Tokyo J. Math. Vol. 20, No. 1, 1997

A Heredity Property of Sufficiency

Jürgen HILLE

University of Münster (Communicated by T. Suzuki)

Abstract. If (X, \mathscr{A}) is a measurable space, $(\mathscr{P}_n)_{n \in \mathbb{N}}$ is an increasing sequence of nonempty sets \mathscr{P}_n of probability measures and \mathscr{B}_n is a sub- σ -field of \mathscr{A} which is sufficient for the statistical experiment $(X, \mathscr{A}, \mathscr{P}_n)$, $n \in \mathbb{N}$, then the terminal σ -field of the sequence $(\mathscr{B}_n)_{n \in \mathbb{N}}$ contains a σ -field which is sufficient for $()_{n \in \mathbb{N}} \mathscr{P}_n$.

1. Introduction.

D. Landers has shown in [4], that the terminal σ -field \mathscr{B}_{∞} of a sequence $(\mathscr{B}_n)_{n \in \mathbb{N}}$ of sub- σ -fields of a given σ -field \mathscr{A} is minimal sufficient for a class \mathscr{P} of probability measures on \mathscr{A} , if \mathscr{B}_n is minimal sufficient for \mathscr{P}_n , where $\mathscr{P}_n \subset \mathscr{P}, n \in \mathbb{N}$, are subsets such that $\mathscr{P}_n \subset \mathscr{P}_{n+1}, n \in \mathbb{N}$, and $\mathscr{P} = \bigcup_{n \in \mathbb{N}} \mathscr{P}_n$. If the assumption of minimality is dropped and \mathscr{A} is countably generated, the terminal σ -field is sufficient ([4], p. 204, Proposition 9). If \mathscr{B}_n is sufficient for \mathscr{P}_n but not necessarily minimal sufficient and \mathscr{A} is not countably generated, \mathscr{B}_{∞} is not sufficient in general ([4], p. 203, Example 8). We show in this paper, that in any case \mathscr{B}_{∞} contains a sub- σ -field which is sufficient for \mathscr{P} , if \mathscr{B}_n is sufficient for \mathscr{P}_n .

2. Notations.

A statistical experiment is a triple $(X, \mathscr{A}, \mathscr{P})$, where (X, \mathscr{A}) is a measurable space and \mathscr{P} is a nonempty set of probability measures on (X, \mathscr{A}) . The system of all \mathscr{A} -measurable subsets of X, which are P-null sets, for all $P \in \mathscr{P}$, is denoted by $\mathscr{N}(\mathscr{P})$. If \mathscr{E} is a system of subsets of X, the σ -field generated by \mathscr{E} is denoted by $\mathscr{S}(\mathscr{E})$. If $g, h: X \to \mathbb{R}$ are \mathscr{A} -measurable functions we write $g = h [\mathscr{P}]$ if $P\{x \in X | g(x) \neq h(x)\} = 0$, for every $P \in \mathscr{P}$. For \mathscr{A} -measurable subsets A_1, A_2 of X we write $A_1 = A_2 [\mathscr{P}]$ instead of $1_{A_1} = 1_{A_2} [\mathscr{P}]$. If \mathscr{B} and \mathscr{C} are sub- σ -fields of $\mathscr{A}, \mathscr{B} \subset \mathscr{C} [\mathscr{P}]$ means that for every $B \in \mathscr{B}$ there is a set $C \in \mathscr{C}$ such that $B = C [\mathscr{P}]$. It is easy to see that $S(\mathscr{C} \cup \mathscr{N}(\mathscr{P}))$ consists exactly of those sets $A \in \mathscr{A}$ for which there is a set $C \in \mathscr{C}$ such that $A = C [\mathscr{P}]$. Hence $\mathscr{B} \subset \mathscr{C} [\mathscr{P}]$ is equivalent to $\mathscr{B} \subset S(\mathscr{C} \cup \mathscr{N}(\mathscr{P}))$. A sub- σ -field $\mathscr{B} \subset \mathscr{A}$ is called sufficient

Received July 20, 1995

JÜRGEN HILLE

for $(X, \mathscr{A}, \mathscr{P})$, if for every bounded \mathscr{A} -measurable function $f: X \to \mathbb{R}$ there is a \mathscr{B} -measurable function $g: X \to \mathbb{R}$ such that g is a version of the conditional expectation $E_P(g|\mathscr{B})$, for all $P \in \mathscr{P}$.

