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Abstract. An elliptic curve E defined over Q is called a Q-curve, if E and E° are isogenous over Q for
any ¢ in Gal(Q/Q). For a real quadratic field K and a prime number p, we consider a Q-curve E with the
following properties: 1) E is defined over K, 2) E has everywhere good reduction over K, 3) there exists a
p-isogeny between E and its conjugate E°. In this paper, a method to construct such a Q-curve E for some
p will be given.

1. Introduction.

Let E be an elliptic curve which is defined over the algebraic closure Q of the
rational number field Q. An elliptic curve E is called a Q-curve, if E and its Galois
conjugate E° are isogenous over Q for any ¢ in Gal(Q/Q). Q-curves are very interesting
objects in many aspects of the arithmetic geometry including a generalization of the
Taniyama-Shimura conjecture. It is conjectured by Ribet that Q-curves are “modular”
in the sense that each should be a factor over Q of the jacobian variety of the modular
curve X,(N) for some N. The following examples for “modular’ Q-curves are prototypes
of this conjecture. Let f=) *_, a,q" be a cusp form of weight 2 on I';(N) which is a
common eigenform for the Hecke operators with Nebentypus character y associated to
a real quadratic field K. We denote by K the extension over Q generated by the Fourier
coefficients {@,}. Then by Shimura [14] we know that there exists an abelian variety
A, defined over Q attached to f such that its dimension is equal to d=[K,: Q] and

EndQ(Af)®zQ=Kf s

where Endy(4,) is the endomorphism ring defined over Q of A,. Suppose that d=2
and y is a primitive character modulo N. Then we know that the simple components
of A are Q-curves defined over K, which are called Shimura’s elliptic curves. Moreover
it is known that they have everywhere good reduction (cf. [2], [9]). Thus it can be said
that Shimura’s elliptic curves are the simplest nontrivial “modular” Q-curves. We
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examine the converse question. Namely for any real quadratic field K, we consider
Q-curves E which satisfy the following conditions:

1) E is defined over K,

2) E has everywhere good reduction over K.

Some examples for Q-curves with properties 1) and 2) have been constructed by Cremona
[1]. In this paper we discuss a new method to construct such Q-curves. We consider
Q-curves E with properties 1), 2) and the additional property

3) E has an isogeny to its conjugate E° of degree p
for some rational prime p. For p=2, 3, 5,7 and 13, we give a new method to construct
Q-curves with properties 1), 2) and 3) systematically.

Here we describe it briefly. For a number field L, a prime ideal q of L, a finite
extension L’ over L and an elliptic curve E over L, we will functorially use the following
notation:

@.. the ring of integers of L,

Vq: the normalized valuation of L with respect to g, i.e. v,(L)=Z U {0},

L,: the completion of L with respect to q,

D(L’/L): the relative discriminant of L'/L,

Ny.p: the norm map of L'/L,

cond,;(E): the conductor of E over L.

Define a rational function j(X) by

[ (X+4)3 .
26—(—X2—) if p=2,
3
33 X+ 1D)OX+1) if p=3,
X
2 3
Wy o] PHI0X+S) Ty
X
2 2 3
(X*+13X+49)(X“+5X+1) if p=7,
X
(X2 4+5X+13)(X*+7X3+20X% + 19X + 1) i pe13
| X

For any element 7 in K with j(t) #0, 1728, we consider the elliptic curve

36 1

12 E :p?+xy=x®— _
(1.2) i HD—1728" jo)—1728

defined over K, which has discriminant

@y
A= Gw—1728 -
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If p does not split in K, let p be the unique prime of K above p. If p splits in K, let p,
p’ be the primes of K above p. We define the ideal a of K by

[ Ok if p=2,3»andp does not split in K,
Ok or pbp’'~° if p=2 and 2 splits in K,
p3p 73 if p=3 and 3 splits in K,
13)  a= s P
p’ if p=5,
p? if p=7,
L p if p=13,
and put
1 if p=2,3,
55 if p=5,
M= 72 i p=7,

13 if p=13.
Now we state the main theorem, which plays a central role in our construction:

THEOREM 1.1. Fix a real quadratic field K. The notation is as above.
a) Assume that p is equal to 2. For the existence of a non-CM Q-curve with properties
1), 2) and 3), it is necessary that there exists an element 1 in K such that

(1.4 t0gx=a, Ng(t)=m, and v,(4(t))=0 (mod 6) for any prime q,

where u is a unit in K.

b) Assume that p is equal to 3, 5, 7, 13. For the existence of a non-CM Q-curve
with properties 1), 2) and 3), it is necessary that the rational prime p does not remain
prime in K and there exists an element t in K such that

(1.5) t0x=a, Ngo(t)=m, and vy(A(r))=0 (mod6) for any prime q,

where u is a unit in K.
c) Assume that t satisfies either (1.4) or (1.5). (We do not have to assume that E,
is non-CM type.) If there exists an element D in K such that

(1.6) cond; E, =0, and D(L/K)*=condgE,

where L=K(\/5), then there exists a Q-curve with properties 1), 2) and 3). Moreover
the quadratic twist of E, by D has properties 1), 2) and 3).

