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Abstract. We prove Cauchy’s integral formula for complex regular functions in complex Clifford
analysis. We claim that our formula is valid in any dimension. Furthermore, we study some properties
of manifolds where the integration in the formula is defined and relax the conditions imposed on the
manifolds.

1. Introduction.

The aim of this paper is to present Cauchy’s integral formula in complex Clifford
analysis, which is different from that in [7].

In [2] Delanghe et al. gave Cauchy’s integral formula for regular (monogenic in
their terminology) functions in real Clifford analysis. Ryan [4, 5, 6], Bure\v{s} and Sou\v{c}ek
$[3, 8]$ complexified this result and gave Cauchy’s integral formula for complex regular
functions in complex Clifford analysis. However, they restricted the arguments only to
even dimension. More recently the author [7] gave a homological version of Cauchy’s
integral formula for complex regular functions, which is valid in any dimension; this
generalizes Sou\v{c}ek and Bure\v{s}’ results.

On the other hand, there has been no generalization of Ryan’s results. In this paper
we prove the following Cauchy integral formula; this generalizes Ryan’s results.

THEOREM. Let $p,$ $q\in N$ with $p\leqq q,$ $C_{p}$ be the universal Clifford algebra for $C^{p}$ ; then
$C^{p+1}\subset C_{p}$ (see [2, \S 1]). Let $f$ be a complex right regular function in a domain $\Omega$ of $C^{p+1}$

with values in $C_{q}$ . Let $ a\in\Omega$ and $M$ be a real $(p+1)$-dimensionalpiecewise smooth compact
connected oriented submanifold of $\Omega$ with boundary such that $a\in M^{o},$ $M$ is smooth at $a$,
$M\cap\Lambda_{a}=\{a\}$ and $T.M\cap A_{0}=\{0\}$ . Further, suppose that $\langle w-a\rangle^{p-1}$ is single-valued with
respect to $w$ in M. Then

$f(z)=\frac{1}{|S^{p}|}\int_{\partial M}f(w)d\sigma_{w}\frac{1}{(w-z)\langle w-z\rangle^{p-1}}$ for any $z\in D_{\Omega}(\partial M, a)$ ,
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where $|S^{p}|$ is the area of the p-dimensional unit sphere, $\langle w-z\rangle=t\sum_{j=0}^{p}(w_{j}-z_{j})^{2})^{1/2}$ ,

$1/(w-z)$ is the inverse element ofa Clifford number $w-z\in C^{p+1}\subset C_{p},$ $d\sigma_{\nu}$ is the $C_{p}$-valued

surface-element (see [4, p. 137]), $\Lambda_{z}=\{w\in C^{p+1}|\langle w-z\rangle=0\}$ and $D_{\Omega}(\partial M, a)$ is the
component of $\Omega\backslash \cup z\in\partial M\Lambda_{z}$ which contains $a$ .

According to this result we no longer need Ryan’s concept of manifolds of type
two and others (see [6, pp. 38-39]).

To obtain these results we study R-linear subspaces of $C^{p+1}$ . In \S 2 we fix the
notation and define complex regular functions. In \S 3 we study the complex vector space
$C^{p+1}$ with the complex inner product $z\cdot w=\sum_{j=0}^{p}z_{j}w_{j}$ . In \S 4 we investigate oriented
R-linear subspaces of $C^{p+1}\cong R^{2p+2}$ in the real Grassmannians. Finally, in \S 5 we prove
Cauchy’s integral formula for complex regular functions in every dimension (Theorems
4, 5).

2. Preliminaries.

Let $p\in N$ and $R_{p}$ be the universal Clifford algebra constructed from the space $R^{p}$

with orthonormal basis $\{e_{1}, \cdots, e_{p}\}$ . Furthermore, let $e_{0}=1$ be the unity of $R_{p}$; then
$e_{0},$ $e_{1},$ $\cdots,$ $e_{p},$ $e_{1}e_{2},$ $\cdots,$ $e_{1}\cdots e_{p}$ are basis elements of $R_{p}$ such that

$e_{j}e_{k}+e_{k}e_{j}=-2\delta_{j,k}$ for $1\leqq j,$ $k\leqq p$ .

By $C_{p}$ we denote the universal complex Clifford algebra $R_{p}\otimes_{R}$ C. Furthermore, we set
$R_{0}=R$ and $C_{0}=C$ . For any $a\in C_{p}$ we write

$a=\sum_{k=0}^{p}\sum a_{j_{1},\cdots.j_{k}}e_{j_{1}}\cdots e_{j_{l\epsilon}}j_{1}<\cdots<j_{k}$

where $j_{1},$ $\cdots,j_{k}\in\{1, \cdots,p\},$ $a_{j_{1},\cdots,j_{l}}.\in C$ and $a_{\emptyset}=a_{0}$ . We define a norm on $C_{p}$ as
$|a|^{2}=\sum_{k=0}^{p}\sum_{j_{1}<\cdots<j_{l}}.|a_{j_{1},\cdots,j_{k}}|^{2}$ ; then we have the topological isomorphisms $R_{p}\cong R^{2^{p}}$

and $C_{p}\cong C^{2^{p}}$ . The elements $x=(x_{0}, \cdots, x_{p})\in R^{p+1}$ and $z=(z_{0}, \cdots, z_{p})\in C^{p+1}$ will be
identified respectively with the Clifford numbers $x=\sum_{j=0}^{p}x_{j}e_{j}$ and $z=\sum_{j=0}^{p}z_{j}e_{j}$ .
Moreover, we set $\tilde{z}=z_{0}-\sum_{j=1}^{p}z_{j}e_{j}$, then we have $1/z=\tilde{z}/(\sum_{j=0}^{p}z_{j}^{2})$ .

Let $\Omega$ be a domain of $C^{p+1}$ , $f:\Omega\rightarrow C_{q}$ $(p\leqq q)$ be holomorphic and
$D_{z}=\sum_{j=0}^{p}e_{j}(\partial/\partial z_{j})$ stand for the complex Cauchy-Riemann operator. Then $f$ is said to
be complex left (resp. right) regular in $\Omega$ if $DJ=0$ (resp. $fD_{z}=0$) in $\Omega$ (cf. [2, \S 8]).

We define the $C_{p}$-valued surface-element as

$d\sigma_{z}=\sum_{j=0}^{p}(-1)^{j}e_{j}dz_{0}\wedge\cdots\wedge d\hat{z}_{j}\wedge\cdots\wedge dz_{p}$ ,

where $d\hat{z}_{j}$ means that $dz_{j}$ has to be omitted. For $z,$
$w\in C^{p+1}$ we set $z\cdot w=[z\tilde{w}]_{0}=$

$\sum_{j=0}^{p}z_{j}w_{j}$ and write $Q(z)=z\tilde{z}=z\cdot z$ and $\langle z\rangle=\sqrt{Q(z)}$, where $[z\tilde{w}]_{0}$ is the coefficient of
$e_{O}$ in $z\tilde{w}$ . Furthermore, we write $A_{z}=$ { $w\in C^{p+1}$ I $Q(w-z)=0$} and $\Lambda(K)=\bigcup_{z\epsilon K}\Lambda_{z}$ for
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a set $K\subset C^{p+1}$ . By $[z, w]$ we denote the line-segment joining $z$ to $w$ .
By $\mathscr{G}_{k}(C^{n}, R)$ , or simply by $\mathscr{G}_{k}(C^{n})$ we denote the real Grassmannian consisting of

all oriented real k-dimensional linear subspaces of $C^{n}$ . For $U\in \mathscr{G}_{k}(C^{n}),$ $-U$ stands for
the oppositely oriented linear subspace. For a smooth manifold $M$ we denote by $TM$

the tangent bundle of $M$ .
$LetMat(m, n, C)$ be the set of all ($m$, n)-matrices over C, Ibe the unit matrix and

$|S^{p}|$ be the area of the p-dimensional unit sphere $S^{p}$ . We set $N_{0}=Nu\{0\}$ and
$R_{+}=\{xeR|x\geqq 0\}$ . In the sequel, we assume that the vertex of a cone $L$ in $C$ is the
origin $0$ .

Set $G=\{weC^{p+1}|Q(w)>0\}$ and consider the disjoint union $GC’=\bigcup_{0\leqq 0<2\pi}Ge^{i\theta}$,
where $C^{1}$ is the unit circle in $Ce_{0}(=C)$ ; put $V_{0}^{p+1}=GC^{1}\cup\Lambda_{0}$ and $V_{z}^{p+1}=z+V_{O}^{p+1}$ .
Then $V_{z}^{p+1}$ is a $(p+1)$-dimensional complex manifold on which $\langle w-z\rangle$ is single-valued
with respect to $w$ (cf. [7]); note that $R^{p+1}\subset V_{0}^{p+1}$ . By $S^{p}$ we denote the unit p-sphere
in $R^{p+1}$ ; note that $\langle w\rangle|_{S^{p}}=|w|$ . Furthermore, by $\pi_{z}$ we denote the map which associates
to each point $w\in V_{z}^{p+1}$ the point $w\in C^{p+1}$ . Since $\langle w-z\rangle$ is double-valued in $C^{p+1}\backslash \Lambda_{z}$ ,
each point $w\in C^{p+1}\backslash \Lambda_{z}$ is associated to two points we $V_{z}^{p+1}\backslash \Lambda_{z}$ . For a domain $\Omega$ of
$C^{p+1}$ we write $\Omega_{z}=\pi_{z}^{-1}(\Omega)t\subset V_{z}^{p+1})$ .

3. The complex quadratic form $Q(z)$ .
In this section we study some properties of the complex quadratic form $Q(z)$ .

Moreover, we give Schmidt’s orthonormalization of a finite set of complex vectors with
respect to the complex inner product $z\cdot w$ .

DEFINITION 1. Let $peN_{O}$ and $u\in C^{p+1}$ . If $Q(u)\neq 0$ or $u=0$ , then $u$ is said to be
non-degenerate with respect to $Q$ .

REMARK. If $p=0$ , then all $u\in C$ are non-degenerate with respect to $Q$ .

DEFINITION 2. Let $peN_{0}$ and $u_{1},$ $\cdots,$
$u_{n}\in C^{p+1}$ . If $Q(x_{1}u_{1}+\cdots+x_{n}u_{n})=0$ for

$x_{1},$ $\cdots,$ $x_{n}\in Rimpliesx_{1}=\cdots=x_{n}=0$ , then $\{u_{1}, \cdots, u_{n}\}$ is said to be linearly independent
over $R$ with respect to $Q$ .