3. Results.

We need three auxiliary results:

LEMMA 1. Let (X, \mathscr{A}) be a measurable space, $\mathscr{B} \subset \mathscr{A}$ be a σ -field and $(\mathscr{P}_n)_{n \in \mathbb{N}}$ be an increasing sequence of nonempty classes of probability measures on (X, \mathscr{A}) . If \mathscr{B} is sufficient for every statistical experiment $(X, \mathscr{A}, \mathscr{P}_n)$ then it is sufficient for $(X, \mathscr{A}, \mathscr{P})$, where $\mathscr{P} = \bigcup_{n=1}^{\infty} \mathscr{P}_n$.

PROOF. [4], p. 206, Lemma 4.

LEMMA 2. Let $(X, \mathcal{A}, \mathcal{P})$ be a statistical experiment and let $(\mathcal{B}_n)_{n \in \mathbb{N}}$ be a sequence of sufficient sub- σ -fields of \mathcal{A} such that

$$\mathscr{B}_{n+1} \subset \mathscr{B}_n \quad [\mathscr{P}] \qquad \forall n \in \mathbb{N} \,.$$

Then the terminal σ -field

$$\mathscr{B}_{\infty} = \bigcap_{n=1}^{\infty} S\left(\bigcup_{m=n}^{\infty} \mathscr{B}_{m}\right)$$

is sufficient.

PROOF. Let $\widetilde{\mathscr{B}}_n := S(\mathscr{B}_n \cup \mathcal{N}(\mathscr{P}))$, for all $n \in \mathbb{N}$. Then $\widetilde{\mathscr{B}}_{n+1} \subset \widetilde{\mathscr{B}}_n$, for all $n \in \mathbb{N}$, and

$$\mathscr{B}_{\infty} \subset \widetilde{\mathscr{A}}_{\infty} := \bigcap_{n=1}^{\infty} \widetilde{\mathscr{A}}_n.$$

A result of Burkholder ([2], p. 1197, Corollary 2) yields the sufficiency of \mathfrak{B}_{∞} . Hence, if f is a bounded real valued measurable function on X, there exists a \mathfrak{B}_{∞} -measurable and bounded function g on X which is a version of the conditional expectation $E_P(f|\mathfrak{B}_{\infty})$ simultaneously for all $P \in \mathcal{P}$. By definition of \mathfrak{B}_{∞} , for every $n \in \mathbb{N}$ there is a \mathfrak{B}_n -measurable real valued function g_n satisfying $g_n = g [\mathcal{P}]$ (comp. [5], p. 56, Lemma 1.10.3). Since

$$g = g_* := \limsup_{n \to \infty} g_n \quad [\mathscr{P}],$$

 g_* is a \mathscr{B}_{∞} -measurable version of $E_P(f|\widetilde{\mathscr{B}}_{\infty})$, $P \in \mathscr{P}$, and consequently $g_* \in \bigcap_{P \in \mathscr{P}} E_P(f|\mathscr{B}_{\infty})$.