This theorem tells us the necessary and sufficient conditions for the existence of
Q-curves which we require, and will be proved by using properties of the modular
curves as the moduli space of elliptic curves and a parameterization of the points on
these curves. In section 2 we explain more precisely an idea for the proof of the theorem
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and our method to construct such Q-curves using it. We prove assertions a) and b) of
Theorem 1.1 in section 4. In section 5 we discuss the sufficient conditions for existence
and prove the part ¢) of Theorem 1.1. In section 6 we give some examples for Q-curves
produced by our method and check their “modularity”.

ACKNOWLEDGMENTS. This paper grew out from the author’s master thesis. The
author expresses sincere thanks to Professors Ki-ichiro Hashimoto and Fumiyuki
Momose for kind and warm encouragement during the preparation of this paper.

2. The idea for construction.

In this section we explain our method of construction. Let N be a positive integer,
and I’ =SL,(Z). Define subgroups I'4(N) and I',(N) of I' by

rO(N)={(‘: Z)er
I‘I(N)={(Z Z)er

We denote by Xy(N) and X, (N) the modular curves corresponding to I'o(N) and I'{(N),
respectively. We recall that they have models defined over Q. For any prime number
p, any non-cuspidal point of the modular curve X,(p) corresponds to a triple (E,, E,, ¢)
of elliptic curves E,, E, and the isogeny ¢ : E; —»E, whose kernel is a cyclic subgroup
of order p. Denote by W, the Atkin-Lehner involution for p. Then W, induces an
involution (E,, E,, ¢)— (E,, E,, ¢) on Xy(p) with the dual isogeny ¢ of ¢, which is
denoted by the same letter W,. Moreover we denote by X§(p) the quotient curve of
Xo(p) by W,, which is defined over Q. Then we note that any non-cuspidal Q-rational
point of X¥(p) corresponds to a Q-curve and conversely any non-CM Q-curve
corresponds to a Q-rational point, as pointed out by Elkies [3]. Therefore for a real
quadratic field K, a Q-curve E has properties 1) and 3) if and only if the triple (£, E°, ¢)
is represented by a point on X (p), where o is the generator of the Galois group Gal(K/Q)
and ¥ is an isogeny between E and E°.

Assume that p is a prime number such that the genus of X(p) is zero, namely
p=2,3,5,7,13. Since X,(p) is isomorphic over Q to the projective line P!, the points
of X,(p) are described by one parameter 7 (see Fricke [5]). And we can write the relation
between points on X(p) and triples (E,, E,, ¢), i.e. we know that the j-invariant of E,
is equal to j(r), where the rational function j is given in (1.1), and the involution W,
acts on the points of X,(p) by

c=0 (modN)} ,

¢c=0 (modN), a=d=1 (modN)}.
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I/T if P=2, 33
53/t if p=5,
@1 we={ 0 TP
72/ if p=7,
13/7 if p=13.
If we put A&(X) =j(X)— 1728, then we can write
(2.2)
[ )2
26(X 8)%(X+1) if p=2.
X2
2 _1h\2
33 QTX*+18X—1) it p=3.
X
2 2, 2
k() = (X?4+22X+125)(X*+4X+1) if p=5
X
(X*+14X3+63X%2+70X—17)2 .
if p=7,
X
(X2 +6X+13)(X°+10X° +46X*+108X°+122X* +38X—1)° . p—13
¥ .
L

We recall that the elliptic curve E, given in (1.2) has j-invariant j(t) and discriminant
(2.3) A7) =j(7)*/k(7)* .

Now we assume that there exists a Q-curve E with properties 1), 2) and 3). If E, is
isomorphic to E over Q, then the Galois action for t coincides with the action of the
involution W, i.e. it follows that

2.4) 7= W,(1).

So one can describe the necessary condition for the existence of such Q-curves E by
using 7, as in assertions a) and b) of Theorem 1.1.

Using this theorem, we can give an effective procedure to construct such Q-curves.
At first we fix p and K, and we find a fundamental unit ¢ of K and a suitable element
« in K which generates the ideal a given in (1.3) if a is principal. Every unit u« in K is
a power of ¢ up to sign, so we can write

T=toae",

where 7 is a rational integer. For each n, we calculate A(z). If 7 satisfies condition (1.4)
or (1.5), we check whether there exists an element D in K which actually satisfies
condition (1.6). We note that the number of elements in K which have possibility to be
D is finite (cf. Remark 5.4). Thus we can obtain Q-curves of the type specified.
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3. Lemmas.