REMARK. If we replace $Q(z)$ by $|z|^{2}$ in Definition 2, then $\{u_{1}, \cdots, u_{n}\}$ is linearly
independent over $R$ in ordinary sense.

By Definitions 1 and 2 we immediately obtain the following.

PROPOSITION 1. Let $p\in N_{0}$ and $\{u_{1}, \cdots, u_{n}\}\subset C^{p+1}$ be linearly independent over $R$

with respect to $Q$ ; set $U=Ru_{1}+\cdots+Ru_{n}$ . If $\{v_{1}, \cdots, v_{m}\}\subset U(m\leqq n)$ is linearly
independent over $R$ , then it is linearly independent over $R$ with respect to $Q$ .

PROPOSITION 2. Let $peN_{0}$ ; then $\{u_{1}, \cdots, u_{n}\}\subset C^{p+1}$ is linearly independent over
$R$ with respect to $Qlf$ and only if it is linearly independent over $R$ and $x_{1}u_{1}+\cdots+x_{n}u_{n}$



190 KIMIR\^O SANO

is non-degenerate with respect to $Q$ for any $x_{1},$ $\cdots,$ $x_{n}e$ R.

REMARK. Let $p=0$ ; then $\{u_{1}, \cdots, u_{n}\}\subset C$ is linearly independent over $R$ with
respect to $Q$ if and only if it is linearly independent over R.

DEFINITION 3. Let $peN_{0}$ and $\{u_{1}, u_{2}\}\subset C^{p+1}$ be linearly independent over $R$ with
respect to $Q$ ; set $F:[0,2\pi]\ni\theta->Q(u_{1}\cos\theta+u_{2}\sin\theta)eC\backslash \{0\}$ . Then we define the sign
of the vectors $\{u_{1}, u_{2}\}$ with respect to $Q$ as $sgn(u_{1}, u_{2})=*\lambda$ , where $\lambda$ is the winding
number of $F$ with respect to $0$ , that is, $\lambda=0,$ $\pm 2$ .

PROPOSITION 3. Let $p\in N,$ $3\leqq n$ and $\{u_{1}, \cdots, u_{n}\}\subset C^{p+1}$ be linearly independent
over $R$ with respect to $Q$ ; set $U=Ru_{1}+\cdots+Ru_{n}$ . If $\{v_{1}, v_{2}\}\subset U$ is linearly independent
over $R$ , then $sgn(v_{1}, v_{2})=0$ .

PROOF. There are vectors $v_{3},$ $\cdots,$ $v_{n}\in U$ such that $\{v_{1}, \cdots, v_{n}\}$ is linearly
independent over R. Since $\{u_{1}, \cdots, u_{n}\}$ is linearly independent over $R$ with respect to
$Q$ , from Proposition 1 it follows that $\{v_{1}, \cdots, v_{n}\}$ is linearly independent over $R$ with
respect to $Q$ . Set

$S=\{x_{1}v_{1}+\cdots+x_{n}v_{n}||x|=1, x_{1}, \cdots, x_{n}\in R\}$

and $C:[0,2\pi]\ni\theta->v_{1}\cos\theta+v_{2}\sin\theta\in S$; then we obtain $ S\cap\Lambda_{0}=\emptyset$ . Since $n\geqq 3,$ $C$ is
homotopic to zero in $S$; therefore, $Q(C)$ is also homotopic to zero in $C\backslash \{0\}$ , that is,
$sgn(v_{1}, v_{2})=0$ . Q.E.D.

PROPOSmON 4. Let $peN_{O}$ and $\{u_{1}, \cdots, u_{n}\}\subset C^{p+1}$ be linearly independent over $R$

with respect to $Q$ ; set $U=Ru_{1}+\cdots+Ru_{n}$ .
(i) $Ifn\neq 2,$ $thenL=Q(U)isaclosedconvexconeinCsuchthatL\cap(-L)=\{0\}$ .
(ii) $Ifn=2andifsgn(u_{1}, u_{2})=0,$ $thenL=Q(U)isaclosedconvexconeinCsuch$

that $L\cap(-L)=\{0\}$ .
(iii) If $n=2$ and if $sgn(u_{1}, u_{2})\neq 0$ , then $Q(U)=C$ .
$PR\infty F$ . (i): We have only to show that the assertion is true for $n\geqq 3$ . It is clear

that $L$ is a closed cone in $C$ ; therefore, we show that $L$ is convex and that $L\cap(-L)=\{0\}$ .
Let $w_{1},$ $w_{2}\in L\backslash \{0\}$ ; then if $L=R_{+}w_{1}$ , the assertion is clearly true. Suppose that $w_{2}\not\in R_{+}w_{1}$

and let $v_{1},$ $v_{2}\in U$ satisfy $Q(v_{j})=w_{j}$ for $j=1,2$ ; then $\{v_{1}, v_{2}\}$ is linearly independent over
R. Therefore, by Proposition 3, we obtain $sgn(v_{1}, v_{2})=0$ . Set

$C:[0,2\pi]\ni\theta->v_{1}\cos\theta+v_{2}\sin\theta\in U\backslash \{0\}$ ;

then $w_{1},$ $w_{2}\in Q(C)\subset L$ and the winding number of the ellipse $Q(C)$ with respect to $0$ is
0. Thus, we conclude that $w_{2}\neq-w_{1}$ , that is, $L\cap(-L)=\{0\}$ . Furthermore, since $L$ is
a cone with $Q(C)\subset L$, we find that $[w_{1}, w_{2}]\subset L$ , that is, $L$ is convex.

(ii): We use the same notation as above. We have only to show that $sgn(v_{1},v_{2})=0$

without using Proposition 3. Set
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$C_{1}$ : $[0,2\pi]\ni\theta-\rangle$ $u_{1}\cos\theta+u_{2}\sin\theta\in U\backslash \{0\}$ ;

then since $U\cap\Lambda_{0}=\{0\}$ and since $C$ is homotopic to $C_{1}$ or to the oppositely oriented
$1oop-C_{1}$ in $U\backslash \{0\},$ $Q(C)$ is also homotopic $to\pm Q(C_{1})$ in $C\backslash \{0\}$ . Thus, the assumption
implies $sgn(v_{1}, v_{2})=\pm sgn(u_{1}, u_{2})=0$ .

(iii): From Definition 3 the assertion immediately follows. Q.E.D.

PROPOSITION 5. Let $peN_{0}$ and $\{u_{1}, \cdots, u_{n}\}\subset C^{p+1}$ be linearly independent over $R$

with respect to $Q$ .
(i) If $n\neq 2$ , then $\{u_{1}, \cdots, u_{n}\}$ is linearly independent over C.
(ii) If $n=2$ and if $sgn(u_{1}, u_{2})=0$ , then $\{u_{1}, u_{2}\}$ is linearly independent over C.

PROOF. Set $U=Ru_{1}+\cdots+Ru_{n}$ and $z_{j}=x_{j}+iy_{j}$ , where $x_{j},$ $y_{j}eR$ for $j=1,$ $\cdots,$ $n$ .
Suppose $z_{1}u_{1}+\cdots+z_{n}u_{n}=0$ ; then we have

$x_{1}u_{1}+\cdots+x_{n}u_{n}+i(y_{1}u_{1}+\cdots+y_{n}u_{n})=0$ . (1)

Set $v=x_{1}u_{1}+\cdots+x_{n}u_{n}$ ; then by (1) we obtain $iv\in U$ and therefore, $-Q(v)=Q(iv)eQ(U)$ .
Moreover, according to the assumption and Proposition 4 (i) or (ii), we obtain

$Q(v)=Q(x_{1}u_{1}+\cdots+x_{n}u_{n})=0$ .
Hence, from the assumption and (1) we conclude that $x_{1}=\cdots=x_{n}=y_{1}=\cdots=y_{n}=0$ ,
that is, $z_{1}=\cdots=z_{n}=0$ ; this indicates that $\{u_{1}, \cdots, u_{n}\}$ is linearly independent over
C. Q.E.D.

COROLLARY 1. Let $p\in N_{0},$ $\{u_{1}, \cdots, u_{n}\}\subset C^{p+1}$ be linearly independent over $R$ with
respect to Q. Then

(i) $p=0\Rightarrow n=1,2$ .
(ii) $p\geqq 1\Rightarrow 1\leqq n\leqq p+1$ .
PROOF. (i): From the remark after Proposition 2 the assertion follows.
(ii): By Proposition 2 we have $n\leqq 2p+2$; if $p+2\leqq n$ , then Proposition 5 (i) implies

that $\{u_{1}, \cdot\cdot, u_{n}\}$ is linearly independent over C. However, this is impossible because
$\{u_{1}, \cdots, u_{n}\}\subset C^{p+1}$ ; thus, we conclude that $n\leqq p+1$ . Q.E.D.

PROPOSITION 6 (Schmidt’s orthonormalization). Let $p\in N_{0}$ and $\{u_{1}, \cdots, u_{n}\}\subset$

$C^{p+1}$be linearly independent over $R$ with respect to Q. When $n=2$ , suppose further that
$sgn(u_{1}, u_{2})=0$ . Then an orthonormal system $\{v_{1}, \cdots, v_{n}\}\subset Cu_{1}+\cdots+Cu_{n}$ with respect to
the complex inner product $z\cdot w$ is constructed in the following way.

$ v_{1}=u_{1}/\langle u_{1}\rangle$ .
$ v_{2}=v_{2}^{\prime}/\langle v_{2}^{\prime}\rangle$ , $v_{2}^{\prime}=u_{2}-(u_{2}\cdot v_{1})v_{1}$ .

: :.
$ v_{n}=v_{n}^{\prime}/\langle v_{n}^{\prime}\rangle$ , $v_{n}^{\prime}=u_{n}-(u_{n}\cdot v_{1})v_{1}-\cdots-(u_{n}\cdot v_{n-1})v_{n-1}$ .
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Moreover, $\{v_{1}, \cdots, v_{n}\}$ is linearly independent over C.

REMARK. Each $v_{j}^{\prime}$ is determined independent of the choice of the value of $\langle v_{j}^{\prime}\rangle$ .

