On the First Eigenvalue of the p-Laplacian in a Riemannian Manifold

Hiroshi TAKEUCHI

Shikoku University
(Communicated by Y. Maeda)

1. Introduction and results.

Let Ω be a bounded domain in a Riemannian manifold (M, g) of dimension m. We consider the following Dirichlet problem:

(1)
$$\Delta_{p}u + \lambda |u|^{p-2}u = 0 \quad \text{in } \Omega,$$

$$u = 0 \quad \text{on } \partial\Omega,$$

where $\Delta_p u = \operatorname{div}(|\nabla u|_q^{p-2} \nabla u)$ is the p-Laplacian with 1 . In local coordinates,

$$\Delta_{p} u = \frac{1}{\sqrt{\det(g_{ij})}} \sum_{i,j=1}^{m} \frac{\partial}{\partial x^{i}} \left(\sqrt{\det(g_{ij})} g^{ij} |\nabla u|^{p-2} \frac{\partial u}{\partial x^{j}} \right),$$

where $|\nabla u|^2 = |\nabla u|_g^2 = \sum_{ij} g^{ij} (\partial u/\partial x^i) (\partial u/\partial x^j)$, and $(g^{ij}) = (g_{ij})^{-1}$. The first eigenvalue $\lambda_{1,p}(\Omega)$ of the p-Laplacian is defined as the least real number λ for which the Dirichlet problem (1) has a nontrivial solution $u \in W_0^{1,p}(\Omega)$. Here the Sobolev space $W_0^{1,p}(\Omega)$ is the completion of $C_0^{\infty}(\Omega)$ with respect to the Sobolev norm $||u||_{1,p} = \{\int_{\Omega} (|u|^p + |\nabla u|^p) dv_g\}^{1/p}$. It can be also characterized by

(2)
$$\lambda_{1,p}(\Omega) = \inf_{u \neq 0} \frac{\int_{\Omega} |\nabla u|^p dv_g}{\int_{\Omega} |u|^p dv_g},$$

where u runs over $W_0^{1,p}(\Omega)$ and dv_g denotes the volume element of M. We would like to estimate the $\lambda_{1,p}(\Omega)$. For the case p=2, there have been several results, such as the Faber-Krahn inequality [1], the Cheeger inequality [2], and the Cheng inequality [3]. The purpose of this paper is to give inequalities for their p-Laplacian analogue. More precisely we show the following theorems.

THEOREM 1 (the Faber-Krahn type inequality). Let M_k be a complete simply connected Riemannian manifold of constant sectional curvature κ . Let B be the geodesic

ball in M_{κ} , whose volume is equal to that of the domain Ω in M_{κ} . Then the following inequality holds:

(3)
$$\lambda_{1,p}(\Omega) \ge \lambda_{1,p}(B) .$$

The equality holds only for the case the domain Ω is the ball B in M_{κ} .

Next we define the Cheeger constant $h(\Omega)$ of Ω to be

$$h(\Omega) = \inf_{\Omega'} \frac{\operatorname{Vol}(\partial \Omega')}{\operatorname{Vol}(\Omega')}$$
,

where Ω' ranges over all open submanifold of Ω with compact closure in Ω and smooth boundary $\partial \Omega'$. Vol(Ω') and Vol($\partial \Omega'$) denote the volumes of Ω' and $\partial \Omega'$ respectively.

THEOREM 2 (the Cheeger type inequality). For any bounded domain Ω with piecewise smooth boundary in a complete Riemannian manifold, we have the following inequality:

(4)
$$\lambda_{1,p}(\Omega) \ge \left(\frac{h(\Omega)}{p}\right)^p.$$

THEOREM 3 (the Cheng type inequality). Let M be an m-dimensional complete Riemannian manifold with Ricci curvature satisfying $Ric(v) \ge k(m-1)$ for any unit vector $v \in TM$. Let $B(x_0, r)$ be the geodesic ball in M of radius r with center x_0 , and V(k, r) be a ball of radius r with center \tilde{x}_0 in the space form of curvature k. Then we have

(5)
$$\lambda_{1,p}(B(x_0,r)) \leq \lambda_{1,p}(V(k,r)),$$

with equality if and only if $B(x_0, r)$ is isometric to V(k, r).