In this section we show some lemmas to prove our main theorem.

LeMMA 3.1. Let L be a quadratic field, and E an arbitrary elliptic curve defined
over L. Let A be the discriminant of E. If there exists an elliptic curve E, over L such
that E, has everywhere good reduction and E, is isomorphic to E over the algebraic closure
L of L, then

04(4)=0 (mod 6) for any prime q of L.

ProoOF. We suppose that there exists E, which satisfies the condition above. If
J(E,) is equal to 0 or 1728, then there exists a prime q in L such that E has bad reduction
at q from Theorem 2 of [13]. So we may assume that j(E,)#0, 1728. Therefore there
exists a quadratic extension L’ of L such that E and E, are isomorphic over L’ from
[15] chapter X, Proposition 5.4. Let 4, be the discriminant of E,. Then there exists an
element a in L' such that 4=a'24,, so it follows that

Vq(4)=v4(40)=0 (mod 6) for any prime q of L. O

LEMMA 3.2. Let L be a number field and E an elliptic curve defined over L. If E
has everywhere good reduction over L, then its j-invariant is an integer of L.

Proor. Let q be a prime of L. From [15] chapter VII, Proposition 5.5, E has
potential good reduction in the completion L, of L by q if and only if its j-invariant
is an integer of L,. Since this holds for any prime q, the lemma follows. O

LeMMA 3.3. Let L be a number field and E an elliptic curve defined over L. For
an element D in L, we put M =L(\/B) and denote by E,, the quadratic twist of E by D.
Then the Weil restriction Resy, E and the product E x E;, are isogenous over L.

PrOOF. We put A=Res,,, E. For a rational prime /, let p, (resp. pg) be the /l-adic
representation over L with respect to 4 (resp. E). Then it follows that

Pa= Indzfl(PE I wW=PEP(Pr® ¥,

where ¥ is the character corresponding to the extension M over L. This means that 4
is isogenous over L to E x E, from [4] chapter IV, Corollary 1.3. This completes the
proof of the lemma. O

4. Necessary conditions.

In this section we prove assertions a) and b) of Theorem 1.1. We recall that the
prime ideals p and p’ defined in section 1 divide p. Moreover we note that we use
equations (1.1) and (2.2) many times through this section.

4.1. The case of p=2. PrOOF. If 7 corresponds to a Q-curve, then equation
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(2.4) holds, so it follows that
(4.1) NK/Q(T)= l

from (2.1). At first we assume that 2 remains in K. Then we need that v,(t)=0 from
(2.4). Then v,(j(1)) =6 and vy(k(7)) =6+ v,(t+1), so v (4(r))= —6—3v,(t+1). From
Lemma 3.1, we need that v,(t+1)=0 (mod2). For any prime q not dividing 2, if
04(1) >0, then v,(j(t)) <0. Therefore we need that

vo(1)=0 and v,(4(z))=0 (mod 6)
from the action of W,, Lemma 3.1 and Lemma 3.2, so from equation (4.1) it follows that
T(QK = (QK .

Now we assume that 2 ramifies in K. As above, we must have v,(r)=0. Then
vp(J(7))=12 and v,(k(7)) =12 +vy(t+1), so v,(4(1))= —12—3v,(r+1). Thus we need
that v,(t+1)=0 (mod 2). For other primes q not dividing 2, clearly we need that

04(1)=0 and v4(4(1))=0 (modé6).
From equation (4.1) it follows that
T(QK = (OK.

Next we assume that 2 splits in K. If v,(7) =7, then v,(j(r)) <0, so we need that
—6<v,(1)<6. If v (1) =4, 5, then v,(j(1)) =12~-2v,(7) and v,(k(1)) =12 —2v,(7), so

v(4(7)) =2v,(ji(r)) — 30,(k(7)) = — 12+ 20,(7) #0 (mod 6) .

