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- H. Freudenthal [4] defined the natural volume of a semi-simple compact Lie
group G induced from the Killing form and gave a formula of the natural volume of
G. S. A. Broughton [3] calculated the volume in the case of G a classical Lie group.
Another volume formula of the semi-simple compact Lie groups has been studied by
H. Urakawa [7] and I. G. Macdonald [6] in different ways, respectively.

If G/K is a compact symmetric space, then the Killing form of G also induces a
natural volume of G/K. The volumes of the projective spaces are obtained by using
Jacobi fields (cf. [2], [5]). In the previous paper [1] we calculated the volumes of
the Hermitian exceptional symmetric spaces EIII, EVII and the twister space Z(EIX)
of the exceptional symmetric space EIX by using the computations of the 1st Chern
classes. From those results we can calculate the natural volumes of the compact sym-
metric spaces as follows:
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Here S,_, =(2/I'(n/2))n"? is the usual volume of the unit sphere S" 1.
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1. Preliminaries.

LeMMA 1. Let (M, g) be an n-dimensional Riemannian manifold. Then, for a positive
number a, we have that

WM, ag)=./a"uM, g) .

If G is a Lie group, then we shall denote the small German letter g as the Lie
algebra of G. If G is a compact semi-simple Lie group, then the negative of the Killing
form B, of g defines a G-invariant metric g; on G. Let K be a closed subgroup of G
and ug(K) denote the volume of K with respect to the metric induced from g;. Here
we assume that M =G/K is a compact symmetric space. Then the Lie algebra g of G
has a canonical decomposition g=f @ m such that m is identified with the tangent space
T, (M) of M at o =K. Since m is K-invariant, the metric g, induces a G-invariant metric
gc on M. Let ug(M)=u(M) denote the volume of M with respect to g; on M.

LEMMA 2 (Broughton [3]). Let G be a compact semi-simple Lie group and G, - - -,
G,, be closed subgroups of G such that ¢ : G, x - - - x G,,— G is a covering group. Then
we have that

1
wG) =W“G(Gl) o u(Gy)
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LemmA 3 (Broughton [3]). Let M=G/K be a compact symmetric space, then we
have that

wW(G/K)= u(G)/ug(K) .

Let B, denote the Killing form of a compact simple Lie algebra g. Let b be a
Cartan subalgebra of g and (, ), be a symmetric bilinear form of h* (which is the dual
space of b) defined by (a, f)q = B4(H,, Hy), a, f€b*, where H, is the element of b such that
B,(H,, H)=a(H) for all Heb.

LeMMA 4. Let g be a compact simple Lie algebra and ¥ be a simple Lie subalgebra.
Let ) be a Cartan subalgebra of g and Yy be a Cartan subalgebra of t such that by’ is
contained in §). Assume that « is a root of t with respect to Yy which is also a root of g
with respect to §). Then we have that

(d, a)f

By(X, Y)= B(X,Y), X, Yet.

o, )y

PrROOF. Let H, and H, be elements of T such that By(H,, H)=a(H) for He} and
B{(H', H)=a(H’) for H' €}y. Note that there exists ce R such that By(H', H3)=cBy(H,
H%) for H, Hyel'. Then we have H,=cH, and Lemma 4 follows.

2. Volumes of compact classical groups.

Let R, C and H denote the fields of real, complex and quaternionic numbers,
respectively.

2.1. SU(m+1). Let SU(n+1) be the special unitary group given by
SUmn+1)={AeMn+1,C)|A*A=E,det A=1}
and CP, be the complex projective space defined by
CP,={XeM(n+1,C)|X*=X, X*=X, tr(X)=1} .

The group SU(n+1) acts naturally and transitively on CP, and the isotropy sub-
group SU(n+ 1)g, at E; =diag(1,0, - - -,0)e CP,is S(U(1) x U(n)). Let ¢ : U(1)x SU(n)—
S(U(1) x U(n)) be a map defined by ¢(z, A)=( z;" Z(L ), then ¢ induces an isomorphism
(U(1) x SU(n))/Z,=S(U(1) x U(n)). Hence we have that

SU(n+1)/(U1)x SUn)/Z,=CP, .

The Lie algebra su(n+1)={XeM(n+1,C)| X*=—X, tr(X)=0} of SU(n+1) has a
canonical decomposition su(n+ 1)=f@ m such that f~u(1) ® su(n) and
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which can be identified with the tangent space of CP, at E,. The Killing form
B, yn+1) Of su(n+1) is given by

Bon + ) XY)=2(n+1)tr(XY), X, Yesu(n+1).

