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Abstract. In this paper a class of contact, non Sasakian, Riemannian manifolds of constant ¢-sectional
curvature is found and studied.

1. Introduction.

Let M be a Riemannian manifold. It is well known [1, p. 131] that the tangent
sphere bundle 7 M admits a contact Riemannian structure (n, &, @, g). T; M together
with this structure is a contact Riemannian manifold. If M is of constant sectional
curvature c=1, then T, M is a Sasakian manifold [9], i.e. its curvature tensor R satisfies
R(X, Y)e=n(Y)X—n(X)Y for all vector fields X, Y. If ¢=0, then the curvature tensor of
T, M satisfies the condition R(X, Y)é=0 [2]. Applying a D-homothetic deformation on
a contact Riemannian manifold satisfying R(X, Y)£=0, we get a contact Riemannian
manifold such that R(X, Y)éE=xk(n(Y)X —n(X)Y)+ u(n(Y)hX —n(X)hY), where k, u are
real constants and 24 is the Lie differentiation of ¢ in the direction of £. We call this
kind of manifold (x, u)-contact Riemannian manifold. The above construction was done
in [5] and the study of (x, u)-contact Riemannian manifolds has begun in [3]. Examples
of such manifolds exist in all dimensions. The 3-dimensional non Sasakian, (k, u)-
contact Riemannian manifolds have constant ¢-sectional curvature, but for higher
dimensions this is not, in general, true.

Our purpose in this paper is to find conditions, which characterize (x, u)-contact
Riemannian manifolds with constant ¢-sectional curvature. At first we prove that if
the @-sectional curvature at a point P of a (2n+ 1)-dimensional (k, u)-contact Rieman-
nian manifold M (n>1) is independent of the ¢@-section at P, then it is constant.
This result is analogous to Schur’s theorem and extends a corresponding result, which
is valid on Sasakian manifolds. Our second result states that a non Sasakian, (x, u)-
contact Riemannian manifold is of constant ¢-sectional curvature if and only if u=
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k+ 1. Therefore in this case an explicit expression for the curvature tensor is given.
As an application of the last statement we prove that the tangent sphere bundle, of a
Riemannian manifold of constant sectional curvature c, is of constant ¢@-sectional
curvature iff c=2 i\/_S‘ . Finally we give a method to construct (k, u)-contact Rieman-
nian manifolds of constant ¢-sectional curvature. It seems that these manifolds are
the first examples of non Sasakian, contact Riemannian manifolds with constant ¢-
sectional curvature.

2. Contact Riemannian manifolds.

A differential 1-form # on a differentiable (27 + 1)-dimensional manifold M is called
a contact form if it satisfies n A (dn)" #0 everywhere on M. By a contact manifold (M, n)
we mean a manifold M together with a contact form 7. Since dn is of rank 2n, there
exists a global vector field &, called the characteristic vector field, such that n(¢)=1 and
Zn=0, where %, denotes the Lie differentiation by . Moreover it is well known that
there exist a Riemannian metric g and a (1, 1)-tensor field ¢ satisfying

9&=0, no9=0, g(X,)=n(X) 2.1

P’=—I+n®¢&, dn(X,Y)=g(X, ¢Y) (2.2
g(eX, oY)=g(X, Y)—n(X)n(Y) (2.3)

for all vector fields X, Y on M. The structure (3, &, ¢, g) is called a contact Rieman-
nian structure and the manifold M carrying such a structure is said to be a contact
Riemannian manifold.

Following [1], we define the (1, 1)-type tensor field 4 by 2h=%,¢. Then h satisfies
the relations

hE=0, Trh=Trhe=0, ho+@h=0. (2.4)

The contact form n on M gives rise to an almost complex structure on the product
M x R. If this structure is integrable, then the contact Riemannian manifold is said to
be Sasakian. Equivalently, a contact Riemannian manifold is Sasakian if and only if
R(X, Y)¢é=n(Y)X —n(X)Y for all vector fields X, Y. The sectional curvature K(X, ¢X)
of a plane section spanned by a vector X orthogonal to ¢ is called a @-sectional curvature.