PROOF. If $\{v_{1}, \cdots, v_{n}\}$ is orthonormal with respect to $z\cdot w$ , then it is linearly
independent over C. Thus, it is sufficient to show that $Q(u_{1})\neq 0$ and $Q(v_{j}^{\prime})\neq 0$ for any
$j=2,$ $\cdots,$ $n$ ; by the assumption we have $Q(u_{1})\neq 0$ .

When $j=2$ , suppose that $Q(v_{2}^{\prime})=0$ ; then since $v_{2}^{\prime}\cdot u_{1}=v_{2}^{\prime}\cdot v_{1}=0$ and $u_{2}=$

$(u_{2}\cdot v_{1})v_{1}+v_{2}^{\prime}$ , we obtain

$Q(x_{1}u_{1}+x_{2}u_{2})=Q(x_{1}u_{1}+x_{2}(u_{2}\cdot v_{1})v_{1})$ for any $x_{1},$ $x_{2}\in R$ .

Therefore, according to the assumption, $\{u_{1}, (u_{2}\cdot v_{1})v_{1}\}$ is linearly independent over
$R$ with respect to $Q$ with $sgn(u_{1}, u_{2})=sgn(u_{1}, (u_{2}\cdot v_{1})v_{1})$ . If $n=2$ , then by the assumption
we have $sgn(u_{1}, u_{2})=0$ ; if $n\geqq 3$ , then by the assumption and Proposition 3 we obtain
$sgn(u_{1}, u_{2})=0$ . Hence, Proposition 5 (ii) implies that $\{u_{1}, (u_{2}\cdot v_{1})v_{1}\}$ is linearly
independent over $C$ ; however, this is impossible. Thus, we infer that $Q(v_{2}^{\prime})\neq 0$ .

When $j=3,$ $\cdots,$ $n$ , suppose that $Q(v_{j}^{\prime})=0$ and set $ w=(u_{j}\cdot v_{1})v_{1}+\cdots+(u_{j}\cdot$

$v_{j-1})v_{j-1}$ . Since $v_{j}^{\prime}\cdot u_{k}=v_{j}^{\prime}\cdot v_{k}=0$ for any $k=1,$ $\cdots,j-1$ and since $u_{j}=w+v_{j}^{\prime}$ , we
obtain

$Q(x_{1}u_{1}+\cdots+x_{j}u_{j})=Q(x_{1}u_{1}+\cdots+x_{j-1}u_{j-1}+x_{j}w)$

for any $x_{1},$ $\cdots,$ $x_{j}e$ R. Therefore, according to the assumption, $\{u_{1}, \cdots, u_{j-1}, w\}$ is
linearly independent over $R$ with respect to $Q$ . Moreover, Proposition 5 (i) implies that
$\{u_{1}, \cdots, u_{j-1}, w\}$ is linearly independent over $C$ ; however, this is impossible because
$\{u_{1}, \cdots, u_{j-1}, w\}\subset Cv_{1}+\cdots+Cv_{j-1}$ . Thus, we infer that $Q(v_{j}^{\prime})\neq 0$ for $anyj=3,$ $\cdots,$ $n$ .

Q.E.D.

COROLLARY 2. Let $peN$ , $n=1,$ $\cdots,$ $p$ and $\{u_{1}, \cdots, u_{n}\}\subset C^{p+1}$ be linearly
independent over $R$ with respect to Q. When $n=2$ , further suppose $sgn(u_{1}, u_{2})=0$ . Then
there exists vectors $u_{n+1},$ $\cdots,$ $u_{p+1}\in C^{p+1}$ such that $\{u_{1}, \cdots, u_{p+1}\}$ is linearly independent
over $R$ with respect to Q. When $p=1$ , it further follows that $sgn(u_{1}, u_{2})=0$ . Moreover, if
$\{u_{1}, \cdots, u_{n}\}$ is orthonormal with respect to $z\cdot w$ , then $\{u_{1}, \cdots, u_{p+1}\}$ can be taken to be
orthonormal.

REMARK. When $p=0$ , set $u_{2}=iu_{1}$ for $u_{1}\neq 0$; then $\{u_{1}, u_{2}\}$ is linearly independent
over $R$ with respect to $Q$ with $sgn(u_{1}, u_{2})\neq 0$ .

PROOF. According to Proposition 6, there is an orthonormal system $\{v_{1},$ $\cdots$ ,

$v_{n}\}\subset Cu_{1}+\cdots+Cu_{n}$ with respect to $z\cdot w$ . If $\{u_{1}, \cdots, u_{n}\}$ is orthonormal, set $v_{j}=u_{j}$

for any $j=1,$ $\cdots,$ $n$ . Then there exists a matrix $A$ $eSO(p+1, C)$ such that $Av_{j}=e_{j}$ for
$j=1,$ $\cdots,$ $n$ . Set $v_{j}=A^{-1}e_{j}$ for $j=n+1,$ $\cdots,p+1$ ; then $\{v_{1}, \cdots, v_{p+1}\}$ is orthonormal
with $u_{j}\cdot v_{k}=0$ for $j=1,$ $\cdots,$ $n,$ $k=n+1,$ $\cdots,p+1$ . Further, set $U=Ru_{1}+\cdots+Ru_{n}$ and
$u_{j}=\lambda v_{j}$ forj$=n+1,$ $\cdots,p+1$ , where $\lambda\in C$ satisfies $|\lambda|=1$ and $\lambda^{2}\in Q(U)$ . If $\{u_{1}, \cdots, u_{n}\}$
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is orthonormal, we may set $\lambda=1$ ; then $\{u_{1}, \cdots, u_{p+1}\}$ is orthonormal.
If we set, $forxeR^{p+1},$ $F(x)=Q(x_{1}u_{1}+\cdots+x_{p+1}u_{p+1})$ ; then we obtain

$F(x)=Q(x_{1}u_{1}+\cdots+x_{n}u_{n})+\lambda^{2}(x_{n+1}^{2}+\cdots+x_{p+1}^{2})$ .
Therefore, according to the assumption and Proposition 4 (i) or (ii), we find that
$F(x)\in Q(U)\backslash \{0\}$ for $x\neq 0$ . Thus, $\{u_{1}, \cdots, u_{p+1}\}$ is linearly independent over $R$ with
respect to $Q$ ; if $p=1$ , then we obtain $sgn(u_{1}, u_{2})=0$ . Q.E.D.

4. Spaces of non-degenerate linear spaces.

In this section we investigate non-degenerate oriented R-linear subspaces of $C^{p+1}$

in the real Grassmannians $\mathscr{G}_{n}(C^{p+1})$ .
DEFINITION 4. Let $p\in N_{O},$ $n=1,$ $\cdots,p+1$ and $U$ be an n-dimensional R-linear

subspace of $C^{p+1}$ . If $U\cap\Lambda_{0}=\{0\}$ , then $U$ is said to be non-degenerate with respect to
$Q$ , or, shortly, non-degenerate.

By $\mathscr{G}_{n}(C^{p+1}\backslash \Lambda_{O}),$ $n=1,$ $\cdots,$ $p+1$ , we denote the set of all n-dimensional non-
degenerate oriented R-linear subspaces of $C^{p+1}$ ; then $\mathscr{G}_{n}(C^{p+1}\backslash \Lambda_{0})$ is open in $\mathscr{G}_{n}(C^{p+1})$ .

From Definitions 2 and 4 we find the following.

PROPOSITION 7. Let $p\in N_{0},$ $n=1,$ $\cdots,p+1$ . If $U\in \mathscr{G}_{n}(C^{p+1}\backslash \Lambda_{0})$ , then a basis
$\{u_{1}, \cdots, u_{n}\}$ for $U$ is linearly independent over $R$ with respect to Q. Conversely, $\iota f$

$\{u_{1}, \cdots, u_{n}\}\subset C^{p+1}$ is linearly independent over $R$ with respect to $Q$ , then $U=$
$Ru_{1}+\cdots+Ru_{n}\in \mathscr{G}_{n}(C^{p+1}\backslash \Lambda_{0})$ .

By this proposition and Definition 3 we obtain the following.

PROPOSITION 8. Let $p\in N_{0}$ ; then $\mathscr{G}_{2}(C^{p+1}\backslash \Lambda_{0})$ is divided into three disjoint open
subsets such that

$\mathscr{G}_{2}(C^{p+1}\backslash \Lambda_{O})=\mathscr{G}_{2}^{0}(C^{p+1}\backslash \Lambda_{0})\cup \mathscr{G}_{2}^{2+}(C^{p+1}\backslash \Lambda_{0})\cup \mathscr{G}_{2}^{2-}(C^{p+1}\backslash \Lambda_{0})$ ,

where, for a basis $\{u_{1}, u_{2}\}$ for $U\in \mathscr{G}_{2}(C^{p+1}\backslash \Lambda_{0})$ , we have
$ Ue\mathscr{G}_{2}^{2\lambda}(C^{p+1}\backslash \Lambda_{0})\Leftrightarrow sgn(u_{1}, u_{2})=\lambda$ .

The set $\{e_{j}, ie_{j}\}$ is chosen for a basis for $Ce_{j},$ $j=0,$ $\cdots,$ $p$ ; then $Ce_{j}\in \mathscr{G}_{2}^{2+}(C^{p+1}\backslash \Lambda_{0})$ and
$-Ce_{j}e\mathscr{G}_{2}^{2-}(C^{p+1}\backslash \Lambda_{0})$ .

The following is equivalent to Proposition 4.

PROPOSITION 9. Let $p\in N_{0},$ $n=1,$ $\cdots,p+1$ .
(i) $IfU\in \mathscr{G}_{n}(C^{p+1}\backslash \Lambda_{0})wlthn\neq 2,$ $thenL=Q(U)isaclosedconvexconeinCsuch$

that $L\cap(-L)=\{0\}$ .
(ii) If $Ue\mathscr{G}_{2}^{0}(C^{p+1}\backslash \Lambda_{0})$ , then $L=Q(U)$ is a closed convex cone in $C$ such that

$L\cap(-L)=\{0\}$ .
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(iii) If $Ue\mathscr{G}_{2}^{2+}(C^{p+1}\backslash \Lambda_{O})u\mathscr{G}_{2}^{2-}(C^{p+1}\backslash \Lambda_{O})$ , then $Q(U)=C$ .