The author would like to express his gratitude to Professors T. Sakai and A. Katsuda for helpful discussions and advice.

2. Proof of Theorem 1.

Let f be a nonnegative eigenfunction of p-Laplacian in Ω associated with $\lambda_{1,p}(\Omega)$. Consider the set $\Omega_t = \{x \in \Omega \; ; \; f(x) > t\}$ and $\Gamma_t = \{x \in \Omega \; ; \; f(x) = t\}$. Using a symmetrization procedure, we construct the geodesic ball B_t in M_k such that $\operatorname{Vol}(B_t) = \operatorname{Vol}(\Omega_t)$ for each t, and $B_0 = B$. We define a function $F: B \to \mathbb{R}^+$ such that F is a radially decreasing function and $\partial B_t = \{x \in B \; ; \; F(x) = t\}$.

Then it suffices to prove

(6)
$$\int_{\Omega} f^{p} dv_{q} = \int_{B} F^{p} dv_{q},$$

(7)
$$\int_{\Omega} |\nabla f|^p dv_g \ge \int_{\mathcal{B}} |\nabla F|^p dv_g.$$

Indeed for (6), using coarea formula [4],

$$\int_{\Omega} f^{p} dv_{g} = \int_{0}^{\infty} \int_{\Gamma_{t}} \frac{f^{p}}{|\nabla f|} dA_{t} dt = \int_{0}^{\infty} t^{p} \left(\int_{\Gamma_{t}} \frac{dA_{t}}{|\nabla f|} \right) dt$$

$$= -\int_{0}^{\infty} t^{p} \frac{d}{dt} \operatorname{Vol}(\Omega_{t}) dt = -\int_{0}^{\infty} t^{p} \frac{d}{dt} \operatorname{Vol}(B_{t}) dt = \int_{B} F^{p} dv_{g},$$

where dA_t is the (m-1)-dimensional volume element on Γ_t . Here we have used the identity

$$\frac{d}{dt}\operatorname{Vol}(\Omega_t) = -\int_{\Gamma_t} |\nabla f|^{-1} dA_t.$$

Next we shall prove (7). Using the Hölder inequality, we have

$$\begin{split} \int_{\Gamma_t} dA_t &= \int_{\Gamma_t} |\nabla f|^{1-1/p} \cdot |\nabla f|^{-1+1/p} dA_t \\ &\leq \left(\int_{\Gamma_t} |\nabla f|^{p-1} dA_t \right)^{1/p} \left(\int_{\Gamma_t} |\nabla f|^{-1} dA_t \right)^{(p-1)/p} \\ &= \left(\int_{\Gamma_t} |\nabla f|^{p-1} dA_t \right)^{1/p} \left(-\frac{d}{dt} \operatorname{Vol}(\Omega_t) \right)^{(p-1)/p}. \end{split}$$

Thus we have, using isoperimetric inequality,

$$\int_{\Gamma_t} |\nabla f|^{p-1} dA_t \ge \frac{\operatorname{Vol}(\Gamma_t)^p}{\left(-\frac{d}{dt}\operatorname{Vol}(\Omega_t)\right)^{p-1}}$$

$$\ge \frac{\operatorname{Vol}(\Gamma_t^*)^p}{\left(\int_{\Gamma_t^*} |\nabla F|^{-1} dA_t^*\right)^{p-1}} = \int_{\Gamma_t^*} |\nabla F|^{p-1} dA_t^*,$$

where $\Gamma_t^* = \{x \in B : F(x) = t\}$, and dA_t^* is the (m-1)-dimensional volume element on Γ_t^* . Integrating in t, we get (7).