The tangent sphere bundle 7; M of a Riemannian manifold M admits a contact
Riemannian structure, known as the standard contact Riemannian structure. From now
on, when we refer to T, M we will consider it equipped with the standard contact
Riemannian structure.

For more details concerning contact Riemannian manifolds and related topics we
refer the reader to [1].
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3. (x, p)-contact Riemannian manifolds.
For real constants k, u, the (x, p)-nullity distribution of a contact Riemannian
manifold M(n, &, ¢, g) is a distribution
N, @) : P> Ny, ))={ZeTpM|R(X, Y)Z=x(g(Y, Z)X —g(X, Z)Y)
+ u(g(Y, Z)hX —g(X, Z)hY)}

where R is the curvature tensor of M. So, if the characteristic vector field ¢ belongs to
the (x, p)-nullity distribution we have

R(X, Y)¢=k(m(Y)X —n(X)Y)+ u(n(Y)hX —n(X)hY). 3.1

We call (k, p)-contact Riemannian manifold, a contact Riemannian manifold satisfying
(3.1). The class of (x, u)-contact Riemannian manifolds contains the class of Sasakian
manifolds, which we get for k=1 (and hence h=0, by (3.2)). Characteristic examples
of non Sasakian, (x, u)-contact Riemannian manifolds are the tangent sphere bundles
of Riemannian manifolds of constant sectional curvature c# 1. Especially in the 3-
dimensional case this class contains the Lie groups SU(2), SO(3), SL(2, R), 0(1, 2), E(2),
E(1, 1) with a left invariant metric. For more examples see [3].

From now on, we suppose M(y, &, ¢, g) is a (2n+ 1)-dimensional (x, u)-contact
Riemannian manifold. In [3] the following formulas have been proved:

h? =(x — 1)p? 3.2)
(so k<1 and k=1 iff M is a Sasakian manifold),
R(&, X)Y =x(g(X, Y)E—n(Y)X)+ u(ghX, Y)¢ —n(Y)hX) (3.3
R(X, Y)pZ=@R(X, Y)Z+{(1 -©)[n(X)g(eY, Z)—n(Y)g(¢X, Z)]
+(1—wn(X)g(phY, Z)—n(Y)g(phX, Z)1}¢
—g(Y +hY, Z)@X + ohX)+g(X +hX, ZX@Y + @hY)
—g(@Y + @hY, ZYX + hX)+g(¢X + ohX, ZYY +hY)
—n(Z){(1 — )XY —n(V)p X1+ (1 —wnX)phY —n(Y)phX]} . (3.4
Moreover in [3] the following results have been proved.

LEMMA 3.1. If k<], then M admits three mutually orthogonal and integrable dis-
tributions D(0), D(1), D(— A), defined by the eigenspaces of h, where A=./1—kx .

THEOREM 3.2. If k<1, then
R(X; Y)Z_,=(k—wlg(oY:, Z_)oX,—g(0X,, Z_)¢ Y;1
RX_; Y_)Z,=(k—wg(@Y_; Z)oX _;—g(pX _; Z)@Y_;]
R(X;, Y_)Z_,=xg(0X;, Z_)oY_,+ug(eX,;, Y_)0Z_,
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R(X; Y_)Z,=—xg(oY_;, Z)oX,—pgloY_,, X )eZ,
R(X,, Y)Z,=[2(0+ ) —ullg(Y:, Z)X 1 —9(X 3, Z)Y,]
RX_,Y_)Z_,=[120-A—pllg(Y_,, Z_)X_,—9g(X_,,Z_,)Y_,]

where X,, Y,, Z, and X _,, Y_,, Z_, are the components of X, Y, Z on D(1) and D(— 1)
respectively.

