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1. Introduction and results.

Let Q be a bounded domain in a Riemannian manifold (M, g) of dimension m.
We consider the following Dirichlet problem:

Au+AulP " 2u=0 in Q,

1
& u=0 on 092,

where A, u=div(| Vu |2~ *Vu) is the p-Laplacian with 1 <p<oo. In local coordinates,

Aot JVdet(g;)) JZ= 1 Ox! ( detlgp)g IVl =55 )
where |Vu|>=|Vu|; =) . ¢"(0u/0x")(0u/0x’), and (99)=(g;))~"'. The first eigenvalue
A1.,(R) of the p-Laplacian is defined as the least real number A for which the Dirichlet
problem (1) has a nontrivial solution ue W (). Here the Sobolev space W{?(R2) is the
completion of C3 () with respect to the Sobolev norm ||ull ,={{,(u|?+| Vu|P)dv} /"
It can be also characterized by

p
@ by @ = inf Jal VAL
u#0 jglulpdvg

where u runs over W§#(22) and dv, denotes the volume element of M. We would like
to estimate the 4, (). For the case p=2, there have been several results, such as the
Faber-Krahn inequality [1], the Cheeger inequality [2], and the Cheng inequality [3].
The purpose of this paper is to give inequalities for their p-Laplacian analogue. More
precisely we show the following theorems.

THEOREM 1 (the Faber-Krahn type inequality). Let M, be a complete simply
connected Riemannian manifold of constant sectional curvature k. Let B be the geodesic
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ball in M,, whose volume is equal to that of the domain Q in M,. Then the following
inequality holds

3) A1,(8)= 4, (B) .
The equality holds only for the case the domain Q is the ball B in M,.
Next we define the Cheeger constant A(2) of Q to be

Vol(6Q')

h(Q)=inf
2 Vol(@)

b

where Q' ranges over all open submanifold of Q with compact closure in 2 and smooth
boundary 0. Vol(2') and Vol(0R2') denote the volumes of Q' and Q' respectively.

THEOREM 2 (the Cheeger type inequality). For any bounded domain Q with
piecewise smooth boundary in a complete Riemannian manifold, we have the following
inequality:

h(Q) \?
4) /11,,,(9)2<(—> .
14

THEOREM 3 (the Cheng type inequality). Let M be an m-dimensional complete

Riemannian manifold with Ricci curvature satisfying Ric(v) > k(m— 1) for any unit vector

veTM. Let B(x,,r) be the geodesic ball in M of radius r with center x,, and V(k,r) be a
ball of radius r with center % in the space form of curvature k. Then we have

(5) Ay p(B(xo, )< A,y (VLK 1)),
with equality if and only if B(x, r) is isometric to V(k, r).

The author would like to express his gratitude to Professors T. Sakai and A.
Katsuda for helpful discussions and advice.

2. Proof of Theorem 1.

Let f be a nonnegative eigenfunction of p-Laplacian in Q associated with Ay,p(8).
Consider the set Q, ={xeQ; f(x)>t} and I',={xeQ; f(x)=t}. Using a symmetrization
procedure, we construct the geodesic ball B, in M, such that Vol(B,) = Vol(,) for each
t, and B,=B. We define a function F: B—»R™ such that F is a radially decreasing
function and 0B,={xe B ; F(x)=t}.

Then it suffices to prove

© f Frdv,— J Fedv,
(9] B
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(7) f | Vf |Pdv, > J |VF|Pdy, .
Q B
Indeed for (6), using coarea formula [4],
o D o0
J f”dvg=f J —[——dAtdt=J tp<f dd, )dt
Q o Jr. VS 0 r A Vfl
© d

o0 d »
=—| t*—Vol(Q)dt=—| t°—Vol(B)dt=| Frdv,,
L 5 ol J 5 Vol(B) j o

0 B

where dA4, is the (m — 1)-dimensional volume element on I',. Here we have used the identity
d
—Vol(Q,)= —J [Vf |~ tdA,.
dt I
Next we shall prove (7). Using the Hélder inequality, we have

f dAf=f [Vf 14 [V |7 P,
I, I:

i/p (p—1)/p
S(J IVfl”“dAt) (f IVfI‘ldA,>
I I';
1/p d (p—1)/p
=< f |Vf|"‘1dA,> (—fVOI(Q,)> .
. dt

Thus we have, using isoperimetric inequality,

Vol(I',)?

d p-1
< - EVOI(Q,))

Vol(I'¥)?
— (J|VF| tdA¥r1

where I'*={xe B; F(x)=t}, and dA4* is the (im— 1)-dimensional volume element on I'}*.
Integrating in t, we get (7).