3. Proof of Theorem 2.

Let u be a nonnegative eigenfunction of the p-Laplacian in Ω associated with $\lambda_{1,p}(\Omega)$. Then we may assume u(x) > 0 for $x \in \Omega$. Integrating the identity

$$-u\Delta_p u = \lambda_{1,p}(\Omega)|u|^{p-2}u^2$$

by parts, we have

$$\lambda_{1,p}(\Omega) = \frac{\int_{\Omega} |\nabla u|^p dv_g}{\int_{\Omega} |u|^p dv_g}.$$

Hence we have used Green's formula:

$$\int_{\Omega} -u \Delta_p u dv_g = -\int_{\Omega} u \operatorname{div}(|\nabla u|^{p-2} \nabla u) dv_g = \int_{\Omega} |\nabla u|^p dv_g.$$

By $\nabla u^p = pu^{p-1}\nabla u$ and the Hölder inequality,

(8)
$$\lambda_{1,p}(\Omega) \ge \left(\frac{\int_{\Omega} |\nabla u^p| dv_g}{p \int_{\Omega} |u|^p dv_g}\right)^p.$$

Now by the coarea formula,

(9)
$$\int_{\Omega} |\nabla u^{p}| dv_{g} = \int_{-\infty}^{\infty} \operatorname{Vol}(A(t)) dt$$

$$\geq \inf_{t} \left(\frac{\operatorname{Vol}(A(t))}{\operatorname{Vol}(V(t))} \right) \int_{-\infty}^{\infty} \operatorname{Vol}(V(t)) dt$$

$$\geq h(\Omega) \int_{\Omega} |u|^{p} dv_{g},$$

where $A(t) = \{x ; |u(x)|^p = t\}$ and $V(t) = \{x ; |u(x)|^p > t\}$. Combining (8) and (9), we get (4) in Theorem 2.

4. Proof of Theorem 3.

Let \tilde{f} be a nonnegative first eigenfunction of p-Laplacian on $\overline{V(k,r)}$. Let $d_{\tilde{x}_0}$ be the distance function with respect to the center \tilde{x}_0 of $\overline{V(k,r)}$. Since \tilde{f} depends only on the distance $d_{\tilde{x}_0}$, we may write $\tilde{f} = \varphi \circ d_{\tilde{x}_0}$, where φ is a positive function on (0,r). We define a C^{∞} map $\Theta: (0,r) \times S^{m-1} \to M$ by

$$\Theta(t, v) = \exp_x tv$$
,

where S^{m-1} is the unit sphere in T_xM and \exp_x is a local diffeomorphism from a neighbourhood of 0 in T_xM onto a neighbourhood of x in M. We set $\theta(t, v) = t^{m-1} \sqrt{\det g_{ij}(\Theta(t, v))}$, which is a C^{∞} function on $(0, r) \times S^{m-1}$. Then we have

$$\Theta * dv_a = \theta(t, v) dt dv$$
,

where dtdv denotes the canonical product measure on $(0, r) \times S^{m-1}$. When we define $\theta(t, v)$ on $\overline{V(k, r)}$ in the same manner, $\theta(t, v)$ does not depend on $v \in S^{m-1}$. We denote it simply by $\widetilde{\theta}(s)$. We have for $0 \le s \le r$,

(10)
$$(p-1)|\varphi'(s)|^{p-2}\varphi''(s) + \frac{\widetilde{\theta}'(s)}{\widetilde{\theta}(s)}|\varphi'(s)|^{p-2}\varphi'(s) + \lambda_{1,p}(V(k,r))|\varphi(s)|^{p-2}\varphi(s) = 0 ,$$

$$\varphi(r) = 0 , \qquad \varphi'(0) = 0 .$$

We take $f(x) = \varphi \circ d_{x_0}(x)$ as a test function on a ball $B(x_0, r)$, which satisfies the boundary condition $f|_{\partial B(x_0, r)} = \varphi(r) = 0$. Then we get