LEMMA 3. Let $(X, \mathcal{A}, \mathcal{P})$ be a statistical experiment and let \mathcal{B}, \mathcal{C} be sub- σ -fields of \mathcal{A} such that $\mathcal{N}(\mathcal{P}) \subset \mathcal{C}$. Then

$$\mathscr{C} \cap S(\mathscr{B} \cup \mathcal{N}(\mathscr{P})) = S((\mathscr{C} \cap \mathscr{B}) \cup \mathcal{N}(\mathscr{P})).$$

124

PROOF. $\mathscr{C} \cap S(\mathscr{B} \cup \mathscr{N}(\mathscr{P}))$ is a σ -field which contains $\mathscr{C} \cap \mathscr{B}$ and $\mathscr{N}(\mathscr{P})$. Hence $\mathscr{C} \cap S(\mathscr{B} \cup \mathscr{N}(\mathscr{P})) \supset S((\mathscr{C} \cap \mathscr{B}) \cup \mathscr{N}(\mathscr{P}))$. Conversely let C be an element of $\mathscr{C} \cap S(\mathscr{B} \cup \mathscr{N}(\mathscr{P}))$. Then there is a set $B \in \mathscr{B}$ such that C = B [\mathscr{P}]. Hence $C\Delta B \in \mathscr{N}(\mathscr{P}) \subset \mathscr{C}$, Δ denoting the symmetric difference, and so $B = C\Delta(C\Delta B)$ is an element of $\mathscr{C} \cap \mathscr{B}$. This shows $C \in S((\mathscr{C} \cap \mathscr{B}) \cup \mathscr{N}(\mathscr{P}))$.

THEOREM 1. Let (X, \mathscr{A}) be a measurable space, let, for all $n \in \mathbb{N}$, \mathscr{B}_n be a sub- σ -field of \mathscr{A} which is sufficient for the statistical experiment $(X, \mathscr{A}, \mathscr{P}_n)$, where $(\mathscr{P}_n)_{n \in \mathbb{N}}$ is an increasing sequence of nonempty classes of probability measures on (X, \mathscr{A}) . Let $\mathscr{P} := \bigcup_{n=1}^{\infty} \mathscr{P}_n$. Then the terminal σ -field $\mathscr{B}_{\infty} := \bigcap_{n=1}^{\infty} S(\bigcup_{m \geq n} \mathscr{B}_m)$ contains a sub- σ -field \mathscr{B}_* which is sufficient for $(X, \mathscr{A}, \mathscr{P})$.

PROOF. For all $n \in \mathbb{N}$, $k \ge n$ and $m \ge k$ let

$$\mathscr{B}(n,k,m) := \bigcap_{i=k}^{m-1} S(\mathscr{B}_i \cup \mathcal{N}(\mathscr{P}_n)) \cap \mathscr{B}_m$$

(the empty intersection is understood to be the σ -field \mathscr{A} , hence $\mathscr{B}(n,k,k) = \mathscr{B}_k$). If $i \ge k \ge n$ then \mathscr{B}_i is sufficient for \mathscr{P}_n , since $\mathscr{P}_n \subset \mathscr{P}_i$. Burkholder (comp. [2], p. 1196, Theorem 4) has proved, that $\mathscr{B}(n,k,m)$ is therefore sufficient for \mathscr{P}_n . We have

$$\mathscr{B}(n,k,m+1) \subset \bigcap_{i=k}^{m} S(\mathscr{B}_{i} \cup \mathcal{N}(\mathscr{P}_{n})) = S(\mathscr{B}(n,k,m) \cup \mathcal{N}(\mathscr{P}_{n})),$$

for all $m \ge k$, where the last equality follows from Lemma 3, applied to the σ -fields $\mathscr{C} := \bigcap_{i=k}^{m-1} S(\mathscr{B}_i \cup \mathcal{N}(\mathscr{P}_n))$ and $\mathscr{B} = \mathscr{B}_m$. Hence $(\mathscr{B}(n, k, m))_{m \ge k}$ is a \mathscr{P}_n -essentially decreasing sequence of sufficient subfields. By Lemma 2 the terminal σ -field

$$\mathscr{B}(n,k) := \bigcap_{i=k}^{\infty} S\left(\bigcup_{j\geq i} \mathscr{B}(n,k,j)\right)$$

is sufficient for \mathscr{P}_n , for every $k \ge n$. Next observe that $(\mathscr{B}(n,k))_{k\ge n}$ is increasing: By definition one has