If v,(t)= — 3, then v,(jj(r)) =3 and v,(k(1)) =3, s0 v,(4(1)) = —3#0 (mod 6). If v (1) =2,
then v,(j(r)) =2+ 3v,(t+4) and v,(k(t)) =6, so v,(4(t)) =6v,(t+4)—14#0 (mod 6). If
vp(7) =1, then v,(j(r))=7 and v,(k(t)) =6, so v,(4(1)) = —4#0 (mod 6). Therefore from
Lemma 3.1 and the action of W, we need that v,(t) =0, +6. If v,(7) =0, then v,(j(1))=6
and v,(k(t))=6+v,(t+1), so v,(4(7))= —6—3v,(t+1). If v,(r)= £6, then v,(j(7))=
vp(k(7)) =0, so v,(4(1))=0. For other primes q J( 2, clearly we need that

0(1)=0 and v,(4(7))=0 (mod6),
so from equation (4.1) it follows that
tO0x=0g or pSp'~°. O

ReMARK 4.1. In order to find t which satisfies the condition above, we must
evaluate the value v,(4(7)) for any prime q, and it is often difficult to compute v,(4(7)),
since the absolute value of a fundamental unit of K becomes very large. Fortunately,
it is rather easy for any prime ideal dividing 2. Namely if 2 does not split in K, then it
is sufficient to check that

vp(t+1)=0 (mod2).
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If 2 splits in K and 10y = Oy, then it is sufficient to check that
vp(t+1)=v,(t+1)=0 (mod?2),
and if 2 splits in K and t0x=p°p’~°, we do not need to evaluate the value v,(4(7)).

4.2. The case of p=3. ProoF. If 7 corresponds to a Q-curve, then equation
(2.4) holds, so it follows that ‘

4.2) Nig() =1

from (2.1). If 3 remains prime in K, then we need that v,(r)=0 from (2.4). Then
v,(j(r)) =3 and v,(k(r))=3, so

0p(4(7)) =20,(j(1)) —9#0 (mod6) .

This contradicts Lemma 3.1. Therefore 3 does not remain prime in K.

Now we assume that 3 ramifies in K. Then we need that v,(7) =0 from the same
reason as above. If v,(t)=0, then v,(j(1)) =6+v,(t+1) and v,(k(r)) =6, so v,(4(7))=
2v,(t + 1) —6. Therefore we need that v,(t) =0 and v,(t + 1) =0 (mod 3). For other primes
q not dividing 3, clearly we need that

U4(t)=0 and v,(4(r))=0 (mod6),
so from equation (4.2) it follows that
T(OK = (91( .

Next we assume that 3 splits in K. If v,(7) =4, then v,(j(r)) <0. If v, (1) =1, 2, then
vp(ji(t)) =3 —v,(7) and v,(k(1)) =3 —vy(7), sO

v, (4(1)) = 20,(ji(7)) — 3vp(k(7)) = —3 + v,(r) #0 (mod 6) .
Moreover, if v,(t)=0, then v,(j(r))>3 and v,(k(r))=3, so
0,(4(1)) =20,(j(r)) —9#0 (mod6).

Therefore we need that v,(t)=+3 from Lemma 3.1 and the action of Wj. Then
v,(j(r)) =0 and vy(k(7)) =0, so v,(4(1))=0, and the same holds for p’. For other primes
q not dividing 3, clearly we need that

04(1)=0 and vy (4(r))=0 (mod6),
so from equation (4.2) it follows that
tOx=p>p "> a

REMARK 4.2. As in Remark 4.1, it is rather easy to evaluate the value v,(4(7)) in
the case where q=p or p’. Namely if 3 ramifies in K, then it is sufficient to check that

vp(t+1)=0 (mod3),
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and if 3 splits in K, then we do not need to evaluate the value v,(4(7)).

4.3. The case of p=5. Proor. If t corresponds to a Q-curve, then equation
(2.4) holds, so

(4.3) NK/Q(T) = 53
from (2.1). If 5 remains prime in K, then from (2.4)
20,(1) =vy(1) +v,(°1) =3,

but this cannot occur.

Now we assume that 5 ramifies in K. Then we need that v,(t) =3. If v,(7) =3, then
v,(j(r)) =3 and v,(k(t)) =0, so it follows that v,(4(t)) =6. For other primes q not dividing
5, clearly we need that

04(t1)=0 and v,(4(r))=0 (mod6),

so from equation (4.3) it follows that

T@K=p3'

Next we assume that 5 splits in K. If v,(t) >4, then v,(j(r)) <0. If vy,(r)=1, then
vp(j(r)) =2 and v,(k(1)) =0, so v,(4(r)) =4. From the action of W5 on X(5) and Lemma
2.3 we need that v,(1)=0,3. If v,(r)=0,3, then v,(j(r))=0 and wv,(k(r))=0, so
vp(4(1)) = —3v,(k(1)). Therefore v,(k(r))=0 (mod2), and the same holds for p’. For
other primes q not dividing 5, we clearly need that

04(1)=0 and v4(4(r))=0 (mod6),
so from equation (4.3) it follows that
T@k = p 3 . D

REMARK 4.3. Asin Remark 4.1, we must evaluate the value v,(4(7)) for any prime
q, fortunately it is rather easy for any prime ideal dividing 5. Namely if 5 splits in X,
then it is sufficient to check that

vp(k(t)) =0, (k(r)) =0 (mod?2),
and if 5 ramifies in K, then we do not need to evaluate the value v, (4(7)).

