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1. Introduction.

Let E be an elliptic curve defined over a number field k. Then the set E(k) of all
k-rational points of E is a finitely generated abelian group. By the rank of E/k we mean
the rank of the free part of E(k). The rank is deeply connected with the order of the
Selmer group. In this paper, we give an upper bound of the order of the p-Selmer group
of E/k for a prime number p in terms of the ideal class group of certain finite extension
of k. There are various results about the order of the Selmer groups. Brumer-Kramer
[2], Washington [11], and Kawachi-Nakano [3] studied the case for p=2. For a cyclic
isogeny ¢ of prime degree p, Aoki [1] estimated the order of the ¢-Selmer group by
using the genus formula. v

We here follow Aoki’s method in order to estimate the order of the Selmer group
for the multiplication-by-p map.

In Section 2, we recall the general facts about the Selmer group and define some
maps which will be needed later. In Section 3, we embed the p-Selmer group for an
odd prime p in some Galois cohomology groups and estimate the order of the Selmer
group by making use of the genus formula under some assumptions. For p=2, we
discuss in Section 4. In Section 5, we show that the assumptions in Section 3 hold for
an elliptic curve without complex multiplication whenever we choose a suitable prime
number p and replace the base field £ by some finite extension of k.

2. Preliminaries.

Let k be an algebraic number field of finite degree and E be an elliptic curve defined
over k. For any integer m>2, E[m] denotes the kernel of the multiplication-by-m map
[m]. Let S be a finite set of places of k consisting of the infinite places, those which
divide m and those at which E has bad reductions, and kg be the maximal Galois
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extension of k which is unramified outside S. Then it is known that there is an exact
sequence

0 — H'(ks/k, E[m]) — H'(k, E[m])— & H'(k, E),
ve M \S

where M, means the set of all (finite, infinite) places of k and k, denotes the completion
of k at ve M, [5]. From the above sequence, the Selmer group S™(E/k) of E/k for [m]
is given by

S™E/k)=Ker{H'(k, E[m})~ [] H'(k,, E)}

ve M

=Ker{H(k, E[(m])— [] H'(k,, E)} nKer{H'(k, E[m])—> [ H'(k,, E)}
vé¢S

veS

=Ker{H'(ks/k, E[m)) > [ H'(k,, E)} .
ves

The following diagram is commutative:

0 — EK)ymER) > H'E[m) — H'Em — 0
l [Tres. 1 [Tres,
0 — [] Ek,)/mE(k,) 115, Il H'(k,, E[m]) — [] H'(k,, E)im] —> 0,
veS veS veS

where res, means the restriction map of cohomology groups. Then, from the above
discussion, the Selmer group is given by

S™E/k)= {¢ € H'(ks/k, E[m]) | res,(£)eIm$, for any ve S} .

Next suppose that E[m] =< P) x {(P’) = E(k), where P, P’ are some generators over
Z/mZ. Let p,<k™ be the group of m-th roots of unity and e,, be the Weil pairing

en: E[m]x E[m] — u,, .

For fixed generators P, P’ of E[m] over Z/mZ, it is easily seen that e, gives an
isomorphism

i: HY(k, E[m]) =~ H(k, p,,) x H'(k, pt,)
¢ F—([o—en(8(0), P11, [t en(P, &(7))]) -
Let x be the isomorphism given by the Kummer sequence for the field k:
K: HYk, p,) > k> [k*™.

Then using the isomorphisms x and i, we define an isomorphism
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ji H'(k, E[m]) = (k™ [k™™)?,
J=kXxK)oi.

For any place v of £, let i,, k,, j, denote the maps which are defined over &, in a similar
way as i, k, j respectively. Moreover, e,, defines a cup product
inv, 1

<, ot Hiky, E[m]) x H(kyy E[m]) —52 H2(kyy tty) —> ~Z/Z.,

where inv, denotes the invariant map.
Finally, let ( , ),: k) /k, ™ x k) [k, ™ — p,, be the Hilbert norm residue symbol. Then
we define a bilinear map @ as follows:

D (k' [k ™ x (k' [k ™) = i 5
(a, b), (c, d)) = (a, d),(b, o), * .

