jl (1 —9)”%(‘% +016®;)'(070%a, (P, + 915<P1)d0}(a))p" ,
0 .
where
(D;+0100;) = ]2_"[1 (<15§’p + 9t5¢fp)“’
=

and the summation ) ' runs through the multi-indices given by (7.10). Since all terms
are written by using higher derivatives of @, 6®, a, we easily see the smoothness of (7.17).
On the other hand, the B -terms of the non-trivial term (¢ #0) of (7.16) is given by

1 N+1
(7.18) (1-x) X 2’(—]\-’5—')%*(5@)“
Ja|=N+1 o't

1
x f a ——9)”——1'—(<Dj+0t545 DN@70%a,) (D, + 05D ,)d8
0 y:
N+1
+ { , (N+ 1Dt
lal=N+1 L|y]=<L altN
X (070%ai (D, + 0t6D,)do
., N+1)1N+1
+ 3y oy

IyI=L aleN

1
1
(64’,)“[ (1 —B)N———' (P;+0t09D;)
0 Y.

! L
(5<Di)°’j (1——(-))N——(d)j+9t(3<Pj)y
0 !

1
x ( f (=D)L 107+ 2o (@D + 0160 D) + t{ Do _ 1, + 050 _L)})dt)de} :
0

where the summation ) " runs through the set of multi-indices given in (7.12). Jacobian
matrices of
(7.19) D, + 0169, , (D + 0160V +1{P o, _1)+0t6P, -1}

are close to E,, uniformly R?". By a similar argument for D,c, we have

(7.20) (14+p%)%2| 6% Lh.s. of (7.18)|

SM’{ZIﬂédsiﬂilﬂl—liHl”¢Jﬂ3,lﬂl‘ljl+1Uak”k,lﬂl—k+lal+lvl+1

+ 2 Z"U&Di”?,lm—mﬂ”4’1U3,|p|—|j|+1Hak”k,ml—k+|a|+|y|+1}-

lyl<L

Thus, we see ¢ is a smooth mapping. O
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Next, we show the smoothness of the inverse.

LEMMA 7.4. Under the same notations and assumptions of Lemma 7.1, the mapping
Uy43P— @ e XL(R?") is smooth.

PROOF. To see that U, a®+— @ e Xy} is a continuous mapping, it is sufficient
to show the following estimate: For any k,

21 | ¥ _IT [— 6&(®+58) ™ (2)]* f 1 0% DDz — QS B(D + 5B)~ (2)d0 |y 4
la]=1 . 0
<Cpo{loPV) _pp 5+ -+ ”5¢(2")H—M,ak} ,

where 9, is a positive constant depending on k, C,_ , depends on k, & but it is independent
of & e U. By the formula of higher order derivatives of composition of functions, it is
sufficient to show that if @ is sufficiently small, then

(7.22) [(@+60) 1 P]_,, ,<C.
Here, we need the following fact:

Let U, V be open in R". If ¥ : Usw>zeV is a diffeomorphism, then 0¥ ~ ') have
the following form:

(afvx pli). . .5?;1}1(!‘1))0 gl—l(z)

7.23 Csionin, iy .
( ) I51|+"-+I§|=l+lal—l 81,0, 00,01, [det(()'I’/ﬁw)o 1P—l(z)]pal,...,a,,il,...,i,
In (7.23), I—|8,|—|6,]— - - - —|8;|=1—]a]| holds. There exists positive number ¢

(>0) such that if & is sufficiently close to 0 then the following estimate holds:
(7.24) l1—e<|detD(®+6P)|<1+¢.

Therefore, we obtain that

(7.25) [(@+6D) _pyx<C (k=M+1).

Using the continuity of the mapping, we next show that the mapping &+ &~ ! is
CL. Put ¢c(¥, ®)=¥ o D, i(¥Y)=¥ " '. Then we have

(7.26) [c(i(® + 6D), D) — c(i(P), D) —(— Dc(i(P), DY SP)] - d~*
=[(— Dc(i(® + 6®), D)SD)+ D, c(i(P), PYP)
- f 1 (1—0)D2c(i(D + 6P), D+ 05P)) 5D, 5P)dO] o D1 .

0

As cis C®, we see that i is C! and
(7.27)  (DiXD, 6®)=[— D,c(i(D), PNoDP)]- D! =c(—D,c(i(D), DNOD), i(D)) .

Successively, we see that i is C” for any r, i.e. i is C®. O



FRECHET-LIE GROUP 35

Using the above lemmas, we see also the following lemma.

LEMMA 7.5. The correspondence S=S,+S,—S=5,+S, given in (5.35) is a
smooth mapping of U, ., into HZ ® HL.

PROOF. The above lemma asserts that the second mapping of the following diagram
is a smooth mapping:

A _ A A
Sz+S1'—’st+slHst+slHax§2‘+sl'—’sz+s1 .