If $Ue\mathscr{G}_{n}(C^{p+1}\backslash \Lambda_{O})$ with $n\neq 2$ , or if $U\in \mathscr{G}_{2}^{0}(C^{p+1}\backslash \Lambda_{0})$ , then, by Proposition 9 (i)

or (ii), $\langle z\rangle$ has two single-valued branches on $U$. When $n=1,$ $\langle z\rangle$ has four branches
on $U$ such that $\langle xu\rangle=|x|\langle u\rangle$ and $\langle xu\rangle=x\langle u\rangle$ for $ueU\backslash \{0\}$ and $x\in R$ . If
$Ue\mathscr{G}_{2}^{2+}(C^{p+1}\backslash \Lambda_{O})u\mathscr{G}_{2}^{2-}(C^{p+1}\backslash \Lambda_{O})$ , then, by Definition 3 and Proposition 9 (iii), $\langle z\rangle$

has two single-valued branches on $U$.
By $\mathscr{G}_{n}(V_{0}^{p+1}\backslash \Lambda_{0}),$ $n=1,$ $\cdots,p+1$ , we denote the set of all n-dimensional non-

degenerate oriented R-linear subspaces of $V_{0}^{p+1}$ . By Definition 3 $\mathscr{G}_{2}(V_{0}^{p+1}\backslash \Lambda_{0})$ is also
divided into three disjoint open subsets like $\mathscr{G}_{2}(C^{p+1}\backslash \Lambda_{0})$ such that

$\mathscr{G}_{2}(V_{0}^{p+1}\backslash \Lambda_{0})=\mathscr{G}_{2}^{0}(V_{0}^{p+1}\backslash \Lambda_{0})\cup \mathscr{G}_{2}^{2+}(V_{0}^{p+1}\backslash \Lambda_{0})\cup \mathscr{G}_{2}^{2-}(V_{0}^{p+1}\backslash \Lambda_{0})$ ,

where, for a basis $\{u_{1}, u_{2}\}$ for $Ue\mathscr{G}_{2}(V_{0}^{p+1}\backslash \Lambda_{0})$, we have

$ U\in \mathscr{G}_{2}^{2\lambda}(V_{0}^{p+1}\backslash \Lambda_{0})\Leftrightarrow sgn(u_{1}, u_{2})=\lambda$ .

PROPOSITION 10. Let $peN_{0},$ $n=1,$ $\cdots,p+1$ and $U\in \mathscr{G}_{n}(V_{0}^{p+1}\backslash \Lambda_{0})$ for $n\neq 2$ (resp.
$Ue\mathscr{G}_{2}^{0}(V_{0}^{p+1}\backslash \Lambda_{0}))$; then there exist an orthonormal system $\{v_{1}, \cdots, v_{m}\}\subset C^{p+1}$ with
respect to $z\cdot w$ and $\theta eR$ with $ e^{i\theta}e\langle U\rangle$ such that $U$ is joined to $Re^{i9}v_{1}+\cdots+Re^{i\theta}v_{n}$ in
$\mathscr{G}_{n}(V_{O}^{p+1}\backslash \Lambda_{O})$ for $n\neq 2$ (resp. $\mathscr{G}_{2}^{o}(V_{0}^{p+1}\backslash \Lambda_{0})$) by an arc.

PROOF. Let $\{u_{1}, \cdots, u_{n}\}$ be a basis for $U$ with $|\langle u_{1}\rangle|=\cdots=|\langle u_{n}\rangle|=1$ . According
to the assumption and Propositions 6, 7, 8, we construct an orthonormal system
$\{v_{1}, \cdots, v_{n}\}$ from $\{u_{1}, \cdots, u_{n}\}$ . Then we have $\langle v_{j}^{\prime}\rangle=u_{j}\cdot v_{j}$ for $j=1,$ $\cdots,$ $n$ , and

$(u_{1}\cdots u_{n})=(v_{1}\cdots v_{n})(^{u_{1}\cdot v_{1}}0^{\cdot}$

. .
$u_{n}\cdot....v_{1}u_{n}v_{n})$ .

We define an arc $A_{n}$ : $[0,1]\rightarrow Mat(n, n, C)$ as

$A_{n}=(^{u_{1}\cdot v_{1}}0$

. .

$u_{n-1}v_{n-1}u_{n-1}.\cdot v_{1}0u_{n}\cdot v_{n-1}\cos(\pi/2)tu_{n}\cdot v_{1}\cos(\pi/2)tg_{n}(t):$ ),
where $g_{n}(t)=\sqrt{Q(u_{n})\sin^{2}(\pi/2)t+(u_{n}\cdot v_{n})^{2}\cos^{2}(\pi/2)t}$ with $ g_{n}(1)=\langle u_{n}\rangle$ . For $xeR^{n}$ we set
$u^{\prime}=x_{1}u_{1}+\cdots+x_{n-1}u_{n-1}$ and $u_{n}(t)=(u_{n}\cdot v_{1})\cos(\pi/2)tv_{1}+\cdots+(u_{n}\cdot v_{n-1})\cos(\pi/2)tv_{n-1}+$

$g_{n}(t)v_{n}$ ; then we obtain

$F_{t}(x)=Q((v_{1}\cdots v_{n})A_{n}(t)x)=Q(u^{\prime}+x_{n}u_{n}(t))$

$=Q(u^{\prime})+2x_{n}(u^{\prime}\cdot u_{n}(t))+x_{n}^{2}Q(u_{n}(t))$

$=Q(u^{\prime})+2\cos(\pi/2)tx_{n}(u^{\prime}\cdot u_{n})+x_{n}^{2}Q(u_{n})$

$=\cos(\pi/2)tF_{0}(x)+(1-\cos(\pi/2)t)F_{1}(x)$ .
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The assumption and Proposition 9 (i), (ii) imply that $Q(U)$ is a convex cone with its
vertex at $0$ ; therefore, we have $F_{t}(x)\in Q(U)\backslash \{0\}$ for any $x\neq 0$ and $t\in[0,1]$ .

By Proposition 7 we infer that $\{u_{1}, \cdots, u_{n-1}, u_{n}(t)\}$ is linearly independent over $R$

with respect to $Q$ ; further, by Propositon 5 it is also linearly independent over C. Hence,
we find that $A_{n}(t)\in GL(n, C)$ and $g_{n}(t)\neq 0$ for any $te[0,1]$ . Since $(u_{n}\cdot v_{n})^{2}=Q(v_{n}^{\prime})$ , the
value of $\langle v_{n}^{\prime}\rangle$ and $v_{n}$ are uniquely determined as $ g_{n}(1)=\langle u_{n}\rangle$ by $g_{n}$ ; thus, we obtain

$A_{n}(1)=(^{u_{1}\cdot v_{1}}0^{\cdot}$

. .

$u_{n-1}v_{n-1}u_{n-1}.\cdot v_{1}0\langle u_{n}\rangle 00)$ .

On the same line ofargument we construct the arc $A_{j}forj=2,$ $\cdots,$ $n-1$ by replacing
the j-th column of $A_{j+1}(1)$ with

${}^{t}(u_{j}\cdot v_{1}\cos(\pi/2)t, \cdots, u_{j}\cdot v_{j-1}\cos(\pi/2)t, g_{j}(t), 0, \cdots, 0)$ ,

where $g_{j}(t)=\sqrt{Q(u_{j})\sin^{2}(\pi/2)t+(u_{j}\cdot v_{j})^{2}\cos^{2}(\pi/2)t}$; then each $v_{j}$ is uniquely determined
by $g_{j}$ . Thus, set $A=A_{n}\cup\cdots\cup A_{2}$ ; then $U$ and $R\langle u_{1}\rangle v_{1}+\cdots+R\langle u_{n}\rangle v_{n}$ are joined by
$(v_{1}\cdots v_{n})AR^{n}$ . From the assumption it follows that $\langle u_{j}\rangle=e^{i\theta_{j}}$ for $j=1,$ $\cdots,$ $n$ , where
$|\theta_{j}-\theta_{k}|<\pi/2$ . We define $V:[0,1]\rightarrow \mathscr{G}_{n}(V_{0}^{p+1}\backslash \Lambda_{O})$ as

$V(t)=Re^{i\theta_{1}}v_{1}+Re^{i\theta_{1}+i(\theta_{2}-\theta_{1})\langle 1-t)}v_{2}+\cdots+Re^{i\theta_{1}+i\langle\theta_{n}-\theta_{1})\langle 1-t)}v_{n}$ ;

then $V(1)=Re^{i\theta_{1}}v_{1}+\cdots+Re^{i\theta_{1}}v_{n}$ . Q.E.D.

PROPOSITION 11. Let $p\in N_{0},$ $n=1,$ $\cdots,p+1,$ $U\in \mathscr{G}_{n}(V_{0}^{p+1}\backslash \Lambda_{0})$ for $n\neq 2$ (resp.
$U\in \mathscr{G}_{2}^{0}(V_{O}^{p+1}\backslash \Lambda_{0}))$ and $\langle z\rangle|_{\pm R^{n}}=|z|forn\geqq 2$ while $\langle z\rangle|_{\pm R}=|z|$ or $\langle z\rangle|_{\pm R}=z$ for $n=1$ ;
then $U$ is joined to $\pm R^{p+1}$ in $\mathscr{G}_{n}(V_{0}^{p+1}\backslash \Lambda_{0})$ for $n\neq 2$ (resp. $\mathscr{G}_{2}^{0}(V_{0}^{p+1}\backslash \Lambda_{0})$) by an arc. If
$n\leqq p$ , then $U$ is joined to $R^{n}$ by an arc.

PROOF. According to Proposition 10, there are an orthonormal system $\{v_{1}, \cdots, v_{n}\}$

and $\theta\in R$ with $ e^{i\theta}\in\langle U\rangle$ such that $U$ is joined to $Re^{i\theta}v_{1}+\cdots+Re^{i\theta}v_{n}$ in $\mathscr{G}_{n}(V_{0}^{p+1}\backslash \Lambda_{0})$

for $n\neq 2$ (resp. $\mathscr{G}_{2}^{0}(V_{0}^{p+1}\backslash \Lambda_{0})$) by an arc. We set $V(t)=Re^{i\theta\langle 1-t)}v_{1}+\cdots+Re^{i\theta\langle 1-t)}v_{n}$ ;
then the arc $V:[0,1]\rightarrow \mathscr{G}_{n}(V_{0}^{p+1}\backslash \Lambda_{0})$ for $n\neq 2$ (resp. $V:[0,1]\rightarrow \mathscr{G}_{2}^{0}(V_{0}^{p+1}\backslash \Lambda_{0})$) satisfies
$V(1)=Rv_{1}+\cdots+Rv_{n}$ . Since the $(p+1, n)$-matrix $(v_{1}\cdots v_{n})$ is joined to$\cdot$

$(e_{0}\cdots e_{n-1})$ for
$n\leqq p$ and to $(e_{0}\cdots\pm e_{p})$ for $n=p+1$ by an arc $A:[0,1]\rightarrow Mat(p+1, n, C)$ such that
the columns of $A(t)$ are orthonormal, we obtain the result. Q.E.D.