LEMMA 1. The following diagram is commutative:

H'(k,, E[m]) x H'(k,, E[m]) 2% 1z/z
JoXJy !
X Em2 x G2 flem? 2 g,
where 1(n/m)=e,(P, P’)".
Proor. If we define a pairing
[ H'kys p)® X H'(kyy p)* — H(Kk,, ) 5
(€, m), (¢, ¥)) > [(a, ©) = (U Y)o, TN(n v P)o, 1)~ '],

then by the definition, it is easily checked that the following diagram is commutative:

H'(k,, E[m]) x H'k,, E[m]) —= H?k,, u,)
i, X1, id

HY(kyp p)? X Hkp n)®  — H(k 1) .

On the other hand, by [7] Ch. XIV Proposition 5, we have a commutative diagram

H(ky, ) X Hkyy ) —— H(K,, 1)
K, X K, v

kyfeem x kxpieem Lo
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where v stands for the composition of inv, and 1: ~Z/Z 5 u,,. Hence for ((,n),
(¢, .,’))EHl(kw ﬂm)2 X Hl(kv, Um 2, we have

vo f((& My (&, W)= v nu d) H=vEuyYMnuU )™’
= (1,&, K)(KoMs o)y = B((,E, K1), (16,8, K Y)) =P o K (&, ), (b, ¥)) -

Therefore the diagram

H(k,, 1)? X H(Kkoy )2 —1 H2(ky, 1)

K4 v

®
(k) [k, ™? x (k) [RS™™ ——

is commutative. o
Moreover, the composite map %Z/Zﬂv”—> H*(k,, u,,) AR U coincides with 1 by

the definition of v. This gives the desired resulit.

Taking account of Lemma 1, let ImJ; be the annihilator of ImJ, with respect to
{, >, namely

Imé}={¢eH'k,, E[m]) | (n, £),=0 for any veImd,} .

Then by the definition of e, it can be shown that Imé,=Imé; [4].
On the other hand, the Tate pairing E(k,) x H'(k,, E)— Q/Z [10], [12] induces a
perfect pairing
E(k,)/mE(k,) x H'(k,, EY[m] > Z|Z,

and this pairing is commutative with { , >,, namely the diagram

Ek,)/mE(k,) x H'k, Em] — %Z/Z
d, x lift id
H\(k,, ETm]) x H'(k,, Elm]) — % Z/Z

is commutative.

Hence, for any &elméicH(k,, E[m]), the image & in H'(k,, E)[m] is an
annihilator for E(k,)/mE(k,). But the pairing is perfect, hence we have &=0. Therefore
¢ is in the kernel of H'(k,, E[m])— H'(k,, E)[m] which is equal to Imd,, hence
Imd} =Imé,, consequently we have

) Imd,=Imst.
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3. The cases for odd primes.

In this section, we will embed the Selmer group SP(E/k) for an odd prime number
p in some Galois cohomology group under some assumptions, and estimate the order
of SP(E/k) by making use of the genus formula.
' Let assume that E(k) contains the p-torsion subgroup E[ p]. Moreover we assume
that the following condition (A) holds.

(A) There are such generators P, P, of p>-torsion subgroup E[ p?] over Z/p3Z
that the definition fields K; =k(P,), K, =k(P,) of P,, P, over k are both cyclic extensions
of degree p over k, and if we put

G, =Gal(K,/k)=<{z;> (=12,
then
P=pP}—P,, P =pP%—P,
generate E[ p] over Z/pZ.
We take the above generators P, P’ of E[ p] in order to define the map j in Section
2 and consider the following maps

E(/pE(k) > H'(k, E[ p]) “j;» (k> [k 7).

Then by the definition of § and the condition (A), for any o € Gal(k/k)
O(LplP1)o)=Pi—P e{P).
Hence, the second component of the image i 6([ p]P,) becomes always trivial:
(io6(Lp]1Py)),(0)=ey (P, P{—P)=1 for any o e Gal(k/k) .
Therefore the image j- ([ p]P,) is always in the form
| Jeo([pIP)=(ay, e (k™ /k*?)?
for some a, ek™ /k™?. Similarly, the image of [ p]P, is in the form
Jeo(LpIP2)=(1, ay)e (k™ [k™7)?
for some a,ek™/k*?. For any ve M,, the images of j, -, are also given by
Joo 0[PIP1)=(ay, Ve (k) [k, P)*,
{J}ﬂ 0LpIP;)=(1, a)) e (k, [k P)* .