$$\mathscr{B}(n,k,m) \subset \mathscr{B}(n,k+1,m) \quad \forall n \in \mathbb{N}, \ k \ge n, \ m \ge k+1,$$

and consequently

$$\mathscr{B}(n,k) = \bigcap_{i=k+1}^{\infty} S\left(\bigcup_{j\geq i} \mathscr{B}(n,k,j)\right)$$
$$\subset \bigcap_{i=k+1}^{\infty} S\left(\bigcup_{j\geq i} \mathscr{B}(n,k+1,j)\right) = \mathscr{B}(n,k+1),$$

for all $n \in \mathbb{N}$, $k \ge n$ (note that $\mathscr{B}(n,k) = \bigcap_{i=1}^{\infty} S(\bigcup_{j\ge i} \mathscr{B}(n,k,j))$ for any $l \ge k$, since $S(\bigcup_{j\ge i} \mathscr{B}(n,k,j))_{i\ge k}$ is decreasing). Again by one of Burkholder's theorems ([2], p. 1196, Theorem 3) the upper envelope

$$\mathscr{B}(n) := S\left(\bigcup_{k=n}^{\infty} \mathscr{B}(n,k)\right)$$

is sufficient for \mathscr{P}_n . Finally observe that $(\mathscr{B}(n))_{n \in \mathbb{N}}$ is a decreasing sequence. To prove this let $n \in \mathbb{N}$. $\mathscr{P}_n \subset \mathscr{P}_{n+1}$ implies $\mathscr{N}(\mathscr{P}_n) \supset \mathscr{N}(\mathscr{P}_{n+1})$. This yields

$$\mathscr{B}(n,k,m) \supset \mathscr{B}(n+1,k,m) \qquad \forall k \ge n+1, \ m \ge k,$$

and it follows immediately that

$$\mathscr{B}(n,k) \supset \mathscr{B}(n+1,k) \quad \forall k \ge n+1.$$

This implies

$$\mathscr{B}(n) = S\left(\bigcup_{k=n+1}^{\infty} \mathscr{B}(n,k)\right) \supset S\left(\bigcup_{k=n+1}^{\infty} \mathscr{B}(n+1,k)\right) = \mathscr{B}(n+1),$$

where the first equality is valid since $\mathscr{B}(n,k)_{k\geq n}$ is increasing. Now $\mathscr{B}_{*} = \bigcap_{n=1}^{\infty} \mathscr{B}(n)$ is sufficient for \mathscr{P}_{n} and every $n \in \mathbb{N}$ (again [2], p. 1196, Theorem 3). Lemma 1 yields the sufficiency of \mathscr{B}_{*} for $(X, \mathscr{A}, \mathscr{P})$.

 \mathscr{B}_{∞} contains \mathscr{B}_{*} , since \mathscr{B}_{j} contains $\mathscr{B}(n,k,j)$ if $j \ge k \ge n$ and hence

$$\mathscr{B}(n,k) \subset \bigcap_{i=k}^{\infty} S\left(\bigcup_{j=i}^{\infty} \mathscr{B}_{j}\right) = \mathscr{B}_{\infty} \quad \forall k \geq n.$$

It follows immediately that $\mathscr{B}(n) \subset \mathscr{B}_{\infty}$ is valid, for all $n \in \mathbb{N}$, i.e. $\mathscr{B}_{\ast} \subset \mathscr{B}_{\infty}$.

REMARK 1. If the assumptions of Theorem 1 hold and in addition all sub- σ -fields \mathscr{B}_n are necessary for $(X, \mathscr{A}, \mathscr{P}_n)$ (i.e. are \mathscr{P}_n -essentially included in any sub- σ -field which is sufficient for $(X, \mathscr{A}, \mathscr{P}_n)$) then the terminal σ -field \mathscr{B}_{∞} of the sequence $(\mathscr{B}_n)_{n \in \mathbb{N}}$ is necessary for $(X, \mathscr{A}, \mathscr{P})$. This follows immediately from

$$S\left(\bigcup_{n=m}^{\infty}\mathscr{B}_{m}\right)\subset\mathscr{C} \quad [\mathscr{P}_{n}],$$

which is valid for any sufficient sub- σ -field \mathscr{C} of \mathscr{A} and any $n \in \mathbb{N}$. Hence it may be deduced from Theorem 1 that minimalsufficiency of \mathscr{B}_n for $(X, \mathscr{A}, \mathscr{P}_n)$, $n \in \mathbb{N}$, implies minimalsufficiency of \mathscr{B}_{∞} . This result is due to D. Landers ([4], p. 202, Theorem 7).