PROPOSITION 12. Let $p\in N_{0},$ $U\in \mathscr{G}_{2}^{2+}(V_{0}^{p+1}\backslash \Lambda_{0})$ (resp. $U\in \mathscr{G}_{2}^{2-}(V_{0}^{p+1}\backslash \Lambda_{O})$) and
$\langle z\rangle|_{\pm Cc_{O}}=z$ ; then $U$ is joined to $Ce_{0}$ in $\mathscr{G}_{2}^{2+}(V_{0}^{p+1}\backslash \Lambda_{0})$ (resp. $-Ce_{0}$ in $\mathscr{G}_{2}^{2-}(V_{0}^{p+1}\backslash \Lambda_{0})$)
by an arc.

PROOF. We may suppose that $Ue\mathscr{G}_{2}^{2+}(V_{0}^{p+1}\backslash \Lambda_{0})$ . Since we have $\langle U\rangle=C$ by
Definition 3 and Proposition 9 (iii), there are $u_{1},$ $u_{2}\in U$ such that $\langle u_{1}\rangle=1$ and $\langle u_{2}\rangle=i$ ;
then $\{u_{1}, u_{2}\}$ is linearly independent over R. From Proposition 7 it follows that $\{u_{1}, u_{2}\}$
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is linearly independent over $R$ with respect to $Q$ . Therefore, since $sgn(u_{1}, u_{2})=1,$ $\{u_{1}, u_{2}\}$

is a basis for $U$. Furthermore, we obtain

$ Q(u_{1}\cos\theta+u_{2}\sin\theta)=\cos 2\theta+(u_{1}\cdot u_{2})\sin 2\theta$ ;

then since $U\in \mathscr{G}_{2}^{2+}(V_{0}^{p+1}\backslash \Lambda_{O})$, we have ${\rm Im}(u_{1}\cdot u_{2})>0$ . Set $v=u_{2}-(u_{1}\cdot u_{2})u_{1}$ ; then we
have $u_{1}\cdot v=0,$ $Q(v)=-1-(u_{1}\cdot u_{2})^{2}$ and moreover,

$(u_{1}u_{2})=(u_{1}v)\left(\begin{array}{lll}1 & u_{1} & u_{2}\\0 & & l\end{array}\right)$ .

We define an arc $A:[0,1]\rightarrow Mat(2,2, C)$ as

$A(t)=\left(\begin{array}{ll}1 & g(t)\\ & cos(\pi/2)t\end{array}\right)$ ,

where $g(t)=\sqrt{(u_{1}\cdot u_{2})^{2}\cos^{2}(\pi/2)t-\sin^{2}(\pi/2)t}$ . Since ${\rm Im}(u_{1}\cdot u_{2})>0$ , we have $(u_{1}\cdot u_{2})^{2}\in$

$C\backslash R_{+}$ and $g(t)^{2}\in C\backslash R_{+};$ therefore, the value of $g(t)$ is uniquely determined as

$g(O)=u_{1}\cdot u_{2}$ . Then we obtain ${\rm Im} g(t)>0$ with $g(1)=i$ and furthermore, $A(1)=\left(\begin{array}{ll}1 & i\\0 & 0\end{array}\right)$ .

Thus, we find for any $\theta\in[0,2\pi]$

$F_{t}(\theta)=Q((u_{1}v)A(t)\left(\begin{array}{l}cos\theta\\sin\theta\end{array}\right))$

$=\cos^{2}\theta+2g(t)\cos\theta\sin\theta+(g(t)^{2}+\cos^{2}(\pi/2)tQ(v))\sin^{2}\theta$

$=\cos 2\theta+g(t)\sin 2\theta$ .

Since ${\rm Im} g(t)>0$ , we infer that $sgn((u_{1}v)A(t))=1$ ; therefore, $U$ is joined to $Cu_{1}$ in
$\mathscr{G}_{2}^{2+}(V_{0}^{p+1}\backslash \Lambda_{0})$ by an arc. Moreover, since $u_{1}$ is joined to $e_{0}$ by an arc $ w:[0,1]\rightarrow$

$V_{0}^{p+1}\backslash \Lambda_{0}$ such that $\langle w(t)\rangle=1$ , we obtain an arc joining $U$ and $Ce_{0}$ in $\mathscr{G}_{2}^{2+}(V_{0}^{p+1}\backslash \Lambda_{0})$ .
Q.E.D.

THEOREM 1. Let $p\in N_{O}$ ; then $\mathscr{G}_{p+1}(C^{p+1}\backslash \Lambda_{O})$ and $\mathscr{G}_{p+1}(V_{O}^{p+1}\backslash \Lambda_{O})$ are divided into
such domains as follows.

(i) $Ifp(\geqq 0)$ is even, $then\mathscr{G}_{p+1}(C^{p+1}\backslash \Lambda_{O})$ is connected.
(ii) If$p=1$ , then

$\mathscr{G}_{2}(C^{2}\backslash \Lambda_{0})=\mathscr{G}_{2}^{2+}(C^{2}\backslash \Lambda_{0})\cup \mathscr{G}_{2}^{+}(C^{2}\backslash \Lambda_{0})\cup \mathscr{G}_{2}^{-}(C^{2}\backslash \Lambda_{0})\cup \mathscr{G}_{2}^{2-}(C^{2}\backslash \Lambda_{0})$ ,

where $\mathscr{G}_{2}^{O}(C^{2}\backslash \Lambda_{0})=\mathscr{G}_{2}^{+}(C^{2}\backslash \Lambda_{O})u\mathscr{G}_{2}^{-}(C^{2}\backslash \Lambda_{0})$ with $\pm R^{2}e\mathscr{G}_{2}^{\pm}(C^{2}\backslash \Lambda_{0})$ and $\pm Ce_{0}\in$

$\mathscr{G}_{2}^{2\pm}(C^{2}\backslash \Lambda_{0})$ .
(iii) If $p(\geqq 3)$ is odd, then

$\mathscr{G}_{p+1}(C^{p+1}\backslash \Lambda_{0})=\mathscr{G}_{p+1}^{+}(C^{p+1}\backslash \Lambda_{0})\cup \mathscr{G}_{p+1}^{-}(C^{p+1}\backslash \Lambda_{0})$ ,
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where $\pm R^{p+1}\in \mathscr{G}_{p+1}^{\pm}(C^{p+1}\backslash \Lambda_{0})$ .
(iv) If$p=0$ , then

$\mathscr{G}_{1}(V_{0}^{1}\backslash \Lambda_{0})=\mathscr{G}_{1}^{2+}(V_{0}^{1}\backslash \Lambda_{0})\cup \mathscr{G}_{1}^{+}(V_{0}^{1}\backslash \Lambda_{0})\cup \mathscr{G}_{1}^{-}(V_{0}^{1}\backslash \Lambda_{0})\cup \mathscr{G}_{1}^{2-}(V_{0}^{1}\backslash \Lambda_{0})$ ,

where $\pm Re\mathscr{G}_{1}^{\pm}(V_{0}^{1}\backslash \Lambda_{0})$ for $\langle z\rangle|_{fR}=|z|and\pm R\in \mathscr{G}_{1}^{2\pm}(V_{0}^{1}\backslash \Lambda_{0})$ for $\langle z\rangle|_{\pm r}=z$ .
(v) If$p=1$ , then

$\mathscr{G}_{2}(V_{0}^{2}\backslash \Lambda_{0})=\mathscr{G}_{2}^{2+}(V_{0}^{2}\backslash \Lambda_{0})\cup \mathscr{G}_{2}^{+}(V_{O}^{2}\backslash \Lambda_{O})\cup \mathscr{G}_{2}^{-}(V_{0}^{2}\backslash \Lambda_{0})\cup \mathscr{G}_{2}^{2-}(V_{O}^{2}\backslash \Lambda_{O})$ ,

where $\pm R^{2}\in \mathscr{G}_{2}^{\pm}(V_{0}^{2}\backslash \Lambda_{0})$ for $\langle z\rangle|_{\pm R^{2}}=|z|and\pm Ce_{0}\in \mathscr{G}_{2}^{2\pm}(V_{0}^{2}\backslash \Lambda_{0})$ for $\langle z\rangle|_{\pm Ce_{0}}=z$ .
(vi) If $p\geqq 2$ , then

$\mathscr{G}_{p+1}(V_{0}^{p+1}\backslash \Lambda_{0})=\mathscr{G}_{p+1}^{+}(V_{0}^{p+1}\backslash \Lambda_{0})\cup \mathscr{G}_{p+1}^{-}(V_{0}^{p+1}\backslash \Lambda_{0})$ ,

where $\pm R^{p+1}\in \mathscr{G}_{p+1}^{\pm}(V_{O}^{p+1}\backslash \Lambda_{0})$ for $\langle z\rangle|_{\pm R^{p+1}}=|z|$ .
$PR\infty F$ . Let $U:[0,1]\rightarrow \mathscr{G}_{p+1}(V_{O}^{p+1}\backslash \Lambda_{0})$ for $p\neq 1$ (resp. $U:[0,1]\rightarrow \mathscr{G}_{2}^{0}(V_{0}^{2}\backslash \Lambda_{0})$)

be an arc such that $U(O)=R^{p+1}$ and $U(1)=\pm R^{p+1}$ . Furthermore, let $\{u_{0}(t), \cdots, u_{p}(t)\}$

be a basis for $U(t)$ such that each $u_{j}$ : $[0,1]\rightarrow V_{0}^{p+1}\backslash \Lambda_{0}$ is continuous with
$u_{j}(0)=e_{j},$ $u_{j}(1)=\pm e_{j}$ for $j=0,$ $\cdots,p$ . According to Proposition 10, there exist an
orthonormal system $\{v_{O}(t), \cdots, v_{p}(t)\}$ and $\theta(t)\in R$ with $ e^{i\theta(t)}e\langle U(t)\rangle$ such that $U$ isjoined
to $V=Re^{i\theta}v_{0}+\cdots+Re^{i\theta}v_{p}$ in $\mathscr{G}_{p+1}(V_{0}^{p+1}\backslash \Lambda_{0})$ for $p\neq 1$ (resp. $\ovalbox{\tt\small REJECT}_{2}(V_{0}^{2}\backslash \Lambda_{0})$) by an arc. By
the assumption and Proposition 6 we find that $u_{j}(0)=v_{j}(0)$ and $u_{j}(1)=\langle u_{j}(1)\rangle v_{j}(1)$ for
$j=0,$ $\cdots,$ $p$ . On the other hand, since $U(1)=\pm R^{p+1}$ , we have $\langle u_{0}(1)\rangle=\cdots=\langle u_{p}(1)\rangle=$