4.4. The case of p=7. ProoOr. If t corresponds to a Q-curve, then equation
(2.4) holds, so

from (2.1). If the rational prime 7 remains prime in K, then we need that v,(t)=1 from
(2.4). Then v,(j(r)) =0 and v,(k(t)) = 1, so v,(4(1)) = — 3 #0 (mod 6). This is contradictory
to Lemma 3.1.-
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We assume that 7 ramifies in K. Then we need that v,(1) =2, so v,(j(r))=0 and
vy(k(t)) =2. Therefore it follows that v,(4(t)) = —6. For other primes q { 7, clearly we
must have

U4(tr)=0 and vy(4(r))=0 (mod 6)
from Lemma 3.2, so from equation (4.4) it follows that
1’-01( = 7@K =p 2 .

Next we assume that 7 splits in K. If v,(t) >3, then v,(j(r)) <0. If v,(r)=1, then
v,(j(r)) =0 and v,(k(1)) =1, so v,(4(1r))= —3 #0 (mod 6). Thus we need that v,(7) =0, 2
from the action of W, on Xy(7) and Lemma 3.1. If v,(7)=0, 2, then v,(j(r))>0 and
v,(k(7)) =0, so v,(4(1))=2v,(j(7)). Therefore it follows that v,(j(r))=0 (mod 3).
Similarly, for any prime q ¥ 7, if vy(r)> 1, then v,(j(r)) <0, so we need that

04(t1)=0 and vy (4(r))=0 (mod6).
From equation (4.4) it follows that
T@K = p 2 . D

REMARK 4.4. Asin Remark 4.1, it is rather easy to evaluate the value v4(4(7)) in
the case where q=p or p’. Namely if 7 splits in K, then it is sufficient to check that

vp(j(2)) =0, (j(7))=0 (mod 3),
and if 7 ramifies in K, then we do not need to evaluate the value v,(4(7)).

4.5. The case of p=13.* Proor. If 7 corresponds to a Q-curve, then equation
(2.4) holds, so

4.5) Nyjo(t)=13
from (2.1). If 13 remains prime in K, then from (2.4)
2v,(7) =v,(7) +0,(°1) =1,

but this cannot occur.
Now we assume that 13 ramifies in K. Then we need that v,(r) =1. Then v,(j(z))=0
and v,(k(1)) =0, so v,(4(z))=0. For other q prime to 13, clearly we need that

v,(1)=0 and v4(4(z))=0 (mod6),
so from equation (4.5) it follows that

T@K=p .

* In the case of p=13, the author finds that Pinch showed the fact that there does not exist a Q-curve
with properties 1), 2) and 3) (cf. R. G. E. Pinch, Elliptic curves over number fields, Doc. Phil. Thesis, Oxford
University (1982)).
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Next we assume that 13 splits in K. If v,(7) =2, then v,(j(t)) <0. Therefore we need
that v,(t) =0, 1 from the action of W, ; on X,(13). If v,(7) =0, 1, then v, (j(7)), v,(k(z)) = 0.
Similarly, for any other prime q not dividing 13, if v4(7)>1, then v4(j(x)) <0, so we
need that

v4(1)=0 and v,(4(1))=0 (mod6).
From equation (4.5) it follows that
T@K - p . D

REMARK 4.5. We must evaluate the value v,(4(t)) for any prime q, fortunately it
is rather easy for any prime ideal dividing 13 as in Remark 4.1. Namely if 13 ramifies
in K, then we do not need to evaluate the value v,(4(1)).

5. Sufficient conditions.

We have proved the necessary conditions for the existence of Q-curves with
properties 1), 2) and 3). Next we discuss the sufficient conditions for the existence of
such Q-curves. In the following, for a triple (p, K, t) of a rational prime p, a real
quadratic field K and an element 7 in K, we say that (p, K, 7) has property (*) if (p, K, 1)
satisfies assertions a) or b) of Theorem 1.1. Fix a prime number p. Now for any triple
(p, K, 1) with property (*) we consider the case where we can form a Q-curve

E:y*+axy+azy=x3+a,x*+a,x+ag

with everywhere good reduction using the elliptic curve E, defined by (1.2). Let 4(7) be
the discriminant of E,, and q, - - -, q, the primes of K dividing 4(7). One can rewrite
E. in the short form