On the other hand, let L/K be an arbitrary field extension. Then for an elliptic
curve E/K, the following diagram is commutative:
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E(K)/pE(K) —— H'(K, E[ p]) ——» (K* /K *?)*

res

E(L)pE(L) 5 HY(L, E[p]) ——(L*/L*?)* .

For any Pe E(K), K([p]™'P) is contained in L if and only if P is contained in pE(L),
and it is equivalent to that &(P) is an element of the kernel of the map
(K*/K*P)? > (L*/L*?)?. Since the kernel is (K* n L*?)/K*?)?, if we put 6(P)=(5(P),,
8(P),), it is equivalent to that K(X/5(P), 3/6(P),) is contained in L. Therefore we have
K([(p]~*P)=K(/o(P),, }/5(P),  for any PeE(K).
Consequently, we have
Ki=k(P)=k(/a,), K,=k(P;)=k(}/a,).

Moreover, it is clear that the subgroups of (k. /k,P)* generated by (a,, 1), (1, a,), denoted
by {(a,, 1)>,, {(1, a,)), respectively, are contained in Im,. Hence, taking the annihilators
with respect to the bilinear map @: (k. /k, ?)* x (k,’ [k ?)* = pu, and by (1), we have

Imd,=Imd. =<(a;, 1))y, Imd,=Imd;=<{(1,a,)); .
Let (c, d)e(k) /k)?)* be an annihilator of (a,, 1). Then by the definition we see
1= ¢((a19 1)9 (C, d))=(a1, d)v(l’ C)v_ ! =(a19 d)v .

Hence d must be an annihilator of a, with respect to the Hilbert norm residue symbol
and c is arbitrary. In k. /k,? the Kummer group for Kl,w=k,,(‘(/a_1) is the subgroup
generated by a,, denoted by {a,),, and its annihilator with respect to the Hilbert norm
residue symbols is the norm of Ky, namely NKy , k. ?/k, ?. Therefore we have

ay, V)Dy =k, [k, P x NK{ ,k; P[k, P .
Similarly

(1, a2)>y = NK3 ,k, Plky® x k' [k, P
where Kz,w,=k,,(’(/a_2). Hence we have an inclusion

2 Imé, = <(a;,, )5 0 (L, a2y
= NKZX,m’k: P/kvx P x NK;,mkvx p/k: P .

Let 0, , denote the ring of integers of K, ,,. Then if K, ,/k, is unramified, we have
3) NK;Y ,=NOf,, (modk,?) .
Similarly, if K3 ./k, is unramified, then

4 NK; ,=NO; (modk, P) .
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Let R; be the set of places of k which are ramified in K; (i=1, 2). Moreover we put
T:;=R;n S (i=1, 2), where S means the same set as in Section 2. Let T’ be the set of
places of K; lying above places of 7;. Then T:-idéle group Jk.r, of K; is defined by

JK:‘,T; L= n @ii(w X l—[ Ki),<w ’

weMg\T; weT;

where for an infinite place w, 0}, denotes C*. Note that by the assumption, k contains
u,, hence k and K; are totally imaginary.

For each places v of k, we choose and fix a place w of K; lying above v once for
all. Then by the semi-local theory, there exists an isomorphism

ﬁo(Ki/k, JK.-,T;)’—'—\: @ ﬁo(Ki,w/kva 0;»)® &) I:IO(Ki,m/km KW,

v¢T; veT;

where A means the Tate cohomology.
Let f be the composition of the following maps.