THEOREM 3.3. If k<], then
1) The sectional curvature of a plane section (X, Y) orthogonal to £ with X € D(4)
and Ye D(—J) is given by

KX, Y)=—(x+mg(X, 0Y)*. (3.5
2) The Ricci operator is given by
Q=Q2(m—1)—n)l +Q2n—1)+wh+Q2A—n)+n2x+ M ¢ . (3.6)

THEOREM 3.4. The tangent sphere bundle T,M is a (k, p)-contact Riemannian
manifold if and only if the base manifold M is of constant sectional curvature c. Moreover
k=c(2—c) and u= —2c.

4. Main results.

Let M(n, &, ¢, g) be a (2n+ 1)-dimensional (k, u)-contact Riemannian manifold. If
n=1, and k #1, then it is well known [3] that M is of constant ¢-sectional curvature.
In the next theorem we consider the case n>1 and we give a necessary condition so
that M is of constant ¢@-sectional curvature. This theorem extends two theorems of
Ogiue (see [6] or [1]) and Endo [4], which are valid for k=1 and u=0 respectively.

THEOREM 4.1. Let M(n, &, @, g) be a (2n+ 1)-dimensional (x, u)-contact Rieman-
nian manifold (n>1). If the @-sectional curvature of any point of M is independent of
the choice of ¢-section at the point, then it is constant on M and the curvature tensor
is given by

4R(X, Y)Z=(H+3){g(Y, 2)X —g(X, )Y} +(H+3—40){n(X2)Y
—n(YM(Z)X +9(X, Z(Y)E —g(Y, Zn(X)¢}
+(H-1){29(X, oY)QZ +g(X, 9Z)pY —g(Y, 9Z)p X}
—2{g(hX, Z)hY —g(hY, Z)hX +2g(X, Z)hY —2g(Y, Z)hX —2n(X)n(Z)hY
+2n(Y(Z)hX +2g(hX, Z)Y —2g(hY, Z)X +2g(hY, Z)n(X)¢
—2g(hX, Z(Y)E—g(ohX, Z)phY +g(ohY, Z)phX}
+4u{n(YIN(Z)hX —n(XM(Z)hY+ g(hY, Z)(X)E —g(hX, Zn(Y)E} 4.1)
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where H is the constant @-sectional curvature. Moreover if k#1, then uy=x+1 and
H=-2k—1.

ProoF. For the Sasakian case k=1, the proof is known ([1], p. 97). So we have
to prove the theorem for k#1. Let Pe M and X, Ye TpM orthogonal to £. Using the
first identity of Bianchi, the basic properties of the curvature tensor, ¢ is antisymmetric,
h is symmetric, (2.2) and (2.3) we get from (3.4), successively:

g(R(X, 9X)Y, Y)=g(R(X, Y)Y, 0X)+g(R(X, Y)X, Y)
—g(X, Y)?—g(hX, Y)* —29(X, Y)g(hX, Y)+g(X, X)g(Y, Y)
+9(X, X)g(hY, Y)+g(Y, Y)g(hX, X)+g(hX, X)g(hY, Y)
—g(@X, Y)? +g(phX, Y)’ —g(phX, X)g(phY, Y) (4.2)
IR(X, pY)X, Y)=g(R(X, ¢Y)Y, 0X)
+9(X, Y’ —g(hX, Y)* —g(phX, X)g(phY, Y)—g(X, X)g(Y, Y)
—g(Y, Y)g(hX, X)+g(X, X)g(hY, Y)+g(hX, X)g(hY, Y)
+9(eX, Y)* +g(phX, Y)* +2g(pX, Y)g(phX, Y) (4.3)
g(R(Y, 9X)Y, 9 X)=g(R(X, ¢Y)Y, ¢ X)
+9(X, Y)? —g(hX, Y)* —g(ohX, X)g(@hY, Y)+g(eX, Y)?
+g(phX, Y)* —2g9(pX, Y)g(ehX, Y)—g(X, X)g(Y, Y)
—g(X, X)g(hY, Y)+g(Y, Y)g(hX, X)+g(hX, X)g(hY, Y) 4.4
g(R(X, Y)oX, oY)=g(R(X, Y)X, Y)
—g(X, Y)?—g(hX, Y)*—29(X, Y)g(hX, Y)+g(X, X)g(Y, Y)
+9(X, X)g(hY, Y)+g(Y, Y)g(hX, X)+g(hX, X)g(hY, Y)
—9(0X, Y)*+g(phX, Y)* —g(eohX, X)g(¢hY, Y) .. (4.5)
We now suppose that the ¢@-sectional curvature at P is independent of the ¢-section at
P, i.e. K(X, pX)=H(P) for any Xe TpM orthogonal to &. Let X, YeTpM and X, Y
orthogonal to £. From
IJRX+Y,oX+YXX+Y),pX+¢@Y)=—HP)g(X+Y, X+ Y)?
gJR(X—Y, pX —@YXX —Y), 9X —¢Y)=—H(P)g(X - Y, X — Y)?
we get by a straightforward calculation
29(R(X, ¢X)Y, oY)+ g(R(X, ¢Y)X, ¢Y)+29(R(X, ¢Y)Y, X)+g(R(Y, 9 X)Y, ¢ X)
= —2H(P){29(X, Y)* +g(X, X)g(Y, Y)} . (4.6)
Combining (4.2), (4.3), (4.4) and (4.6) we get
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3g(R(X, Y)Y, pX)+g(R(X, Y)X, Y)
—2g(hX, Y2 —2g(X, Y)g(hX, Y)+g(X, X)g(hY, Y)+4(Y, Y)g(hX, X)
+2g(hX, X)g(hY, Y)+2g(¢hX, Y)* —2g(phX, X)g(¢hY, Y)
= —H(P){29(X, Y)*+9g(X, X)g(Y, Y)} . 4.7
Replacing Y by ¢Y in (4.7) and using (2.3) and (2.4) we have
—3g(R(X, Y)oY, X)+g(R(X, ¢Y)X, ¢Y)
—2g(phX, Y)? +29(X, oY)g(phX, Y)—g(X, X)g(hY, Y)+g(Y, Y)g(hX, X)
—2g(hX, X)g(hY, Y)+2g(hX, Y)* +2g(ohX, X)g(¢hY, Y)
= —H(P){29(X, 9Y)* +g(X, X)g(Y, Y)} . (4.8)
Combining (4.8) with (4.3) and (4.5) we finally get
39(R(X, Y)X, Y)+g(R(X, Y)Y, 0X)
—2g(X, Y)*—2g(hX, Y)* —6g(X, Y)g(hX, Y)+29(X, X)g(Y, Y)
+39(X, X)g(hY, Y)+3g(Y, Y)g(hX, X)+2g(hX, X)g(hY, Y)
—29(X, oY) +2g(phX, Y)* —2g(phX, Y)g(ohY, Y)
= —H(P){29(X, 9Y)* +g(X, X)g(Y, Y)} . 4.9)
Now, (4.9) together with (4.7) yield
49(R(X, Y)Y, X)=(H(P)+3){g(X, X)g(Y, Y)—g(X, Y)*} +3(H(P)— 1)g(X, ¢Y)
—2{g(hX, Y)*+4g(X, Y)g(hX, Y)—2g(X, X)g(hY, Y)—24(Y, Y)g(hX, X)
—g(hX, X)g(hY, Y)—g(ohX, Y)* +g(phX, X)g(ohY, Y)} (4.10)
forany X, Ye TpM and X, Y orthogonalto&. Let X, Y, ZeTpMand X, Y, Z orthogonal
to £. Applying (4.10) in
JR(X+Z, Y)Y, X +2Z)=9g(R(X, Y)Y, X)+g(R(Z, Y)Y, Z)+g(R(X, Y)Y, Z)
we finally get
49(R(X, Y)Y, Z)=(H(P)+3){g(X, Z)9(Y, Y)—g(X, Y)g(Y, Z)}
+3(H(P)—1)g(X, 9Y)g(Z, pY)—2{g(hX, Y)g(hZ, Y)+29(X, Y)g(hZ, Y)
+29(Z, Y)g(hX, Y)—29(X, Z)g(hY, Y)—2g(Y, Y)g(hX, Z)
—g(hX, Z)g(hY, Y)—g(@hX, Y)g(phZ, Y)+g(ohX, Z)g(ohY, Y)} . 4.11)