(11)
$$\lambda_{1,p}(B(x_0,r)) \le \frac{\int_{B(x_0,r)} |\nabla f|^p dv_g}{\int_{B(x_0,r)} |f|^p dv_g}.$$

From $|\nabla f|^p = |\varphi'|^p$ we have

(12)
$$\int_{B(x_0,r)} |\nabla f|^p dv_g = \int_{S^{m-1}} dS^{m-1} \int_0^{a(v)} |\varphi'(s)|^p \theta(s,v) ds,$$

(13)
$$\int_{B(x_0,r)} |f|^p dv_g = \int_{S^{m-1}} dS^{m-1} \int_0^{a(v)} |\varphi(s)|^p \theta(s,v) ds ,$$

where $a(v) \le r$ such that $\exp_{x_0}(a(v) \cdot v)$ is the cut point of x_0 along the geodesic $t \to \exp_{x_0}(tv)$. By

$$\{\widetilde{\theta}(s)|\varphi'(s)|^{p-2}\varphi'(s)\}' = -\lambda_{1,p}(V(k,r))|\varphi(s)|^{p-2}\varphi(s)\widetilde{\theta}(s) \le 0$$

and $\varphi'(0) = 0$, we can see that $\varphi'(s) \le 0$. Integrating the above equation (12) by parts, we have

$$\begin{split} &\int_{B(x_0,r)} |\nabla f|^p dv_g = -\int_{S^{m-1}} dS^{m-1} \int_0^{a(v)} \left[\left\{ \varphi | \varphi'|^{p-1} \theta(s,v) \right\}' - \varphi(|\varphi'|^{p-1} \theta)' \right] ds \\ &= \int_{S^{m-1}} dS^{m-1} \int_0^{a(v)} \varphi(s) |\varphi'(s)|^{p-2} \left\{ -(p-2) \varphi''(s) - \frac{\theta'(s,v)}{\theta(s,v)} \cdot \varphi'(s) \right\} \theta(s,v) ds \;, \end{split}$$

where $\theta'(s, v)$ denotes the partial derivative with respect to s. By the Bishop comparison theorem we have $\{\theta(s, v)/\tilde{\theta}(s)\}' \leq 0$. Recalling $\phi' \leq 0$, we get

$$\varphi'(s) \cdot \theta'(s, v)/\theta(s, v) \ge \varphi'(s) \cdot \tilde{\theta}'(s)/\tilde{\theta}(s)$$
.

Thus we have

$$\begin{split} & \int_{B(x_0,r)} |\nabla f|^p dv_g \\ & \leq \int_{S^{m-1}} dS^{m-1} \int_0^{a(v)} \varphi(s) |\varphi'(s)|^{p-1} \left\{ -(p-1)\varphi''(s) - \widetilde{\theta}'(s)/\widetilde{\theta}(s) \cdot \varphi'(s) \right\} \theta(s,v) ds \\ & = \int_{S^{m-1}} dS^{m-1} \int_0^{a(v)} \lambda_{1,p} (V(k,r)) \varphi^p(s) \theta(s,v) ds = \lambda_{1,p} (V(k,r)) \int_{B(x_0,r)} \varphi^p dv_g \; . \end{split}$$

This implies that $\lambda_{1,p}(B(x_0,r)) \le \lambda_{1,p}(V(k,r))$. If the equality holds, then $\{\theta(s,v)/\tilde{\theta}\}' = 0$.

Since the equality holds in the Bishop comparison theorem, $B(x_0, r)$ is of constant curvature k. It follows that $B(x_0, r)$ is isometric to V(k, r).

References

- [1] P. H. BÉRARD, Spectral Geometry, Direct and Inverse Problems, Lecture Notes in Math. 1207 (1986), Springer.
- [2] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, *Problems in Analysis*, Princeton Univ. Press (1970), 195-199.
- [3] S. Y. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143 (1975), 280-297.
- [4] T. SAKAI, Riemannian Geometry, American Math. Soc. (1996).

Present Address: Shikoku University, Ojin-cho, Tokushima, 771–1192 Japan.