Let g be an invariant metric on CP, given by g(X, Y)= —3tr(XY), X, Yem. Then, by
[2], the volume of CP, with respect to g is given by

W(CP,, g)=n"/n!.

By Lemma 1 we have that

—\2n 22"(n +1)"
Usum+ 1) (CP,)=/4n+1)"" u(CP,, g) =——n+'—7r

n
.

Let g¢ be a metric on U(1) induced from the usual metric on C. Then u(U(1), gc) =27.
By Lemma 1 we have that

Hsum+ 1y (UQ) =/ —2(n+ 1) te(DAu(U(1), go) =~/2n(n+ 1)2x

where D is a diagonal matrix D=diag(ni, —i, - - -, —i). Comparing the Killing forms
of su(n) and su(n+1), we have that

2 1 n2—-1
Hsuors L (SUM) = /—("2:4 WSUm), nx>2.

From Lemma 2 and Lemma 3 we have that

uSUn+1)= %(ﬂsv(n + (UM Usvm+ 1y(SUM))) Usyn+ 1)(CP,)
24n+3)2(p 4 1)+ 12
- o v usUMm).
n n!

Also we have that

#(SU(2)) = psuiz)(CPy) pspay(U(1) =25/ 2 % .
Thus it follows by induction that
2n(2n+5)/2(n + 1)(n+ 1)2/2
112! -n!

wSUMn+1)= g+ 32

2.2. SO(n) (n=3). Let SO(n) be the special orthogonal group given by
SO(m)={AeM(n,R)|'AA=E,det A=1}
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and S"~! be the unit sphere in R". The group SO(n) acts naturally and transitively on
S"~1! and the isotropy subgroup SO(n),, at e;=%1,0,"- -,0)eS""! is isomorphic to
SO(n—1). Hence we have that '

SO(n)/SO(n—1)==S""1.

The Lie algebra so(n)={X € M(n, R) | X = — X} of SO(n) has a canonical decomposition
so(n)=1@ m such that f~so(n—1) and
xeR"” 1}

%)
m=

x O
which can be identified with the tangent space of S"~ ! at e,. The Killing form B, of
so(n) is given by

Bso(n)(X’ Y)=(n_2) tr(XY) N X, Ye 50(") .
Now we denote the volume of S"~! with respect to the usual metric g by S,_;. Then
it is known that
2

— n/2
I'(n/2)

Sn—l

By Lemma 1 we have that

tsom(S"~)=+/2An— 2)""! Sp-1-
Comparing the Killing forms of so(n—1) and so(n), we have that

Hsom (SO —1)=/(n—2)/(n—3)"" """ ysom—1)).

From Lemma 2 and Lemma 3 we have that

WSO(n)) = I‘SO(n)(S O(n—1)) ﬂsom(S" - 1)
2('!— 1)/2(n __ 2)n(n -1)/2

(n— 3)n-1n=2)2 wWSO(n—1)S,-, .

Since SO(3)=SU(2)/Z,, we have that

WSOB)=3u(SUR)=12°/21*=/2S,S,
Thus it follows by induction that
wSOm)=QRm—2)""~"*S,8,---S,_1.
Since Spin(n) is a double covering group of SO(n), we have that
(Spin(n)) =2u(SO(n))=2(2n—2))"* " V45,8, - - - S,y .
2.3. Sp(n). Let Sp(n) be the symplectic group given by
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Sp(n)={AeM(n,H)| A*A=E}
and HP,_; be the symplectic projective space defined by
HP,_,={XeMn H)|X*=X, X*=X, tr(X)=1} .

The group Sp(n) acts naturally and transitively on HP,_; and the isotropy subgroup
Sp(n)g, at E;eHP,_, is Sp(1) x Sp(n—1). Hence we have that

Sp(n)/(Sp(1) x Sp(n—1))=HP,_, .

The Lie algebra sp(n)={X € M(n, H) | X*= — X} of Sp(n) has a canonical decomposition
sp(n)=t@® m such that fx~sp(1) P sp(n—1) and

()
m=

x 0
which can be identified with the tangent space of HP,_, at E,. The Killing form B
of sp(n) is given by

er"'l}
sp(n)

By X, Y)=4(n+1)tr(XY), X, Yesp(n).