Moreover, using (3.1), (2.1) and h¢ is symmetric, it is easy to check that (4.11) is valid
for any Z and for X, Y orthogonal to £. Hence (4.11) is reduced to

R(X, Y)Y =(H(P)+3}{g(Y, V)X —g(X, Y)Y} +3(H(P)— Dg(X, pY)pY
—2{g(hX, Y)hY +2g(X, Y)hY +2g(hX, Y)Y —2g(hY, Y)X
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—29(Y, Y)hX —g(hY, Y)hX —g(phX, Y)phY +g(phY, Y)phX} (4.12)
for any X, Y orthogonal to £. Now let X, Y, Z be orthogonal to £. Replacing in (4.12)
Y by Y+ Z and using (4.12) we get
4{R(X, Y)Z+R(X, Z)Y } =(H(P)+3){24(Y, Z)X —g(X, Y)Z—g(X, Z)Y}
+3(H(P)— D){g(X, o Y)QZ +g(X, 9Z)pY}
—2{g(hX, Y)hZ + g(hX, Z)hY +2g9(X, Y)hZ +29(X, Z)hY +2g(hX, Y)Z
+29(hX, Z2)Y —4g(hY, Z)X —494(Y, Z)hX —2g(hY, Z)hX
—9g(phX, Y)ohZ — g(ohX, Z)phY +2g(ohY, Z)phX} . (4.13)
Replacing X by Y and Y by — X in (4.13) we have
4R(X, Y)Z+R(Z, )X} =(H(P)+3){ —29(X, 2)Y +9(X, Y)Z+9(Y, Z)X}
+3(HP)—1)Y{ —g(oX, Y)pZ —g(oZ, Y)pX}
—2{—g(hY, X)hZ —g(hY, Z)hX —2g(X, Y)hZ —29(Y, Z)hX —2g(X, hY)Z
—2g(hY, Z)X +4g(hX, Z)Y +49(X, Z)hY +2g(hX, Z)hY
+g(phY, X)phZ + g(ohY, Z)phX —2g(¢hX, Z)phY} . (4.14)
Adding (4.13) and (4.14) and using Bianchi’s first identity, ¢ is antisymmetric and ¢@h
is symmetric we get
4R(X, Y)Z=(H(P)+3){g(Y, 2)X —g¢(X, 2)Y}
+HP)—D{29(X, oY)9Z +9(X, Z)9Y —g(Y, 9Z)p X}
—2{g(hX, Z)hY +29(X, Z)hY +2g9(hX, Z)Y —2g(hY, Z)X
—29(Y, 2)hX —g(hY, Z)hX — g(ohX, Z)phY+ g(phY, Z)phX } (4.15)
for any X, Y, Z orthogonal to &. Moreover, using (3.1) and hé = @& =0, we conclude
that (4.15) is valid for any Z and for X, Y orthogonal to &. Now, let X, Y, Z be arbitrary
vectors of TpM. Writing
X=Xr+n(X)¢, Y=Yr+n(Y)¢

where g(X 1, &)=g(Yr, £)=0, and using (3.1), (3.3) and h&=0, then (4.15) gives (4 1)
after a straightforward calculation.

Now, we will prove that the ¢-sectional curvature is constant. Let {X;}, i=
1,---,2n+1, be a local orthonormal frame. Putting Y=Z=X; in (4.1), adding with
respect to i and using (2.1)—(2.4) we get the following formula, for the Ricci operator,
at any point of M:

= {(n+ 1)H+3(n— 1)+ 2} — {(n+ DH + 3(n—1)
—2k2n—1D)In® &+ 2{2(n—1)+puth.
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Comparing this with (3.6), which is valid on any (k, p)-contact Riemannian manifold
with k #£1, we get (n+ 1)H=n—1—2nu—2k, i.e. H is constant. On the other hand, from
(3.5) we have H = —k — u. Comparing the two last equations we get (n—1)}(u—x—1)=0.
Moreover, since n> 1, we have u=x+1 and so H= — 2k — 1. This completes the proof
of the theorem. O