J |Vf 1P~ 1dA, >
I

=f IVFP~ldAy¥,
i

3. Proof of Theorem 2.

Let u be a nonnegative eigenfunction of the p-Laplacian in € associated with
A1,,(€). Then we may assume u(x)>0 for x € Q. Integrating the identity

—uAju=2; (Dl ul’~*u?

by parts, we have
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| ol VulPdy,

A ()= .
l,p( ) jglul"dvg

Hence we have used Green’s formula:
J —ul judy, = —f udiv(| Vu|? " *Vu)dv, = J | Vu|Pdv, .
Q Q o

By Vu? =pu?~'Vu and the Holder inequality,

(o Vu?|dy, )”
®) A1, ()= <———————p [oluPds,)
Now by the coarea formula,
9 J IVu"ldvg=J‘oo Vol(A(z))dt
2 —
>inf <M> Jw Vol(V(t))dt
t \Vol(M(¥))/ J_-w

zh(Q)f |ulPdo, ,
2

where A(t)={x;|u(x)|?P=t} and W(t)={x;|u(x)|?>t}. Combining (8) and (9), we get
(4) in Theorem 2.

4. Proof of Theorem 3.

Let f be a nonnegative first eigenfunction of p-Laplacian on V(k, r). Let dz, be the
distance function with respect to the center %, of V(k, r). Since f depends only on the
distance dx,, we may write f=0 ody,, where ¢ is a positive function on (0, r). We define

aC®map@®:(0,r)xS™" '->M by
O(t, v)=exp,tv,

where S™~! is the unit sphere in T.M and exp, is a local diffeomorphism from
a neighbourhood of 0 in 7,M onto a neighbourhood of x in M. We set 0(t,v)=
tm~1,/detg;;(O(t, v)), which is a C* function on (0, r) x S™~'. Then we have

@ *dv, = 0(t, v)dtdv ,

where dtdv denotes the canonical product measure on (0, r) x S™~!. When we define
0(t, v) on V(k, r) in the same manner, 0(t, v) does not depend on ve S™ . We denote it
simply by 8(s). We have for 0<s<r,
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0'(s)
B(s)
o(r)=0,  @'(0)=0.

We take f(x)=¢od, (x) as a test function on a ball B(x,, r), which satisfies the boundary
condition f |spxo.n=@(r)=0. Then we get

@P=Dle' ()" 2@ (s)+

| @'(s) 17720 (s) + A1, ,(VIk, )| @(s) [P () =0,
(10)

jB(xg,r) | Vf |pdl)g

11 Ay p(Blxg, )< :
(11) 1.5(B(xo, 7)) Foe [ f 1P,

From |Vf |P=|¢’|? we have

a(v)
(12) J | Vf|Pdv,= j asm! j | @'(s)|P0(s, v)ds,
B(xg,r) sm-1 0
a(v)
(13) j | f |”dvg=J asm=! f | o(s) |P0(s, v)ds
B(xo,r) sm-1 0

where a(v) <r such that exp,, (a(v) * v) is the cut point of x, along the geodesic —~exp,, (tv).
By

{B(9)] @'(5) 1P~ 20 (5)} = — A1 (K, )] 9(5) [P~ *0p(s)8(s5) < O

and ¢'(0)=0, we can see that ¢'(s)<0. Integrating the above equation (12) by parts,
we have

o o ‘

f IVfI"dUg=—j dS'"'lf [{Q’pr'l""@(s, v)}'—tp(lfp'l""@)']ds
B(xo,r) sm=-1 0

0'(s, v)

0(s, v)

where 0'(s, v) denotes the partial derivative with respect to s. By the Bishop comparison
theorem we have {6(s, v)/0(s)}' <0. Recalling ¢’ <0, we get

@'(s)* 0'(s, v)/6(s, v) = @'(5) * B'(5)/0(s) -

a(v)
=J dsm! j @(s)] <P’(S)l"‘2~{—(p—2)¢”(S)—
sm—1

0

. <p’(s)}6(s, v)ds,

Thus we have

f | VS |Fdv,
B(xo,r)

a(v)
< J dsm~! J ) @'(s)IP~! {— (P—De"(5)=0'()/0(s)* ¢ ’(S)} O(s, v)ds
sm-1 (4]
a(v)

= J dsm1 J Ay p(Vik, M)@P(s)0(s, v)ds = Ay ,(VIk, 1)) @Pdv, .

Y B(xo.r))

This implies that 4, ,(B(xo, 1)) <4, ,(V(k, ). If the equality holds, then {6(s, v)/8} =0.
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Since the equality holds in the Bishop comparison theorem, B(x,,r) is of constant
curvature k. It follows that B(x,, r) is isometric to V(k, r).
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