Let g be an invariant metric on HP,_, given by g(X, Y)= —3tr(XY), X, Yem. Then,
by [2], the volume of HP,_, with respect to g is given by

pHP,_)=m*""Y/2n—-1)!.
By Lemma 1 we have that
UspmHP,_)=1/2-4n+1)*"" P uHEP,_,, g)

26(n— 1)(n + 1)2(n— 1)
B 2n—1)!

Since Sp(1)=~SU(2), we have that u(Sp(1))=u(SU(2))=25%,/2 n%. Comparing the Killing
forms of sp(1), sp(n—1) and sp(n), we have that

4 03 (n—1)2n—1)
u(Sp(n))=( /—ﬂ%l W(Sp(L)) /—4-(—";—” W(Sp(n— 1))) sy Py 1)

26n—2(n+ 1)n(2n+ 1)/2 \
= n = D= 1723 1) 7" w(Sp(n—1)) .

2(n—1)

Thus it follows by induction that
2n(3n+ 1)(n + 1)n(2n+ 1)/2
113!1---2n—-1)!

nn+1)

u(Sp(n)) =
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3. Volumes of compact exceptional groups.

In this section we use the notations in [1], [9].

3.1. G,. LetC be the Cayley algebra with a canonical basis {e,, e,," - -, e;}. Let
G, be the exceptional Lie group given by

G, ={a eIsog(€) | a(xy) = (ax)(ay)}

and S°® be a unit sphere given by S6={xe(£|i= —Xx, Xx=1}. Then the group G, acts
naturally and transitively on S° and the isotropy subgroup (G,)., at e, € S® is isomorphic
to SU(3). Hence we have that

G,/SU(3)~5S .
Put o= —1/2+(,/3/2)e, €€ and we define we G, by
w(x)=dxw , xe@.

Then w induces an automorphim w of order 3 of G, by

w(e)=wow ™!, xeG,.

The fixed subgroup (G,)¥={xeG, | w(@)=a} of W coincides with (G,),, =SU(3). Note
that G,/SU(3)=S® is not any symmetric space but is a symmetric space of order 3 (see
[8]). The Lie algebra g, = {D € Homg(€, €) | D(xy) =(Dx)y + x(Dy)} of G, has a canonical
decomposition g, =@ m such that i=(Deg, | W, (D)=D}=su(3) and

m={Deg,|(W*+Ww,+1)D=0}
which can be identified with the tangent space of S° at e,. The Killing form B, of g,
is given by
By(D,, D;)=4tr(D,D;),  D,,D;eq,.

For a,beC, D, ,€egq, is defined by D, ,=[L,, L,]J+[L,, R,]+[R,, R,], where L,, R, :
€ — ¢ are R-linear mappings defined by L ,x=ax, R,x=xa, for xe €, respectively. Put
D=1D, .. Then we can verify that Dem. Since B,(D, D)=4tr(DD)= —48 and (De,,
De,)=(—2e,, —2e,)=4, it follows from Lemma 1 and Lemma 4 that

24
1, (S6)=1/48/4 °Sg = 1233—.5-7:3 )

The extended Dynkin diagram of g, is given as follows:

O—Ommi0)

—-A «a

Here A is the maximal root and the Dynkin diagram of the subalgebra su(3) coincides
with the subdiagram removing the circled vertex from the extended diagram, and « is
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a simple root of su(2) which is a long root of g,. Since (a, #)suzy=1/3 and (o, a),, =1/4,
from Lemma 1 and 3 we have that

16, (SUR)=1/4/3" u(SUB3)) .

Note that Lemma 3 is valid in the case that M =G/K is a symmetric space of order 3.
Thus it follows from Lemma 3 and 3.1 that

22632 /3
HG2)= pg,(SUQB))ue,(S%) = —-5—n8 :
3.2. F,. Let F, be the exceptional Lie group given by
Fy={0eclsop(J)| (X o Y)=aXoaY}
and FII=CP, be the symmetric space, called the Cayley projective plane, defined by
FII={XeJ|X*=X, tr(X)=1} .

The group F, acts naturally and transitively on FII and the isotropy subgroup (F,)g,
at E, is isomorphic to Spin(9). Hence we have that

F,/Spin(9)=FII .
The Killing form B, of {, is given by
B,(d,, 8,)=31r(6,6,), 01,0,€f,.
Let g be an invariant metric on FII defined by g(X, Y)=4(X, Y), X, Ye Ty (FII). Then,
by [2], the volume of FII with respect to g is given by
6
W(FII, g)=1—1!7r8 .