E!:y?=x3+c,x+cg, €4 C6€EUK .
From the choice of t,
0,,(4(E;))=0, 6 (mod 12)
for i=1, - - -, r. Now we consider the quadratic twist
E.p:y*=x*+D?cyx+D3cq

of E, by an element D in K. If the class number /4 of K is equal to 1, then one can find
a sequence {®;};-; ..., of elements in K such that

{ai(OK=q,- if v, (4(E))=6 (mod12),

o, =1 if v,,(4(E))=0 (mod12).
So if we put Do=][],«;, then the quadratic twist E; ,,  of E; has good reduction at any
q prime to 6. Thus we know the following:
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REMARK 5.1. Assume that hx=1. If we find an element 7 in K such that (p, K, 1)
has property (*), we can get a Q-curve which has good reduction at any prime q not
dividing 2 or 3 and which also satisfies conditions 1) and 3) in §1.

It remains to check whether E; , has good reduction at all prime ideals dividing
6. To determine exactly the reduction type of E ), at q dividing 6, we consider the
conductors of E over K and L.

PROPOSITION 5.2. Assume that the triple (p, K, t) has property (x). We put E, as
in (1.2). For an element D in K, let E;, be the quadratic twist by D and L=K(\/B).
Then E. |, has everywhere good reduction over K if and only if

cond, E,=0; and D(L/K)?>=condiFE, .
REMARK 5.3. In this proposition, we do not assume that K has class number 1.

Proor. Denote by 4 the Weil restriction Res; x(E,) of E,. Then we recall that 4
is isogenous to E, x E; ;, over K from Lemma 3.3. From [12] Proposition 1, we know
that

condg A= N, (cond, E,) - D(L/K)*.
Then
condg(E, x E; p)=condg E, * condg E, , ,
so it follows that
(5.1 Ny (cond, E)) - D(L/K)*=condg E, - condg E} , .

We assume that E;, has everywhere good reduction. Since it is equivalent to
condy E; ,= O that E_ ;, has everywhere good reduction over K, it is also equivalent to

(5.2) Ny x(cond, E,) - D(L/K)*=cond E, .

We note that E, and E_ ;, are isomorphic over L. If E] ;, has everywhere good reduction
over K, then E ;, also has everywhere good reduction over L, so cond, F, is trivial and

D(L/K)?=condiE, .

Conversely if cond, E,=cond, E. ,=0, and D(L/K)?*=condgE,, then E., has
everywhere good reduction in K from (5.1). So we have completed the proof of
Proposition 5.2. O

Clearly assertion c) of Theorem 1.1 follows from Proposition 5.2.

REMARK 5.4. In assertion c) of Theorem 1.1, the number of prime ideals in K
which ramify in the extension L/K is finite, since the number of bad primes is finite for
any elliptic curves. Thus the number of elements in K which have possibility to be D
is finite. Therefore we can determine whether there exists a Q-curve with properties 1),
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2) and 3).

6. Examples and their modularity.

All the calculations in the following were done on SparcStation with GNU C and
PARI-library, version 1.39. The calculation of global minimal models is based on
Laska’s algorithm (cf. [10], [11]) and the calculation of conductors is based on Tate’s
algorithm.

Using our method, we can find many triples (p, K, 7) with property (*). We can
construct Q-curves with properties 1), 2) and 3) as follows.

ExaMPLE 6.1. Let p=3 and K=Q(,/997). The quadratic field K has a
fundamental unit &= 84906 +2689./997 and class number 1, and the rational prime 3
splits in K. Put

i 58275188611277 + 1845593740900 /997
27 ’

then a@x=p3p’'~3. For t=ae 2=(2021+464./997)/27, we can verify that the triple
(p, K, 7) has property (*). Then

4,72,.2 2
condg E, = (2% 7% * 1&g, * miso7)

where g, =(—27+./997)/2 and m,59;=2304+73,/997 are prime elements of prime
ideals over 67 and 4597 of degree 1, respectively. Moreover

74011 +2331.,/997
2

for which Ny,oD(L/K)=2*-77-67-4597, satisfies condition (1.6). So we can get a
Q-curve E with properties 1), 2) and 3) whose global minimal Weierstrass equation is
defined by

D= —T:Tg7* Tys97=

2

50814489 +1609311./997

y2+y=x3+x7—(129490+4101./997)x — )

This is isomorphic over K to the quadratic twist E; , of E,. Then E has discriminant
A=14418057673 + 456624468\/59—7= e?
and j-invariant
~ j=j(t)=33308803072 + 1054900224 /997 .

ExaMPLE 6.2. Let p=5 and K=Q(,/461). The quadratic field K has a
fundamental unit e=(365+17./461)/2 and class number 1, and the rational prime 5
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splits in K. Put

o= —4788+223,/461 ,

then a@x=p>. For 1= —ae=(—31+./461)/2, we can verify that (p, K, 7) has property
(*). Then one can find a Q-curve E with properties 1), 2) and 3) which has the following
global minimal Weierstrass equation:

J461
y2+i+_2_i§_xy=x3 +x2 4 (42907827 + 1998409, /461 )

58348803105 +2717574729. /461
> .