$\pm 1$ . Therefore, since $(v_{0}(t)\cdots v_{p}(t))\in SO(p+1, C)$ , we infer that

$\det(u_{0}(1)\cdots u_{p}(1))=\langle u_{0}(1)\rangle\cdots\langle u_{p}(1)\rangle=(\pm 1)^{p+1}$

Then $U(1)=R^{p+1}$ for odd $p\geqq 0$ and $U(1)=\langle u_{j}(1)\rangle R^{p+1}$ for even $p\geqq 0$ . Therefore,
Proposition 11 implies (iii), (iv), (vi). Since, for even $p\geqq 0,$ $R^{p+1}$ and $-R^{p+1}$ are joined
in $\mathscr{G}_{p+1}(C^{p+1}\backslash \Lambda_{0})$ by an arc $U(t)=Re^{i\pi t}e_{0}+\cdots+Re^{i\pi t}e_{p}$, we have (i). Moreover,
according to Propositions 8, 11, 12, we obtain (ii), (v). Q.E.D.

THEOREM 2. Let $p\in N,$ $n=1,$ $\cdots,$ $p$ ; then $\mathscr{G}_{n}(C^{p+1}\backslash \Lambda_{0})$ and $\mathscr{G}_{n}(V_{O}^{p+1}\backslash \Lambda_{0})$ are
divided into such domains as follows.

(i) If $n\neq 2$ , then $\mathscr{G}_{n}(C^{p+1}\backslash \Lambda_{0})$ is connected.
(ii) If $n=2$ , then

$\mathscr{G}_{2}(C^{p+1}\backslash \Lambda_{0})=\mathscr{G}_{2}^{2+}(C^{p+1}\backslash \Lambda_{0})\cup \mathscr{G}_{2}^{0}(C^{p+1}\backslash \Lambda_{0})\cup \mathscr{G}_{2}^{2-}(C^{p+1}\backslash \Lambda_{0})$ ,

where $\pm Ce_{0}\in \mathscr{G}_{2}^{2\pm}(C^{p+1}\backslash \Lambda_{0})$ and $R^{2}\in\ovalbox{\tt\small REJECT}_{2}(C^{p+1}\backslash \Lambda_{0})$ .
(iii) If $n=1$ , then

$\mathscr{G}_{1}(V_{0}^{p+1}\backslash \Lambda_{0})=\mathscr{G}_{1}^{0}(V_{0}^{p+1}\backslash \Lambda_{0})\cup \mathscr{G}_{1}^{00}(V_{0}^{p+1}\backslash \Lambda_{0})$ ,

where $R\in \mathscr{G}_{1}^{0}(V_{0}^{p+1}\backslash \Lambda_{0})$ for $\langle z\rangle|_{R}=|z|$ and $R\in \mathscr{G}_{1}^{00}(V_{0}^{p+1}\backslash \Lambda_{0})$ for $\langle z\rangle|_{R}=z$ .
(iv) If $n=2$ , then
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$\mathscr{G}_{2}(V_{0}^{p+1}\backslash \Lambda_{0})=\mathscr{G}_{2}^{2+}(V_{0}^{p+1}\backslash \Lambda_{0})\cup \mathscr{G}_{2}^{0}(V_{0}^{p+1}\backslash \Lambda_{0})\cup \mathscr{G}_{2}^{2-}(V_{0}^{p+1}\backslash \Lambda_{0})$ ,

where $\pm Ce_{0}\in \mathscr{G}_{2}^{2\pm}(V_{0}^{p+1}\backslash \Lambda_{0})$ for $\langle z\rangle|_{\pm Cc_{O}}=z$ and $R^{2}e\mathscr{G}_{2}^{O}(V_{0}^{p+1}\backslash \Lambda_{0})$ for $\langle z\rangle|_{R^{2}}=|z|$ .
(v) If $n\neq 2$ , then $\mathscr{G}_{n}(V_{0}^{p+1}\backslash \Lambda_{0})$ is connected.

PROOF. Proposition 11 implies (i) and (v) while Propositions 8, 11 and 12 imply
(ii) and (iv). Furthermore, we define a map $F$ as $F:V_{O}^{p+1}\backslash \Lambda_{O}\ni z\mapsto\langle-z\rangle/\langle z\rangle\in C$ ; then
for $U\in \mathscr{G}_{1}(V_{0}^{p+1}\backslash \Lambda_{0})$ we find $F(U\backslash \{0\})=\{1\},$ $\{-1\}$ . Therefore, according to Proposition
11, we obtain (iii). Q.E.D.

COROLLARY 3. Let $peN,$ $n=2,$ $\cdots,p+1,$ $U\in \mathscr{G}_{n}(C^{p+1}\backslash \Lambda_{0})$ (resp. $U\in \mathscr{G}_{n}(V_{0}^{p+1}\backslash $

$\Lambda_{0}))$ and $V$ be an m-dimensional R-linear subspace of $U$, where $m=1,$ $\cdots,$ $n$ .
(i) If $m\neq 2$ , then $V\in \mathscr{G}_{m}(C^{p+1}\backslash \Lambda_{0})$ (resp. $V\in \mathscr{G}_{m}(V_{O}^{p+1}\backslash \Lambda_{O})$).

(ii) If $m=2$ , then $Ve\mathscr{G}_{2}^{0}(C^{p+1}\backslash \Lambda_{0})$ (resp. $Ve\mathscr{G}_{2}^{0}(V_{0}^{p+1}\backslash \Lambda_{0})$).

PROOF. From Propositions 1, 3 and 7 the assertion follows immediately.
Q.E.D.

5. Cauchy’s intergral formula on manifolds.

In this section we consider Cauchy’s integral formula for complex regular functions
$f$ in real $(p+1)$-dimensional connected submanifolds $M$ of $C^{p+1}$ with boundary.

PROPOSmON 13. Let $p,$ $q\in N_{0}$ with $p\leqq q,$ $n=p,$ $p+1,$ $\Omega$ be a domain of $C^{p+1}\subset C_{p}$ ,
$f:\Omega\rightarrow C_{q}$ be holomorphic and $M$ be a real n-dimensional smooth submanifold of $\Omega$ with
$T_{a}Me\mathscr{G}_{n}(C^{p+1}\backslash \Lambda_{0})(n\neq 2),$ $T_{a}M\in \mathscr{G}_{2}^{O}(C^{p+1}\backslash \Lambda_{0})$ for some $a\in M$.

(i) If $n=p+1$ , then $D_{z}f|_{M}=0$ (resp. $fD_{z}|_{M}=0$) implies that $f$ is complex left
(resp. right) regular.

(ii) If $n=p$ and if $f$ is complex regular, then $f|_{M}=0$ implies $f=0$ .

PROOF. (i): According to the assumption, there exists an open neighborhood $U$

of $a$ in $M$ such that $T_{z}M\in \mathscr{G}_{p+1}(C^{p+1}\backslash \Lambda_{0})(p\neq 1),$ $T_{z}Me\mathscr{G}_{2}^{0}(C^{2}\backslash \Lambda_{0})$ for any $z\in U$. Since
$D_{z}f$ is holomorphic on $\Omega$ with $D_{z}f|_{M}=0$ , by Propositions 5, 7 and 8 we obtain

$\frac{\partial}{\partial z_{j}}D_{z}f|_{U}=0$ for any $j=0,$ $\cdots,p$ .

In the same way it is proved that all the derivatives of $D_{z}f$ are zero in $M$; thus, since
$D_{z}f$ is holomorphic, we obtain $D_{z}f=0$ . On the same line of argument it is shown that
$fD_{z}|_{M}=0$ implies $fD_{z}=0$ .

(ii): If $p=0$ , then $f$ is constant on $\Omega$ ; therefore, the assertion is clearly true.
According to the assumption, there exists an open neighborhood $U$ of $a$ in $M$ such that
$T_{z}M\in \mathscr{G}_{p}(C^{p+1}\backslash \Lambda_{0})(p\neq 2),$ $T_{z}Me\mathscr{G}_{2}^{O}(C^{3}\backslash \Lambda_{0})$ for any $z\in U$. Let $\{u_{0}, \cdots, u_{p-1}\}$ be a
basis for $T_{z}M$; then, from Propositions 7 and 8 and Corollary 2 it follows that there
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exists a vector $u_{p}\in C^{p+1}$ such that $\{u_{0}, \cdots, u_{p}\}$ is linearly independent over $R$ with
respect to $Q$ . When $p=1$ , it further follows that $sgn(u_{0}, u_{1})=0$ . If $U$ is sufficiently small,
we can choose a common vector $u_{p}\in C^{p+1}$ for any $z\in U$. By Proposition 6, we construct
an orthonormal system $\{v_{0}, \cdots, v_{p}\}$ from $\{u_{0}, \cdots, u_{p}\}$ . Since, by Proposition 5,
$\{u_{0}, \cdots, u_{p}\}$ and $\{v_{0}, \cdots, v_{p}\}$ are bases for $C^{p+1}$ , let $(z_{\acute{0}}, \cdots, z_{p}^{\prime})$ and $(z_{\acute{\acute{O}}}, \cdots, z_{p}^{\prime\prime})$ be
the coordinates of $z\in C^{p+1}$ for $\{u_{0}, \cdots, u_{p}\}$ and $\{v_{0}, \cdots, v_{p}\}$ respectively. Then, we have

$\left(\begin{array}{l}(\partial f/\partial z_{\acute{O}})(z)\\\vdots\\(\partial f/\partial z_{p}^{\prime})(z)\end{array}\right)=\left(\begin{array}{lllll}u_{0} & v_{O} & 0 & & \\u_{p}\cdot & v_{O} & \cdots & u_{p}\cdot & v_{p}\end{array}\right)\left(\begin{array}{l}(\partial f/\partial z_{\acute{\acute{O}}}Xz)\\\vdots\\(\partial f/\partial z_{p}^{\prime\prime}Xz)\end{array}\right)$ for any $z\in U$ .