Since B,(A(1), 4,(1))=3tr(A,(1)*)=—172 and g(d,(INE,), A,(1NE,))=g(Fx(1), Fy(1))=
3(F (1), F5(1))=1, by Lemma 1 we have that

6
pe (FID=./72'° W(FII, g)= 7281—1'_7;8 .

Since (o, ®)spin9)=1/7 and (a, a);,=1/9 in the extended Dynkin diagram of f, below,
o—o—o=>o—-@)
—A o
by Lemma 4 we have that |
wr(Spin(9)=1/9/7 > u(Spin(9)) .
Thus it follows from Lemma 3 and 2.3 that
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252 345

28
547211 ©

W(F )= pr (Spin()) up (FII) =

3.3. E,. Let Eg be the exceptional Lie group given by
E¢={aelso(J°)|tar(X x Y)=aX xa¥, {aX,aY )=<(X, YD}
and EIII be the symmetric space defined by
EINNI={XeJ°| X xX=0,X#0}/C*.

The group Eg acts naturally and transitively on EIIT and the isotropy subgroup (E¢)g,;
at [E,] e EIII is isomorphic to (U(1) x Spin(10))/Z,. Hence we have that

E;/(U(1) x Spin(10))/Z, >~ EIII .
The Killing form Bg of e is given by
Bg(¢y, 92)=41tr(¢19,), b1, Pr€¢6 .

Let g be an invariant metric on EIII given by g(X, Y)=RedX, Y), X, Ye T (EIII).
Then, by [1], the volume of EIII with repect to g is given by

78 e
WEIII, g)—mn .

Since Be(A,(1), A5(1)=41tr(A,(1)*)= —48 and g(4,(INE}), A;(1XE,))=g(F(1), F,(1))=
(F,(1), Fy(1))=1, by Lemma 1 we have that

78
up (EIIN)=./48 ** W(EIII, g) =4816Wn16 .

Let ¢, : u(1) - ¢g be a Lie algebra homomorphism induced by the inclusion ¢ : U(1) —»
Eg (see [1]). Since Bg(¢, (i), (i) =4 tr(¢,(i)*)= —288, by Lemma 1 we have that

up(U(1)=1/288 2 .

Since (&, ®)spin10y=1/8 and (a, @),=1/12 in the Dynkin diagram of e4 below,

o

o

by Lemma 4 we have that

pe(Spin(10) = /12/8 ** u(Spin(10)) .

Thus it follows from Lemma 3 and 3.2 that
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7134 329 /3
H(Eg) =% (ug (U(1)) gy (Spin(10))) ug (EITI) = 5573 { m?.

3.4. E,. Let E, be the exceptional Lie group given by
E;={acIsoc(PO)|a(P x Q)a™! =aP x aQ, (&P, aQ) =P, 0D}
and EVII be the symmetric space defined by
EVII={PeBC|Px P=0, P#0}/C*.

The group E;, acts naturally and transitively on EVII and the isotropy subgroup (E7pig
at [11e EVII is isomorphic to (U(1) x E¢)/Z,. Hence we have that

E,/(UQ1)x Eg)/Z,=EVII .
The Killing form B, of e, is given by
By(®,, ,)=31tr(P,P,), Py, Py€e,.

Let g be an invariant metric on EVII such that g(P, Q)=Re(P, Q), P,QeT riy(EVID).
Then, by [1], the volume of EVII with respect to g is given by

13110
27!

27

WEVI, g)= n

For &=&(0, —E,, E,, 0), B;(®, ®)=3tr($*)=—72 and g(&(1), d(1))=(E,, E;)=1.
Hence by Lemma 1 we have that

13110
bt L

e (EVID=./72 >* W(EVII, g)="T72%" T

Let ¢, : u(1) - e, be a Lie algebra homomorphism induced by the inclusion ¢ : U(1) —»
E; (see [1]). Since Bg(¢ (i), ¢,(i)) =3 tr(¢,()*) = — 216, by Lemma 1 we have that

ue,(U(1))=./2162x .
Since (o, ®).,=1/12 and («, «),,=1/18 in the Dynkin diagram of e, below,

(©—o0—o0 I, o0—o0
o
by Lemma 1 and Lemma 4 we have that

Ke(Ee)=+/18/12"° u(Ey) .