We now give a reformulation of Theorem 1 in terms of weak Blackwell-sufficiency. This is a weak version of a notion of sufficiency which has been introduced by D. Blackwell in [1].

DEFINITION 1. Let $(X, \mathcal{A}, \mathcal{P})$ be a statistical experiment.

Let (Δ, D) be a measurable space. A P-weak Markov kernel from (X, A) into (Δ, D) is a function K: X×D→R such that
(a) ∀D∈D: K(x, D)≥0 [P],

(b) $K(x, \Delta) = 1 \ [\mathcal{P}],$

(c) for all sequences $(D_n)_{n \in \mathbb{N}}$ of pairwise disjoint \mathcal{D} -measurable subsets of Δ

$$K\left(x,\sum_{n=1}^{\infty}D_{n}\right)=\sum_{n=1}^{\infty}K(x,D_{n})\quad [\mathscr{P}]$$

holds true,

(d) $\forall D \in \mathcal{D} : x \mapsto K(x, D)$ is \mathscr{A} -measurable.

2. A sub- σ -field \mathscr{B} of \mathscr{A} is called *weakly Blackwell sufficient* if there is a \mathscr{P} -weak Markov kernel K from (X, \mathscr{B}) into (X, \mathscr{A}) such that

$$\int P(dx)K(x,A) = P(A) \qquad \forall A \in \mathscr{A} , P \in \mathscr{P}.$$

THEOREM 2. Let $(X, \mathcal{A}, \mathcal{P})$ be a statistical experiment and \mathcal{B} be a sub- σ -field of \mathcal{A} . Then

B is weakly Blackwell sufficient

 $\Leftrightarrow \mathscr{B}$ contains a sub- σ -field which is sufficient for $(X, \mathscr{A}, \mathscr{P})$.

PROOF. This is shown in [3].

COROLLARY 1. Let (X, \mathscr{A}) be a measurable space, $(\mathscr{P}_n)_{n \in \mathbb{N}}$ an increasing sequence of nonempty classes of probability measures. For every $n \in \mathbb{N}$ let \mathscr{B}_n be a sub- σ -field which is weakly Blackwell sufficient for \mathscr{P}_n . Then the terminal σ -field $\mathscr{B}_{\infty} := \bigcap_{n=1}^{\infty} S(\bigcup_{m=n}^{\infty} \mathscr{B}_m)$ is weakly Blackwell sufficient for $\mathscr{P} := \bigcup_{n=1}^{\infty} \mathscr{P}_n$.

PROOF. This follows immediately from Theorem 1 and Theorem 2.

References

- [1] D. BLACKWELL, Comparison of experiments, Proc. Sec. Berkeley Symp. on Math. Stat. and Prob. (1951), 93-102.
- [2] D. L. BURKHOLDER, Sufficiency in the undominated case, Ann. Math. Stat. 32 (1961), 1191-1200.
- [3] J. HILLE, Über Suffizienz, Blackwell-Suffizienz und Bayes-Suffizienz, Doktorarbeit, Westfälische Wilhelms Univ. Münster (1995).
- [4] D. LANDERS, Sufficient and minimal sufficient σ -fields, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 23 (1972), 197–207.
- [5] J. PFANZAGL, Parametric Statistical Theory, de Druyter (1994).

Present Address: Institut für Mathematische Statistik, Universität Münster, Einsteinstraße 62, D-48149 Münster.