[T Her e ) MWeere) 1105 e, ke, )

i=1,2 i=1,2 veT;

- ]._.[ ( 1—[ ﬁo(Ki,w/kw Kz):w))

i=1,2 veT;

<> (HO(K /K, Jx, 1) -

i=1,2
Then we have

LEMMA 2. There is an inclusion

SPE/K) < Ker{ [] H(kr/k, p) Lo T] HOKifk, Txoz)} -
i 2 i=1,2

=1,

PrROOF. Looking at the following diagram

Ek)pEk) — H ‘ks/k, ELp]) = H'(ks/k, p,) x H'(ks/k, )

resoin [
[Les EC)/pEk,) — T1,es H (ko ELPD) > [1,c5 {H (kyy 1) % H' K,y 1)} 5

the Selmer group S®”(E/k) can be expressed as
SPUE[K)={(¢1, &2)e H (ks/k, p,)? | res, (&4, £;)eIm(i, - 8,) for any ve S}.

Since the map i, is an isomorphism, we identify Imé, with Im(i, - é,). Then, by (2), (3)
and (4), we have for each (¢, &,)e SP(E/k)

res,$1 € NOS .k, Plk)? (veS\T,),
res,£,e NOY k) Plk,) P (veS\T,).
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On the other hand, by Kummer theory, there is an isomorphism
H'(ks/k, p,) = {xek™ [k*? | ord,(x)=0 (modp) for any v¢ S} .
Hence we have
ord,(res,&,)=0 (modp) for any veT,,
{ ord(res,£,)=0 (modp) for any v¢ T, .
Therefore we have an inclusion
SO(E/K) s H (g, [k, 115) X H (e, /K, 1)
~ {xek*/k*? | ord(x)=0 (modp) for any v¢ T,}
x {xek*[k*? | ord,(x)=0 (modp) for any v¢ T} .
Moreover, for ve T,
res,&y € NK3 ok Pl P =Ker (kg k3P = HOKy oKy K3a)} -
Similarly, for ve T,
res,t,€ NK} k2 ?lk)P=Ker{k) [k;? - HYK, ,/ky K{ o)} -
This gives the desired inclusion.
In general, let K/k be any finite Galois extension and G =Gal(K/k) be the Galois
group. Then for a finite subset T of M,, T-unit group U, r of k is defined by
U.r={uek™ | v(u)>0 for all real ve M°\T and
ord, (u)=0 for all ve M{\T} ,

where M (resp. M?) is the set of all infinite (resp. finite) places of k. Let 7" be the set
of places of K lying above the places of T. Then the T"-unit group Uy, ;- is also defined
in a similar way. Let Jy 1 be the T"-idéle group of K, and Cy ;- be a group defined by
the following exact sequence

B

o
) 0— Ugpr—Jgr— Cx,rr—0,

where o denotes the diagonal embedding.
Taking the Tate cohomology we obtain a long exact sequence

v %G, Ug ) = B%G, Jx.) 2% A°(G, C 1)

©) s HYG, Ugr) 5 HY(G, I 1) 2 HY(G, Cy 1)
2 5] 2 B. 2

— H (Ga UK,T’) — H (G, JK,T’) —H (Gs CK,T')



p-SELMER GROUPS 181

Let Cl, ; (resp. Clg 1) be the group Ji/k*J, ¢ (resp. Jxg/K™Jg 1-). Suppose that T
contains all the places which ramify in K/k, and that K/k is a cyclic extension, then
Aoki [1] shows the following genus formula:

Suppose that K/k is a cyclic extension. Then it holds that
[K: k]| ﬁo(G’ Uk, 1)1 |(C1K,T')G|
efr | Cl,rl

where e=]],. . €» is the product of the relative ramification indeces in K/k and
Sr=[1,c1 /> is the product of the relative degree of ve T in K/k [1].

(N | Kera, |=

L2

In our case, the T;-unit group of k is given by
Upr,={uek™ | ord,(w)=0 for any ve M{\T;}  (i=1,2).

The T'-unit group of K; is also given in a similar form.
We define a map

At Upp k*Plk*P — HOK [k, Jg, 1))
by the composition of the natural surjection
Uy,7.k™P[k* (= Uy 1,/ Uy 1, 0 k™ P) — Uy [NUg, (= HO(Ki/k, Uk, 1)) ,
where N is the norm map from K to k™, and
af: HO(K/k, Ug,1;) — HOKi/k, Tg, 1)) »

where a?’s are the maps obtained from taking cohomology groups for the exact se-
quence

o® Bo
0— UK:',T; - JK.»,T; - CK.-,T; —0

as in (5), (6). Note that, since K;/k is a cyclic extension by the condition (A), H°=H?
and af =a{. Using the genus formula (7) in order to estimate the orders of the kernels
of A;’s, we obtain the following upper bound of the order of the Selmer group.