Since $f|_{M}=0$ by the assumption, we find that

$\frac{\partial f}{\partial z_{j}}(z)=0$ for any $j=0,$ $\cdots,p-1$ and $z\in U$ ;

therefore, since $u_{j}\cdot v_{j}\neq 0$ for any $j=0,$ $\cdots,$ $p-1$ , we obtain

$\frac{\partial f}{\partial z_{j}}(z)=0$ for any $j=0,$ $\cdots,p-1$ and $z\in U$ .

Furthemore, we have

$\left(\begin{array}{l}(\partial f/\partial z_{O})(z)\\\vdots\\(\partial f/\partial_{Z_{p}}X^{z)}\end{array}\right)=(v_{O}\cdots v_{p})\left(\begin{array}{l}(\partial f/\partial z_{\acute{\acute{0}}})(z)\\\vdots\\(\partial f/\partial z_{p}^{\prime})(z)\end{array}\right)=v_{p}\frac{\partial f}{\partial z_{p}}(z)$ for any $z\in U$ ;

hence, from the assumption $D_{z}f=0$ (resp. $fD_{z}=0$) we infer that $v_{p}(\partial f/\partial z_{p}^{\prime\prime})(z)=0$ (resp.
$(\partial f/\partial z_{p}^{\prime\prime})(z)v_{p}=0)$ for any $z\in U$, where we consider the vector $v_{p}\in C^{p+1}$ as a Clifford
number $v_{p}\in C_{p}$ . Since $\tilde{v}_{p}v_{p}=v_{p}\tilde{v}_{p}=Q(v_{p})=1$ , we obtain $(\partial f/\partial z_{p}^{\prime\prime}Xz)=0$ for any $z\in U$;
therefore, we conclude that

$\partial f/\partial z_{j}|_{U}=0$ for any $j=0,$ $\cdots,$ $p$ .

In the same way it is proved that all the derivatives of $f$ are zero in $U$ ; thus, sinoe $f$

is holomorphic, we obtain $f=0$ . Q.E.D.

REMARK 1. Let $\Omega$ be a domain of $C_{2}(\cong C^{4})$ and $f:\Omega\rightarrow C_{q}(2\leqq q)$ be holomor-
phic; then we obtain analogous results for $f$ .

REMARK 2. Let $\Omega$ be a domain $ofR^{p+1}$ (resp. $R_{2}(\cong R^{4})$), $M$ be a realp-dimensional
(resp. 3-dimensional) smooth submanifold of $\Omega$ and $f:\Omega\rightarrow C_{q},$ $p\leqq q$ (resp. $2\leqq q$), be
regular, or monogenic. Then in a way analogous to the proof of (ii) it is proved that
$f|_{M}=0$ implies $f=0$ . In [2, \S 10, \S 28] the same result is obtained by the Painlev\’e theorem.

COROLLARY 4. Let $p,$ $q\in N_{0}$ with $p\leqq q,$ $\Omega$ be a domain of $C^{p+1},$ $f:\Omega\rightarrow C_{q}$ be
complex regular and $M$ be a $(p+1)$-dimensional smooth submanifold of $\Omega$ with
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$T_{a}M\in \mathscr{G}_{p+1}(C^{p+1}\backslash \Lambda_{0})$ for some $a\in M$. Then $f|_{M}=0$ implies $f=0$ .

PROOF. If $p=0$ , then $f$ is constant on $\Omega$ ; therefore, the assertion is clearly true.
According to Corollary 3, a real p-dimensional smooth submanifold $N(\ni a)$ of $M$

satisfies $T_{a}N\in \mathscr{G}_{p}(C^{p+1}\backslash \Lambda_{0})$ for $p\neq 2$ or $T_{a}N\in \mathscr{G}_{2}^{O}(C^{3}\backslash \Lambda_{0})$ . Thus, by Proposition 13 (ii),
$f|_{N}=0$ implies $f=0$ . Q.E.D.

By Stokes’ theorem we obtain the following Cauchy integral theorem immediately
(cf. [2, \S 9]).

THEOREM 3 (Cauchy’s Integral Theorem). Let $p,$ $q\in N_{0}$ with $p\leqq q,$ $\Omega$ be a domain
of $C^{p+1},$ $f:\Omega\rightarrow C_{q}$ be complex right regular, $g:\Omega\rightarrow C_{q}$ be complex left regular, $d\sigma_{z}$ be
the $C_{p}$-valued surface-element (defined in \S 2) and $M$ be a real $(p+1)$-dimensionalpiecewise
smooth compact oriented submanifold of $\Omega$ with boundary. Then

$\int_{\partial M}fd\sigma_{z}g=0$ .

Let $\Omega$ be a domain of $C^{p+1},$ $K$ be compact in $\Omega$ and $L$ be connected in $\Omega\backslash \Lambda(K)$ .
Then by $D_{\Omega}(K, L)$ we denote the domain of $\Omega\backslash \Lambda(K)$ which includes $L$ . We set
$B_{r}=\{z\in C^{p+1}||z|\leqq r\}$ .

To begin with, we show Cauchy’s integral formula for $p=1$ .
THEOREM 4 (Cauchy’s Integral Formula). Let $q\in N,$ $\lambda=\pm 1,$ $\Omega$ be a domain of

$C^{2}\subset C_{1},$ $f:\Omega\rightarrow C_{q}$ be complex right regular, $ a\in\Omega$ and $M$ be a real 2-dimensionalpiecewise
smooth compact connected oriented submanifold of $\Omega$ with boundary such that $a\in M^{o},$ $M$

is smooth at $a,$ $M\cap\Lambda_{a}=\{a\}$ and $T_{a}Me\mathscr{G}_{2}^{2\lambda}(C^{2}\backslash \Lambda_{0})$ . Then

$f(z)=\frac{\lambda}{2\pi i}\int_{\partial M}f(w)\frac{dw}{w-z}$ for any $z\in D_{\Omega}(\partial M, a)$ ,

where $1/(w-z)$ is the inverse element of a Clifford number $w-z\in C^{2}\subset C_{1}$ .
PROOF. By $F_{z}(w)$ we denote the integrand in the right side of the formula. Since

$M$ is smooth, for any $\epsilon>0$ there exists an open neighborhood $U_{a}$ of $a$ in $M^{o}$ such that
the projection $\phi_{a}$ : $U_{a}\rightarrow a+T_{a}M$ is an into diffeomorphism with

$|w-\phi_{a}(w)|\leqq\epsilon|\phi_{a}(w)-a|$ for any $w\in U_{a}$ . (2)

Then there is a number $\delta>0$ such that $ a+B_{2\delta}\subset\Omega$ and further, such that the following
holds. Set $C_{\delta}=B_{\delta}\cap T_{a}M$; then $a+C_{\delta}\subset\phi_{a}(U_{a})$ . Set $D_{\delta}=\phi_{a}^{-1}(a+C_{\delta})$ ; then, by (2),
$D_{\delta}\subset a+B_{2\delta}$ and $[w, \phi_{a}(w)]\subset\Omega\backslash \Lambda_{a}$ for any $w\in\partial D_{\delta}$ . Since $\overline{M\backslash D_{\delta}}\subset\Omega\backslash \Lambda_{a}$ with
$\partial(M\backslash D_{\delta})=\partial M\cup\partial D_{\delta}$ , by Theorem 3 we obtain $\int_{\partial M}F_{a}(w)=\int_{\partial D_{\delta}}F_{a}(w)$ . Set $M_{1}=$

$\bigcup_{we\partial D_{\delta}}[w, \phi_{a}(w)]$ ; then since $M_{1}\subset\Omega\backslash \Lambda_{a}$ with $\partial M_{1}=\partial D_{1}\cup(a+\partial C_{\delta})$ , by Theorem 3 we
obtain
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$\int_{\partial D_{\delta}}F_{a}(w)=\int_{a+\partial C_{\delta}}F_{a}(w)=\int_{\partial C_{\delta}}F_{a}(a+w)$ .

Since $T_{a}M\in \mathscr{G}_{2}^{2\lambda}(C^{2}\backslash \Lambda_{0})$ , by Theorem 1 (ii) there exists a smooth arc $ W:[0,1]\rightarrow$

$\mathscr{G}_{2}^{2\lambda}(C^{2}\backslash \Lambda_{0})$ such that $W(O)=T_{a}M$ and $W(1)=\lambda Ce_{0}$ . Set $E_{\delta}(t)=B_{\delta}\cap W(t),$ $S_{\delta}=E_{\delta}(1)$ and
$M_{2}=\bigcup_{0\leqq t\leqq 1}\partial E_{\delta}(t)$ ; then since $a+M_{2}\subset\Omega\backslash \Lambda_{a}$ with $\partial M_{2}=\partial C_{\delta}u\partial S_{\delta}$ , by Theorem 3 we
obtain

$\int_{\partial C_{\delta}}F_{a}(a+w)=\frac{\lambda}{2\pi i}\int_{\partial S_{\delta}}\frac{f(a+w)}{w}dw$ .

Since $S_{\delta}\subset\lambda Ce_{O}$ , from Cauchy’s integral formula of complex analysis we find that the
right side is equal to $f(a)$ . On the same line of argument it is proved that Cauchy’s
integral formula holds in a neighborhood of $a$ in $M^{o}$ . Furthermore, since $f$ is complex
right regular in $\Omega$ and since $\int_{\partial M}F_{z}(w)$ is complex right regular in $D_{\Omega}(\partial M, a)$ , Corollary
4 implies the assertion. Q.E.D.

THEOREM 5 (Cauchy’s Integral Formula). Let $p,$ $qeN_{O}$ with $p\leqq q,$ $\lambda=\pm 1,$ $\Omega$ be
a domain of $C^{p+1}\subset C_{p},$ $f:\Omega\rightarrow C_{q}$ be complex right regular and $ a\in\Omega$ .