Thus it follows from Lemma 3 and 3.3 that
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2156ﬁ3111
ﬂ(E7)=%(#E7(U(1)»“E7(E6)))”E7(EVII)= 51076 113 132 17 n’0.

3.5. E;. Let Eg be the exceptional Lie group defined by
Eg={aelsoc e§ | a[R,, R,]1=[aR;, aR,], CaRy, aR, > =< Ry, Ry)}
and Z(EIX) be the twister space of the symmetric quaterinon-Kéhler manifold EIX
defined by
Z(EIX)={Ree§|Rx R=0,R#0}/C*.
The group Eg acts naturally and transitively on Z(EIX) and the isotropy subgroup
(Eg)ri-7at [17]e Z(EIX) is isomorphic to (U(1) x E;)/Z,. Hence we have
Eg /(U)X E,)/Z,~Z(EIX) .

By [1], the tangent space T7;-(Z(EIX)) at [17] is isomorphic to B @ C. Let g be an
invariant Kahler-Einstein metric on Z(EIX) given by g((P;, $1), (P2, 52))=Re({Py, P,) +

8(151)53), (P1, 51), (P2, 52) € Tpy-1(2(EIX)). Then, by [1], the volume of Z(EIX) with
respect to the metric g is given by

21232 52731 37414347 53 57
57! ’

On the other hand, the restriction of the Killing form Bg of eg on Tp,-{(Z(EIX)) is
given by

MZ(EIX), g)=

Bg((P;, 51), (P2, 53))= —30Re( Py, P,> — 120 Re((ts,)s2)
=—- 309(((P1’ 0)’ (PZ’ O))_ 159((0, sl)s (Os SZ)) .

Hence the volume of Z(EIX) with respect to the natural metric induced by the Killing
form Bg is

e Z(EIX)=1/30 ""* /15 WZ(E1X), g) .

Let ¢, : u(1) > eg be a Lie algebra homomorphism induced by the inclusion ¢ : U(1) — Eg
‘(see [1]). Since Bg(¢ (i), d,())= —120, by Lemma 1 we have that

pe(U(1))=./120 27 .
Since (e, o)., =1/18 and (e, &).,=1/30 in the Dynkin diagram of ez below,

B0

o

by Lemma 1 and Lemma 4 we have that
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pe(E7)=1/30/18 "> W(E,) .

Thus it follows from Lemma 3 and 3.3 that
w(Eg)= %”Es( U(1)) ﬂEs(E7)) ”Es(Z(EIX))

2279 377 5103

- 128
714118 135174 193 232 29

4. Volumes of compact classical symmetric spaces.

4.1. AI=SUn)/SO(n) (n=3). Since B,,,(X, Y)=(n—2)tr(XY), X, Yeso(n) and
B, ((XY)=2ntr(XY), X, Yesu(n), by Lemma 1 we have that

Hsum(SOM) =/2n)/(n—2)"" """ u(sO(m)) .
Thus it follows from Lemma 3, 2.1 and 2.2 that

HAD = u(SUM))/ psym(SO(n)

2(r=1)(n+3)/2 ynin+1)/4
BRI “n—=1!8,8,---S,_,
4.2. AIlI=SUQ2n)/Sp(n). The inclusion ¢ : Sp(n) - SU(2n) is given by ¢(A4 + Bj)=

( AB f;), A, Be M(n, C). For D=diag(i, 0, - -, 0)esp(n), B,,n(D, D)=—4(n+1) and

B, yn(®4D, ¢,D)= —8n. Hence by Lemma 1 we have that
Hsuan(SP) = /(Bn)/A4n+1)"*"" " u(Sp(n) .

Thus it follows from Lemma 3, 2.1 and 2.3 that

(n—1)(4n+3)/2 nn(2n -1)/2

HALD = WU psvan(SP) = o
4.3. AHlI=SU(m+n)/S(U(m)x U(n)). Let¢: U(1)x SU(m)x SU(n)— S(U(m) x
U(n)) be a map defined by ¢(z, 4, B) .—.< z_;““‘ o ) Here ze U(1), A e SU(m), Be SU(n)
and d is the greatest common factor of m and n. Then ¢ induces an isomorphism

(U(1) % SU@) X SUM)) Zupyya = SU(m) x U(w)) .

n.(n— 1)(n+2)/2 .