THEOREM 1. Assume that E(k) contains E[p] and the condition (A) holds. Then
|(Clg, )% |(Clg, 1)
. | N Cler )l H(Ch,1,)

where d=[k:Q] and r=|R,\T; |+| R\T,|.

| SP(E[k)|<p?*?7"

]

Proor. By the definition, the order of the kernel of 4; can be written as

| Ui,/ Uk, 17 |

| Kerii | - 20
| H(K/k, Ug,,1;)|

| Keraf | (i=1,2).
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By the Dirichlet’s unit theorem, we have | U 1,/U, 12 |=p%**!Tl where d=[k:Q].
Let Cl, 1, be the group J;/k*J, r, as above. Then, there exists an exact sequence

0—> U, 1.k ?/k*? — H'(kr[k, p) — (Cl.1,),— 0

where (), denotes the p-torsion subgroup. Moreover the next diagram is commutative:

0 — [1 Uxrk?/k*? — [1 H'kpJk, 1) — 1 (Cler), — 0

i=1,2 i=1,2 i=1,2

e |

N d. -
0 — [1 A°Ky/k Jxor)— T1 BOKifk, Jx,1) — 0 — 0

i=1,2 i=1,2
where f is defined in Lemma 2. Then, by the Snake Lemma we see
| Coker f'||(Cly. 1), I1(Cl1,), || Ker 4]

Ker f|=
| /1 | Coker A |

Since | Coker 1 |>|Coker f |, we obtain
| SPNE/k) | <|Ker f|<|(Ch, 1), 1| (Ch,1,), || Keri].
On the other hand, by the genus formula, we have

[K:K]| HO(Ki/ks UK.~,T;)| | (CIK,-,T;)Gi |

| Keraf | =
€; | Ch 7,

(i=1,2),

where e,=]],. M, € is the product of relative ramification indices in K;/k. Note that,
since K;/k is a cyclic extension of degree p by condition (A), the residue class degrees
are equal to 1 for any ve 7T,. Hence we have

| Kerd|=|Keri, || Ker4,|
p2 e\ Tl [(Cle )¢ |(Cly, 1,)%?)
€€, | Cl, 1, | | Ch, 1, |
Since | Cl 1,1/|(Ch.1,),| = Cl, 7, |, and e;=p'®!, we obtain the desired estimate
|(Clg, 7)) |(Clg, r;)%]
[(Cle,r )"l 1(Cl1,)°|

Let dim, denote the dimension over Z/pZ. By the assumption, we have
rank E(k)=dim,, E(k)/pE(k)— 2, and there is an injection 6 : E(k)/pE(k) — S'P(E/k). Hence
we have the following

| S(p)(E/k) | sz +d-r

COROLLARY. We have an inequality

'(CIKI,T;)Gl l + Ord I ((1‘11(2,1"2)62 |

rank E(k)<d—r+ ordP | (Clk,Tl)p | i | (Clk.Tz)p |
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4. The case for p=2.

In the case of p=2, the situation on the infinite places of k is slightly different
from the one for odd primes. For an odd prime p, the condition E[ p]< E(k) implies
that k is a totally imaginary number filed. On the other hand, we deduce nothing about
the infinite places k from the condition E[2]< E(k). However, if we make some
assumption on the infinite places in order to simplify the situation (for example, k is
totally imaginary), then we can estimate the 2-Selmer group for E/k in a similar way
for odd primes. In the case that k is a totally real number field, we also obtain a similar
estimate as follows.

Let k be a totally real number field, E be an elliptic curve defined over k. Let
assume that E[2] < E(k) and the following condition (B) holds.

(B) There are such generators P, P, of 4-torsion subgroup E[4] over Z/4Z that
the definition fields K, =k(P,), K, =k(P,) of P,, P, over k are both cyclic extensions
of degree 2 over k, and if we put

G,=Gal(K;/k)={1;) (i=12),
then
P=P}—P,, P =P3%-P,
generate E[2] over Z/2Z.