(i) For odd $p$ let $M$ be a real $(p+1)$-dimensional piecewise smooth compact
connected oriented submanifold of $\Omega$ with boundary such that $a\in M^{o},$ $M$ is smooth at $a$ ,
$M\cap\Lambda_{a}=\{a\}$ and $T_{a}M\in \mathscr{G}_{p+1}^{\lambda}(C^{p+1}\backslash \Lambda_{0})$ .

(ii) For even $p$ let $M$ be a real $(p+1)$-dimensional piecewise smooth compact
connected oriented submanifold of $\Omega_{a}$ with boundary such that $a\in M^{o},$ $M$ is smooth at $a$ ,
$M\cap\Lambda_{a}=\{a\}$ and $T_{a}Me\mathscr{G}_{p+1}^{\lambda}(V_{0}^{p+1}\backslash \Lambda_{0})$ .

Then

$f(z)=\frac{\lambda}{|S^{p}|}\int_{\partial M}f(w)d\sigma_{w}\frac{1}{(w-z)\langle w-z\rangle^{p-1}}$ for any $z\in D_{\Omega}(\partial M, a)$ ,

where $1/(w-z)$ is the inverse element of a Cllfford number $w-z\in C^{p+1}\subset C_{p}$ .
PROOF. By $F_{z}(w)$ we denote the integrand in the right side of the formula. We use

the same notation as used in the proof of Theorem 4; then by argument analogous to
the proof of Theorem 4 we obtain

$\int_{\partial M}F_{a}(w)=\int_{\delta D_{\delta}}F_{a}(w)=\int_{a+\partial C_{\delta}}F_{a}(w)=\int_{\partial C_{\delta}}F_{a}(a+w)$ .

Since $T_{a}Me\mathscr{G}_{p+1}^{\lambda}(C^{p+1}\backslash \Lambda_{0})$ for odd $p$ , by Theorem 1 (iii) there exists a smooth arc
$W:[0,1]\rightarrow \mathscr{G}_{p+1}^{\lambda}(C^{p+1}\backslash \Lambda_{0})$ such that $W(O)=T_{a}M$ and $W(1)=\lambda R^{p+1}$ . Since $ T_{a}M\in$

$\mathscr{G}_{p+1}^{\lambda}(V_{0}^{p+1}\backslash \Lambda_{0})$ for even $p$ , by Theorem 1 (vi) there exists a smooth arc $W$ :
$[0,1]\rightarrow \mathscr{G}_{p+1}^{\lambda}(V_{0}^{p+1}\backslash \Lambda_{0})$ such that $W(O)=T_{a}M$ and $W(1)=\lambda R^{p+1}$ . Then by Theorem 3
we obtain
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$\int_{\partial C_{\delta}}F_{a}(a+w)=\frac{\lambda}{|S^{p}|}\int_{\partial S_{\delta}}f(a+w)d\sigma_{w}\frac{1}{w|w|^{p-1}}$ .

Since $S_{\delta}\subset\lambda R^{p+1}$ , from Cauchy’s integral formula of real Clifford analysis (see [2, \S 9])
we find that the right side is equal to $f(a)$ . On the same line of argument it is proved
that Cauchy’s integral formula holds in a neighborhood of $a$ in $M^{o}$ . Furthermore, since
$f$ is complex right regular in $\Omega$ and since $\int_{\partial M}F_{z}(w)$ is complex right regular in $D_{\Omega}(\partial M, a)$ ,

Corollary 4 implies the assertion. Q.E.D.

REMARK 1. Theorems 4 and 5 are generalizations of Ryan’s results in [5].

REMARK 2. Let $q\in N$ with $2\leqq q,$ $\Omega$ be a domain of $C_{2}(\cong C^{4})$ and $f:\Omega\rightarrow C_{q}$ be
complex right regular, that is, $\sum_{j=0}^{3}e_{j}(\partial f/\partial z_{j})=0$ , where $e_{3}=e_{1}e_{2}$ . Then Cauchy’s
integral formula also holds for this function $f$

PROPOSITION 14. Let $p\in N$ be even, $q\in N$ with $p\leqq q,$ $\Omega$ be a domain of $C^{p+1}\subset C_{p}$ ,
$f:\Omega\rightarrow C_{q}$ be complex right regular with $f\neq 0,$ $ ae\Omega$ and $M$ be a real $(p+1)$-dimensional
piecewise smooth compact connected oriented submanifold of $\Omega_{a}$ with boundary such that
$a\in M^{o},$ $M$ is smooth at $a,$ $M\cap\Lambda_{a}=\{a\}$ and $T_{a}Me\mathscr{G}_{p+1}^{\lambda}(V_{0}^{p+1}\backslash \Lambda_{O})$ . Then there is a closed
submanifold $L$ of $\partial M$ such that $\langle w-z\rangle$ is single-valued in $L\times D_{\Omega}(L, a)$ . Furthermore,

$f(z)=\frac{\lambda}{|S^{p}|}\int_{L}f(w)d\sigma_{w}\frac{1}{(w-z)\langle w-z\rangle^{p-1}}$ for any $z\in D_{\Omega}(L, a)$ .

PROOF. Since $M$ is a compact submanifold of $C^{p+1}$ with boundary, $\partial M$ has at
most finite number of components. By $F_{z}(w)$ we denote the integrand in the right side
of the formula. Let $\Gamma$ be the set of all the loops $\gamma:[0,1]\rightarrow D_{\Omega}(\partial M, a)$ such that
$\gamma(0)=\gamma(1)=a$ . For $w,$

$w^{\prime}\in\partial M$ we define an equivalence relation as

$w\sim w^{\prime}\Leftrightarrow\frac{\langle w-\gamma(1)\rangle}{\langle w-\gamma(0)\rangle}=\frac{\langle w^{\prime}-\gamma(1)\rangle}{\langle w’-\gamma(0)\rangle}$ for any loop $\gamma\in\Gamma$ .

If $w$ and $w^{\prime}$ belong to the same component of $\partial M$, then $w\sim w^{\prime}$ . Let $N_{1},$ $N_{2},$ $\cdots,$ $N_{n}$ be
the equivalence classes; then we obtain $\partial M=N_{1}+N_{2}+\cdots+N_{n}$ . For any $\gamma\in\Gamma$ there is
a submanifold $N^{\prime}$ of $\partial M$ such that $\langle w-\gamma(O)\rangle=\langle w-\gamma(1)\rangle$ for any we $N^{\prime}$ and such that
$\langle w-\gamma(O)\rangle=-\langle w-\gamma(1)\rangle$ for any $w\in\partial M\backslash N^{\prime}$ . From Theorem 5 it follows that

$f(a)=\int_{\partial M}F_{a}(w)=\int_{N^{\prime}}F_{\gamma\langle 0)}(w)+\int_{\partial M\backslash N^{\prime}}F_{\gamma\langle O)}(w)$

$=\int_{N^{\prime}}F_{\gamma\langle 1)}(w)+\int_{\partial M\backslash N^{\prime}}F_{\gamma\langle 1)}(w)$ .

Therefore, we find that
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$f(a)=\int_{N^{\prime}}F_{a}(w)$ , $\int_{\partial M\backslash N^{\prime}}F_{a}(w)=0$ .

By the definition of $\{N_{j}\}$ we obtain loops $\gamma_{1},$ $\gamma_{2},$ $\cdots,$ $\gamma_{m}\in\Gamma$ and unions $N^{1},$ $N^{2},$
$\cdots,$

$N^{m}$

of $N_{j}$ such that
$\partial M\supset N^{1}\supset N^{2}\supset\cdots\supset N^{m}$ , $N^{j}\neq N^{j+1}$ ,

$f(a)=\int_{\partial M}F_{a}(w)=\int_{N^{1}}F_{a}(w)=\cdots=\int_{N^{m}}F_{a}(w)$ ,

$\int_{\partial M\backslash N^{1}}F_{a}(w)=\int_{N^{1}\backslash N^{2}}F_{a}(w)=\cdots=\int_{N^{m-1}\backslash N^{m}}F_{a}(w)=0$ .

The above equations also holds in a neighborhood of $a$ in $M^{o}$ ; furthermore, by Corollary
4 they hold in $D_{\Omega}(\partial M, a)$ . If $ N^{m}=\emptyset$ , then $f=0$ ; however, this is contrary to our
assumption $f\neq 0$ . Thus, we obtain $ N^{m}=\emptyset$ ; then $N^{m}=N_{j}$ for some $j,$ $j=1,$ $\cdots,$ $m$ . For
simplicity, we setj $=1$ . Then for any $w\in N_{1}$ and $\gamma e\Gamma$ we find that $\langle w-\gamma(O)\rangle=\langle w-\gamma(1)\rangle$ ;
therefore, $\langle w-z\rangle$ is single-valued in $N_{1}\times D_{\Omega}(\partial M, a)$ . Moreover, we infer that

$f(z)=\int_{N_{1}}F_{z}(w)$ ,

$\int_{N_{j}}F_{z}(w)=0$ $(j=2, \cdots, n)$ for any $z\in D_{\Omega}(\partial M, a)$ .

Next, we consider loops in $D_{\Omega}(N_{1}, a)$ and repeat the same argument; further, repeat
this. Then we finally obtain a closed submanifold $L$ of $\partial M$ which satisfies the
conditions. Q.E.D.

REMARK 1. If $p=0$ or if $\partial M$ is connected, then $\langle w-z\rangle$ is single-valued in
$\partial M\times D_{\Omega}(\partial M, a)$ .

REMARK 2. Let $\Omega=C^{p+1}$ and $M$ be included in an affine space $X$ in $C^{p+1}$ ; then
$L$ includes the boundary of the only unbounded domain of $X\backslash M$.

REMARK 3. Let $p\in N_{O}$ be even, $\Omega$ be a domain of $C^{p+1}$ and $ ae\Omega$ . If $f$ is complex
regular in $\Omega\backslash \Lambda_{a}$ , then $f$ is complex regular at $a$ . If $f$ is not complex regular at $a$ , then
$f$ is multiple-valued; for example, Cauchy’s kernel $1/z\langle z\rangle^{p-1}$ is double-valued in
$C^{p+1}\backslash \Lambda_{0}$ (see [7, Corollary 3]).
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