Hence by Lemma 1 and Lemma 2 we have that

Hsvem+m(S(U(m) x U(n)))

d [2(m+n)’mn myn™ ! man" !
= \/ 3 2n \/ uSU(m)) uSU(n)) .
mn d m n
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Thus it follows from Lemma 3 and 2.1 that
WAL= p(SU(m + n))/ tsyem + m(S(U(m) x U(n)))
n2t---m=-11112!--(n—1)!
121---(m+n-—1)!

4.4. BDI=SO(m+n)/(SO(m)x SO(n)) (m,n>3). By Lemma 1 and Lemma 2 we
have that

mn

— 22mn(m + n)mn

Hsoem +n(SO(m) x SO(n))

m+4n—2 mm b2 m4n—2 "2
= /_,,ﬁ u(SO(m)) — wWSO(n)) .

Thus it follows from Lemma 3 and 2.2 that

W(BDI)= p(SO(m + n))/usom +n(SO(mM) x SO(n))
S1S2° " Span-1
8182 Sm-18182""" 8, .
4.5. DIII=S0(n)/U(n). Let ¢: U(1)xSU(n)—->U(n) be a map defined by
¢(z, A)=zA, ze U(1), AeSU(n). Then ¢ induces an isomorphism (U(1) x SU(n))/Z, =
U(n). Hence, in the similar way as in 4.3 we have that

22n—2)" !
tsoan(U) =+ /@n=2m 21 22X ysu).

Thus it follows from Lemma 3 and 2.1 that

H(DIII) = pu(SO2n))/ tso@n(U(n)

— 23n(n— 1)/2(n _ l)n(n— 1)/2

=(2m+n—2))"™?

112! (n=2)!
1131 - (2n—3)!

4.6. CI=Sp(n)/U(n). Since (U(1)x SUn))/Z,=U(n), in the similar way as in 4.5

we have that
ny1) "t
sV =+ /B D 2e [ 2D sy

Thus it follows from Lemma 3, 2.1 and 2.3 that
HCI) = p(Sp(n))/ s pm(U(n))

— 2n(3n+ 1)/2(n + 1)n(n+ 1)/2

n(n—1)/2

112! (n—1)!
1131 2n—1)!

4.7. CII=Sp(m+n)/(Sp(m)x Sp(n)). As in 4.5, we have that

nn(n +1)/2
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Hspm +n)(SP(m) x Sp(n))

4 1 m(2m+1) 4 l n(2n+1)
- /% W(Sp(m)) /% W(SP() .

Thus it follows from Lemma 3 and 2.3 that
(CIT) = u(Sp(m + n))/ s p(m + n(SP(M) % Sp(n))

1130 Cm—1)1 1131 2n—1)!
1131 - 2m+2n—1)!

2mn

=26mn(m +n+ I)Zmn

5. Volumes of compact exceptidnal symmetric spaces.

5.1. G=G,/Sp(1)xSp(1))/Z,. Since (a, Dspty=1/2, (2, #)g,=1/12, and (B, B)sy1)=
1/2, (—A, —A),,=1/4 in the extended Dynkin diagram of g, below,

by Lemma 4 we have that

16, (Sp(1) x Sp(1))/Z,) =+/4/2° w(Sp(1))\/12/2 * w(Sp(1)) .
Thus it follows from Lemma 3, 2.3 and 3.1 that

1293 ,

1(G) = (G )/ g (SP(1) x SP(1)/Z,) =

3.2. FI=F,/(Sp(1) x Sp(3))/Z,. Since (&, ®)sp3=1/8, (&, a);,=1/18 and (B, )sp1)=
1/2, (= A, —A);,=1/9 in the extended Dynkin diagram of f, below,

g—@-—o=>o—o
—-A o

by Lemma 4 we have that

1 (SP(1) X SP(3))/Z,) =+/9/2 * u(Sp(1))/18/8 *" u(Sp(3)) .
Thus it follows from Lemma 3, 2.3 and 5.2 that
223 323
537211 "
5.3. EI=E&/Sp4)/Z,. Put3J(3, HS)={M e M(3, HY)| M*=M}. We identify (3,
H) @ (H®)? with J° under the correspondence

14

HED) = u(F )/ e (Sp(1) x Sp(3))/Z,) =
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0 ase, —ase,
M+a->M+ —aze, O a.e, ,
ae, —ae, O

where a='(ay, a, a3), a,e H. Put J(4, H),={Pe M(4, HY) | P*=P, tr(P)=0}. Let g:
€ — (4, HY), be a map defined by