Then E has discriminant

41972152560694558870080627 + 1954838033345010483647275. /461 T
5 =

A=

and j-invariant

—3048867 + 142155, /461
2 .

ExAaMPLE 6.3. Let p=7 and K=Q(,/497). The quadratic field K has a
fundamental unit ¢ =1201887 +53912,/497 and class number 1, and the rational prime
7 ramifies in K. For 1=7, one can construct a Q-curve E, with properties 1), 2) and
3) which has a global minimal model

2 12770049 +572815./497 e 17560440233 + 787693397, /497 '
2 2

j=im=

yitxy=x3—x

Then E, has discriminant
4=6944658661946678751 +31151051 4535059400\/4ﬁ =g3
and j-invariant
j=j(r)=16581375=3%-5%-173.

For t=—7 one can also find a Q-curve E, with properties 1), 2) and 3) whose
global minimal model is

751179 + 33695. /497 e 307946113 + 13813271./497
2 2 )

yi+xy=x3—-x2—

Then E, has discriminant
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A= —6944658661946678751 ——311510514535059400\/4_9-= ~¢?
and j-invariant
j=—3375=—33.53,
For a real quadratic field K whose discriminant N is one of
28, 56, 77, 161, 301, 497, 553, 749, 889, 1057, 1141, 1253, 1337, 1477, 1673, 1841,
we can get two Q-curves which have properties 1), 2) and 3) and j-invariants
Jj=16581375, —3375.

Assume that K has class number 1 and its discriminant is less than 1000. Using
our method, we can construct Q-curves with properties 1), 2) and 3) for a prime p and
a real quadratic field K whose discriminant is equal to N listed in Table 1.

TABLE 1
D N
2 24, 41, 88, 152, 337, 344, 472, 536, 664, 856, 881
3 109, 997
5 29, 349, 461, 509
7 28, 56, 77, 161, 301, 497, 553, 749, 889

REMARK 6.4. In the case of hg#1, we can also get such Q-curves. For example,
we can find by our method a Q-curve for p=2 and N =257 (resp. p=35 and N =229),
which is listed in Cremona [1].

The following modularity problem arises naturally:

PrROBLEM 6.5. For a prime number p and a real quadratic field K, we assume that
there exists a Q-curve E with properties 1), 2) and 3). Let N be the discriminant of K,
and SY(N, x) the space of cusp forms of weight 2 on I';(N) with Nebentypus character
x which is a primitive real quadratic Dirichlet character. Is £ modular? In other words,
does there exist a cusp form f in SJ(N, x) corresponding to E?

We can check this modularity problem for elliptic curves given in the examples
above. For a Q-curve E over K with everywhere good reduction, let 4=Resg,oE be
the Weil restriction of E. Then A4 is a Q-simple abelian variety over Q of dimension 2,
which is isogenous to E x °FE over K. For all primes q in K, we denote by k, the finite
field 0x/q0k, and denote by Eq the reduction of E at q. Then we put

Cq=1+%Ks— #E’q(rcq) R

and we define a,, b, which satisfy the following equation:
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l—cqu?+q*u* if g remains prime in K,
fw=< 1—cu+qu® if g ramifies in K,
(1—cqu+qu?)l—cu+qu®) if g splitsin K,
=(1 —au+x(@)qu’)1 —bu + x(g)qu’),
where g, q’ are the primes over the rational prime g and y is the Dirichlet character

corresponding to K. Then we note that a, and b, are determined up to order. Then the
L-series of A over Q is defined to be the infinite product

Lis 4/Q=T1 fla™",
qe
where P is the set of all rational prime numbers.

On the other hand, if there exists a two-dimensional Q-simple subspace in S(N, x)
corresponding to E, then let f; and f, be the normalized cusp forms which are common
eigen forms of the Hecke operators and span the two-dimensional subspace. Then we
denote by A4, and B, the n-th Fourier coefficients of f; and f,, respectively.

In the following, we know the existence of a suitable two-dimensional subspace in
S2(N, x) and the Fourier coefficients 4, and B, of the basis from Hasegawa [7].

ExampPLE 6.6. For Example 6.1, there exists a two-dimensional Q-simple subspace
in $2(997, x) where y is the real quadratic character (2?1 ) Then we can see the good

correspondence as in Table 2.