This is the same condition as (A) for p=2 in Section 3.
Let R; be the set of places of k which ramify in K; (i=1, 2), and put

T :=(R;n S)u {the places lying above 2} U M;° .
THEOREM 2. Under the above conditions we have

| (Clg, 7| |(Clg, )%

| S(Z)(E/k) | S22+r
|(Cl,r)?*|  1(Clre)?|

where r:=|T® |+ | TP |—| R, |—| R, |.

Proor. Each element of S\T{® (i=1, 2) is a finite place. Hence the argument is
completely similar to the one for odd primes. Note that since T{? contains all infinite
places of k, for the T{®-unit group U, rw, the order of the group U, r@/U i 7y is equal to
2!T¥| by Dirichlet’s theorem.

5. Elliptic curves without complex multiplication.

In this section, we show that if an elliptic curve has no complex multiplication,
then choosing some prime number p and replacing k by its finite extension if necessary,
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we can make the condition (A) in Section 3 to be valid.

Let E/k be an elliptic curve defined over a number field of finite degree. For any
integer m>2, E[m] is a free (Z/mZ)-module of rank 2, and G(m)= Gal(k(m)/k) acts on
E[m] where k(m)=k(E[m]). Hence by taking some generators of E[m] over Z/mZ,
there exists a homomorphism G(m) - GL,(Z/mZ). Let us assume that E has no complex
multiplication. Then by Serre [6], [8], we know that for all but finitely many prime
numbers p, the above homomorphisms are isomorphisms:

8) G(p"™) = GL,(Z/p"Z) for any n>1.
From an elementary fact, the orders of GL,(Z/pZ) and GL,(Z/p*Z) can be given by
|GLAZ/pZ)|=p(p>—1)Xp—1), = |GLNZ/p*Z)|=p*(p*—1)p—1).

Hence, for any prime p which satisfies (8), [k(p?): k(p)]=p*. Let P,, P,e E[p?] be
any generators of E[ p2] over Z/p2Z. Then it is easily seen that for o€ G(p?), o fixes
E[p] and p, if and only if ([p]P,)°=[p]1P,, ([P1P,)’=[p1P, and o€ SL,(Z/p>Z),
because [ p]P, and [ p] P, generate E[ p] over Z/pZ. We rewrite this condition in terms

of matrices. First, since o fixes [ p]P, and [ p]P,, putting s = ( “ Z), a,b,c,de Z/p*Z,
c

G- JEO-E) G- aG)-(3)
0_cd0_cp’ p_cdp dp)’
Hence we have a=d=1 (modp) and b=c=0 (modp). Then if we put o=<l+pa liﬂ )

py p
for some a, B, y, ne Z/p*Z, since o is in SL,(Z/p*Z), n must be equal to —a. Therefore
o € H:=Gal(k( p2)/(k( p)Xu,2)) if and only if it is in the form

(1+pa pB
g=

) for some «, B, ye Z/p?Z .
py 1—pa

The number of such ¢’s is p3, namely | H|=p3, hence [(k(p)Nu,2) : k(p)]=p. Moreover,
the subgroup of H consisting of the elements which fix P, is a group generated by
o, =((1) i’ ) Similarly the subgroqp which fixes P, is generated by o, =(; (1)) and their
orders are both p. Hence if we put

K=(k(p)Xup2, P1) O (K(P)Npp2, P2)

then K(P,) and K(P,) are both cyclic extensions of K whose Galois Groups are generated
by o, and o, respectively:

G,=Gal(K(P,)/K)=<0,)> =0, |K(P,)> ’
G,=Gal(K(P,)/K)={0,)=(0, lK(P;)) .
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o2 1 0 1 _ 1 _
it _<p 1)(0>_(p>_P1+[p]P2’
a_(1 PYO\_(P\_
P“(o 1)(1)'(1>_[”]P1+P2’

Hence P{*— P, =[p]P, and P$'— P,=[p]P, generate E[ p] over Z/pZ. Therefore we
obtain the following.

Moreover,

PROPOSITION.  Let E/k be an elliptic curve without complex multiplication, and p be
a prime number which satisfies the condition (8). Then there exists a finite extension field
K of k such that the condition (A) holds for E/K and p.
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