1 tr(M) ia )

g(M+a)=< ia*  M—3t(M)E

Then g is a C-linear isomorphism. Let ¢: Sp(4)—>Es; be a map defined by
@(A)X =g~ Y(A(gX)A*), X € J°. Then ¢ induces the inclusion Sp(4)/Z, = E¢ and a Lie
algebra homomorphism ¢, : sp(4) = ¢s. Put D=diag(i, 0, 0, 0)esp(4) and ¢ =0¢(D).
Since B,,4)(D, D)= —20 and Bg(¢, ¢)= —48, we have that

ue(SP(4)/Z,)=4 /4820 *° u(Sp(4)) .
Thus it follows from Lemma 2, 2.3 and 3.3 that

55 215
| u(EI)=u(E5)/uE6(Sp(4)/z2)=%n“ .

54. EII=Eg/(Sp(1) x SU(6))/Z,. Since (a, ®)spqy=1/2, (@, @),,=1/12 and (B,
Bsu)=1/6, (— A, —A),=1/12 in the extended Dynkin diagram of ¢4 below,

—A

by Lemma 4 we have that

He(Sp(1) X SUOYZ)=—/12/2” WSP(1)/12/6 *° W(SU(E)

Thus it follows from Lemma 3, 2.1, 2.2 and 3.3 that

263 313
MEID=WEq)/pe(Sp(1) x SU(6))/Z,) =

——= T
547° 1

20

5.5. EIV=Eg/F,. The group E, has the subgroup F, as F,={o€ E¢|aE, =E,}.
An element ¢ € e has the expression as

¢=06+iT, Oef,, Te with tr(T)=0.
The Killing form Bg of ey is related to that of f, by the following equation:
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BG(¢13 ?, =%B4(51, 0,)— 12Ty, Tz) >
where ¢, =08, +iTy, 6,€fs, T €T with tr(T,)=0. Hence by Lemma 1 we have that
uedFa)=/4/3°" WF,).
Thus it follows from Lemma 3, 3.2 and 3.3 that
230 310 3
WEIV)=w(E¢)/ug(F4) =T7'\/—77T14 .

5.6. EV=E,/SU®)/Z,. Since (a, a)su(g)# 1/8 and («, «).,=1/18 in the extended
Dynkin diagram of ¢, below,

by Lemma 4 we have that
1e,(SU(8)/Z;)=+/18/8 °* u(SU(8)) .
Thus it follows from Lemma 3, 2.1 and 3.4 that
274 355
5775 113 13217

5.7. EVI=E,/(SU(2)x Spin(12))/Z,. Since (&, @), 2y=1/2, (a, &), =1/18 and (B,
Bspin12y=1/10, (— A, — A),,=1/18 in the extended Dynkin diagram of e, below,

35

WEV)=wWE,)/ug,(SUR)/Z,)=

o —A

by Lemma 2 and Lemma 4 we have that
15, (SU(2) x Spin(12))/Z,) =+/18/2° w(SU(2))/18/10 °° w(Spin(12) .
Thus it follows from Lemma 3, 2.1 and 2.2 that
267 351
5674113 132 17

5.8. EVIII=Eg/Ss(16). Since (&, ®)so(16)=1/14, (o, ®),,=1/30 in the extended
Dynkin diagram of eg below,

32

HWEVD) = u(E7)/ug,(SUQ2) x Spin(12))/Z,) =
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S

o —A
by Lemma 4 we have that
1 (S5(16))=/30/14 ' *° W(Ss(16)) = \/30/14 '*° u(SO(16)) .
Thus it follows from Lemma 3, 2.3 and 5.5 that
2132 336 551
11° 136 174 19° 23229

5.9. EIX=E3/(SUQ2)x E;)/Z,. Since (a, ®).,=1/18, (, a),,=1/30 and (B, Psu2y=
1/2, (— A, —A),,=1/30 in the extended Dynkin diagram of eg below,

64

“(EVIII) = ”'(ES)/#Es(Ss(16)) = 79

by Lemma 2 and Lemma 4 we have that
He((SUQ) X E)Z)=— /3072 uSUR))/30/18 ** u(E)
Thus it follows from Lemma 3, 3.1, 3.4 and 3.5 that

. 2118 331 545

756
811° 134173193233 29

HCELX) = (E) 1 (SUQ) x Er)Z) =~
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