In Theorem 4.1 we proved that u=x+1, in the case where the non Sasakian,
(x, p)-contact Riemannian manifold has constant ¢-sectional curvature. Now we will
prove the inverse, i.e. supposing M(n, &, ¢, g) is a (2n+ 1)-dimensional (n>1), non
Sasakian, (kx, u)-contact Riemannian manifold with

p=k+1 (4.16)
we will prove that M has constant ¢-sectional curvature.
Let Xe TpM be a unit vector orthogonal to £. By Lemma 3.1 we can write
X=X,+X_, where X,eD(A) and X _,eD(—21).
Using Lemma 3.1, Theorem 3.2, (2.3), we get, after a long straightforward calculation,
K(X, pX)= —(c+p)+dxc—p+1)g(X;, X )g(X -2 X _)—9(X 3, 0 X _2)%)

and hence by (4.16), K(X, ¢ X)= —(x+u)=const. So we have proved the following
theorem.

THEOREM 4.2. Let M(n, &, @, g) be a (2n+ 1)-dimensional (n>1), non Sasakian,
(k, p)-contact Riemannian manifold. Then M has constant @-sectional curvature if and
only if u=x+1.

An immediate consequence of Theorems 4.2 and 3.4 is the following theorem.

THEOREM 4.3. Let M be an n-dimensional Riemannian manifold, n>2, of constant
sectional curvature c. The tangent sphere bundle T\ M has constant ¢-sectional curvature

(c®) if and only if c=24./5.

REMARK. The tangent sphere bundle 7;M, of a 2-dimensional Riemannian
manifold M of constant sectional curvature c, has constant ¢-sectional curvature c?
for any c#1, as follows from (3.5) and Theorem 3.4.

5. Examples.

1. The first non-trivial example of a 3-dimensional, non Sasakian, contact Rie-
mannian manifold of constant ¢-sectional curvature was given in [5]. In [3] there
exist more examples concerning the 3-dimensional case.

2. Theorem 4.3 gives two examples of (2n+ 1)-dimensional, n> 1, non Sasakian,
(x, w)-contact Riemannian manifolds of positive constant ¢-sectional curvature, equal

to 2+./5)%



CONTACT RIEMANNIAN MANIFOLDS 21

3. Now, we will give a method to construct non Sasakian, (x, u)-contact Rie-
mannian manifolds of constant ¢-sectional curvature. Let M(n, &, ¢, g) be a 2n+ 1)-
dimensional, (k, p)-contact Riemannian manifold (r>1, k #1, u<2). The existence of
such a manifold follows from Theorem 3.4, taking ¢> —1 (c#1). By a D-homothetic
deformation [7] we mean a change of structure tensors of the form

fi=an, E=+¢, ¢=¢, g=ag+ala—1n®n

where a is a positive constant. It is well known [3] that M(7, &, @, g) is a new (&, ji)-
contact Riemannian manifold with

21 +2a—2
}E:K_+_£l..2___ and ﬁ:...l'.t_._.__fl_
a a

é.1n

Choosing a=(x—1)/(u—2)>0, M(7, &, @, §) has constant ¢-sectional curvature. In fact,
substituting @ in (5.1) we get i=#x+ 1 and so by Theorem 4.2, M(#, &, ¢, §) has constant
@-sectional curvature

H=—fk—ji=1-20=Q2(u—-2)*-3(1-x))/(1-x).
So H is positive, negative or zero if
A>0, A<0, or A=0, where A=2(u—2)>—3(1—k), (u<2)

respectively. The existence of a (x, u)-contact Riemannian manifold satisfying 4 >0 or
A <0 or A=0 follows easily from Theorem 3.4.

The above examples give an answer (for n> 1) to the following remark of Tanno
(see [8], p. 445). ““It seems to be an open problem if there exist contact Riemannian
manifolds of constant ¢-sectional curvature, which are not Sasakian”.
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