Since we use only Lemma 5.2 at the third mapping, it is obvious that the third mapping
is smooth. O

As we have seen in §5, §6, multiplication on GF°/GZX° is given as follows:
(7.28) (F(a, 81, §s,) > GZ) o (F(b, Ty, $r,) > GZ°)
=F(c, {(S2+S)®(T2+ T} 1, P+ 5 02+ T402) ° GZ°
=F(c, {(S;+S)®(T,+ T))},, Ps,o1,)° GX°.
As for {(S,+S,)®(T,+ T,)}, and {(S,+ S1)®(T,+ T})},, see (5.33) in the proof
of Lemma 5.3. Especially, we see
(7.29) {20 T}, ={(S; +SP® (T, + Ty)}, -

To show the smoothness of the multiplication of generating functions, we have to
show the following lemma by using Lemmas 7.1, 5.5 and 7.4

LEMMA 7.6. Under the same notations and assumptions as in Lemma 7.1, F defined
in (5.31) and the following mapping are smooth:

(7.30) Up.ex Uy 3(S, T)> S®Te 32,
where U, .. is a certain neighborhood of x - £ in H} @ Hy.

Proor. First of all, we shall show the smoothness of F of (5.31). Since & in
(5.17) depends on S, Te U,.,, we denote this by & 1, also. If we put

0

VoT
0P ,T)=‘DS 38, T 6T_¢S,T)= ¥ s
S S+ +0T) ( VE(SS

0

then we obtain

(D, 1y t+0Ps, 1))~ ! = Q(E,IT)

e © O =

%
0
0
¢
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[ 0

—Dg 7.5.9%Ps.1 (0P, 1)° Pis') + Ry(09s, 1) 0P, 1))

™ O O X

¢

By a similar argument as in (7.25) of proof of Lemma 7.4, we see @5, 1, is C*. Recall that

0

x
5 E | _| VHOT(%, &)

Dl % || VHoS(®, &) |’
& 0

(7.31)
E, 0 0 0

Dee a. | © —E, 0:0:T 0:0,T
®LEITED T 9:0,8 0,0,S —E, 0
0 0 0 E,

By D(®~1)=(D®) 1P~ 1, we have

0 0
c;’((p(._s,lr)) R¥ 5 V:?(5 T(f, _f_ ))
CAPs'n vz, V:6S(%, £))

0 0

(7.32) D, 1

E=8; 47"
=8 (47"

E, 0 0 0 \7! 0
0 —E, 0;0;T 9:0,T V:(6T(%, &)
030.S 0,0,S —E, 0 V:6S(x, &) || _
o o o E "o =G
n =8 (47"

By Proposition 2.1, Lemmas 7.1 and 7.4, the right hand side of (7.32) is C, and hence

so is the left hand side of (7.32). Thus we see (S, T)+— F(S, T) given by
(7.33) F(S, T, §) =&z~ 1), E(d7)
is C? with respect to (S, T). By induction, we see the mapping F is smooth.
Similarly we can see that the following mappings
G: (S, TN'—G(S, Thex;,

(7.34)
H: (S, T)— H(S, T)e X}

defined by
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(1.35) (G(S, THX, &)=(%, Cs(d7Y),
(H(S5 T))()?9 é) = (Gf(é_ 1)’ é)

are smooth. Note that

(7.36) SOT=5:G(S, T)— <Gz 1)|C:(S~ 1))+ T-H(S, T).

Applying Lemma 7.1 to S, Te X3 and the mapping stated above, we see that the mapping
(7.6) is smooth. O

(1) of Proposition B has already seen in Lemma 6.3.

PROOF OF PROPOSITION B (ii), (iii). As we have seen in §6, we obtain that the symbol
of composition (6.15) of two Fourier integral operators is given by

(7.37) ox, &)=cla, Sy, Ps,, b, Ty, P XX, &)

= [SZn()-C’ ﬁ){eg(a(fc, E)b(f, f)e(‘/_ 1k, &, %, 4‘))} l§:= §x 9 +pn+1(X, & R)]
x eWMISOTEH-K(SOTLOEODIEN ¢ 3o F~759

where Q is given by (6.9). If we set
(738) e+ 1)(0)=6J?f9—efl‘o ,

then py ., is written as follows (cf. [AF]):
(7.39)  pn+s(x, &)=17 ﬂ{jf a(%, &%, &)+ R PRBER, &)+A3F, EX1—K)d, §)
R2n
x e VTImN @ 1)( ——;—Tz” H™NE, &, ), (@, ﬁ)))dﬁd}"}dd_dw

+h2/3{ H a(%, E(%, &)+ - BE(R, &) +7'25, E)K(d, 7)
R2n
% e T UMSE, &, ) +7137) — G(R, O +1/37) - (BT, & +A1/35) + T(HE, & + Y/ sf'g”dﬁd}_’} i

The generating function (S®7), ®(S®T), is an element of Hg ® Hy, and
(740) F(as S19 ¢52)° F(ba Tls (ﬁTz):F(c()-Cs é)a (S© T)l’ (ﬁ(S@T)z) °

As for the phase part (S®T),, ¢so1), the rule of composition is the same as in
the group GF°/GX°. The smoothness of the phase part has been proved in Lemma 7.6.

As for symbol part ¢, we shall split H-component and B¢ L-component. By applying
Lemmas 7.1, 7.4 and 7.6, we can prove the smoothness of H:-component. On the other
hand, by using the Taylor’s theorem and Lemmas 7.1, 7.4 and 7.6 to py., (cf. (7.39)),
we see the smoothness of B¢ “-component. Therefore, we see smoothness of composition

(ii).
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By using (ii) and Lemma 6.5, we see the smoothness of inverse (iii). O
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