TaBLE 2. Data of L-series (for Example 6.1)

q #E(x)) ¢4 azb, A, B, q #E(x;) cq a, b, A, B,
2 1 4 0,0 0 0 43 1872 —-22 +6,/-3 —6/-3 6,/-3
33,3 1 1,1 1 1 47 2224 —-14 +6,/-3 —6/-3 6/-3
5 28 -2 +2 /-3 2/-3 -2/-3| 53 63,63 -9 —9,-9 -9 -9
7 36 14 0,0 0 0 59 63,63 -3 —3,-3 -3 -3
112 10 +2 /-3 2/-3 -2/-3| 61 3708 14 +6/-3 —6/-3 6,/-3
13 1515 -1 —1,-1 -1 -1 67 73,73 -5 —5,-5 -5 -5
17 268 22 +2/-3 -2/-3 2J/-3| 71 7575 -3 -3,-3 -3 -3
19 16,16 4 4,4 4 4 73 72,72 2 2,2 2 2
23 27,27 -3 -3,-3 -3 -3 79 87,87 -7 -7,-7 -7 -7
29 832 10 44 /-3 4/-3 -4/-3| 83 72,72 12 12,12 12 12
31 24,24 8 8,8 8 8 89 75,75 15 15,15 15 15
37 1404 -34 +6,/-3 6/-3 —6/-3| 97 96,96 2 2,2 2 2

41 1648 34 +4 /-3 4 /-3 —-4/-3

ExaMPLE 6.7. For Example 6.2, there exists a two-dimensional Q-simple subspace

in S2(461, y) where y is the real quadratic character (g). Then we can see the good
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correspondence as in Table 3.
Moreover, we can prove that E has modularity from Hasegawa-Hashimoto-
Momose [8] in this example.

TaBLE 3. Data of L-series (for Example 6.2)

199

q #E’q(xq) Cq azb, A, B, q ﬁEq(Kq) cq a, b, A, B,

2 6 -1 +J/=5 J=5 —J-5|43 48,4 -4 -4, -4 —4 —~4

3 4 6 0,0 0 0 47 2161 49 43 /=5 -3/-5 3./-5
5 55 1 1,1 1 1 53 48,48 6 6,6 6 6

7 4l 9  + /=5 J=5 —J/-5|359 5454 6 6,6 6 6
1105 17 +J/=-5 J=5 —J/-5|61 5555 7 7,7 7 7

13 144 26 0,0 0 0 67 66,66 2 2,2 2 2

17 15,15 3 3,3 3 3 715025 17 £5/-5 ~5/=-5 5/-5
19 20,20 O 0,0 0 0 73 68,68 6 6,6 6 6

23 30,30 —6 —6,—6 —6 -6 |79 6164 78 +4 /-5 4 /=5 —4/-5
29 804 38 +2/=5 2/=5 -—2/-5|8 6729 161 +/-5 — /=5 /-5
31 945 17 43 /-5 -3 /-5 3/=5| 89 101,101 —11 —11,—-11 —11 —11
37 1376 —6 +4/-5 4/-5 —4/-5]97 96,96 2 2,2 2 2

41 37,37 5 55 5 5

ExAMPLE 6.8.

For Example 6.3, E, and E, have CM j-invariants, so we know
that they are modular from Shimura [14]. There exists a two-dimensional Q-simple

subspace in SJ(497, x) where yx is the real quadratic character (igl) Then we can see

that two Q-curves E,, E, have the same a,, b,. Then they have the good correspondence
as in Table 4.

TaBLE 4. Data of L-series (for Example 6.3)

g #E)xy ¢ ab, A, B, g #E)(xy) ¢4 a, b, A, B,
2 2,2 1 1,1 1 1 43 56,56 —12 —12,—-12 —12 —12
3 4 6 0,0 0 0 47 48,48 0 0,0 0 0
5 16 10 0,0 0 0 53 2816 —6 +4/—7 —4/-7 4/-7
7 8 0 +J/=7 J=7 —-J-7/59 60,60 0 0,0 0 0
1 128 -6 +2/=7 2J=7 -—-2-7|/61 62,62 O 0,0 0 0
13 14,14 0 0,0 0 0 67 4608 —118 +6,/—7 —6/—=7 6=7
17 18,18 0 0,0 0 0 71 56 16 8+./—7 8+ -7 8— /-7
19 324 38 0,0 0 0 73 5184 146 0,0 0 0
23 512 18 +2/-7 2J-7 -2J-7{79 888 -8 -8 -8 -8 -8
29 32,32 -2 -=2,-2 -2 -2 |83 6724 166 0,0 0 0
31 32,32 0 0,0 0 0 89 7744 178 0,0 0 0
37 32,32 6 6,6 6 6 97 98,98 0 0,0 0 0
41 42,42 0 0,0 0 0
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