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1. Introduction.

Let M be an n-dimensional manifold with a conformal class C. A conformal
connection on M is an affine connection D preserving the conformal class C. We also
assume D is torsion-free. The triple (M, C, D) is called a Weyl manifold or (C, D) is called
a Weyl structure on M. A Weyl manifold admits an Einstein-Weyl structure if the
symmetric part of the Ricci curvature of the conformal connection is proportional to
a conformal metric which belongs to C. The Einstein-Weyl equations on the metric and
affine connection are conformally invariant nonlinear partial differential equations. If
(M, g)is an Einstein manifold, then this conformal class C and the Levi-Civita connection
defines an Einstein-Weyl structure. So the notion of the Einstein-Weyl manifolds is a
generalization of an Einstein metric to conformal structures.

In this paper we consider infinitesimal deformations of an Einstein metric as an
Einstein-Weyl structure, and we prove any such deformation comes from conformal
Killing vector fields provided certain conditions of curvatures are satisfied.

2. Preliminaries.

Let (M, C, D) be a Weyl manifold. We assume n=dimM >3. This implies the
existence of a 1-form w, such that Dg=w,®g. Let Ric? denote the Ricci curvature of
D. In general, Ricci curvature of conformal connection is not symmetric, so we denote

by Sym(Ric®) its symmetric part. The scalar curvature R of D with respect to ge C is
defined by :

RP=tr,Ric?. (1)

A Weyl manifold (M, C, D) is said to be Einstein-Weyl manifold if the symmetric
part of the Ricci curvature Ric” is proportional to the metric g in C. So the
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Einstein-Weyl equations are

D

. R
Sym(Ric”) =—n"— g- )]

Note that R)g is conformally invariant quantity. In terms of the Ricci curvature and
the scalar curvature of the metric g € C, the Einstein-Weyl equations can be written by

. n=2 n—2 n—2
Rt g,y (R - s )

where & is the Lie derivative, J, is the codifferential of g, and the vector field w; is
defined as wy(X)=g(X, w}) for all vector fields X.

LemMA 1. Let (M, g) be an Einstein manifold, then the conformal class [g] of g,
and the Levi-Civita connection V, of g defines an Einstein-Weyl structure on M.

Proor. Obvious from the definition. []

3. Deformations of Einstein-Weyl structures.

In this section, we consider deformations of Einstein-Weyl structures at Einstein
metrics. Let (M, g) be an Einstein n-manifold. Consider a 1-parameter family of
Riemannian metrics g, with go=g, and 1-forms w, with w,=0. These define Weyl
structures (C,, D,)on M by D,g,=w, ® g,. Set h: =dg,/dt|,- o, and a : =dw,/dt|, - ,. Without
loss of generality, we may assume that tr,s=0 and J,4=0.

DerFINITION 2. The Einstein-Weyl structure (M, [g],V,) on an Einstein mani-
fold is conformally rigid if h=0 and «* is a conformal Killing vector of g for all
deformations (g(t), w(t)) as above.

Define the curvature operator Rm,: I'(S*(T*M)) - I'(S*(T*M)) by
ng(h)ij= “"Rikjlh“ . 4

Its first eigenvalue 4,(Rm,) is given by

Jy(Rm,)= inf ( J (Rm,(h), h)dug> / ( f |k |2dug). )

THEOREM 3. Let (M, g) be a closed Einstein n-manifold. Assume that first eigenvalue
41(Rmy) of the curvature operator Rm, satisfies

21(Rmy) >min {&, - ﬁ} . 6)
n 2n

Then the Einstein-Weyl structure (M, [g], V,) is conformally rigid.

PrROOF. A direct calculation shows
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@

d . 1 : : )
—Ti| ==(Vhi+Vhi=Vih,),
dt Jk o 2 J"k K'%j Jk

d d _, d

Rl =vi<_ rh )—v,.<* rk )

dt t=0 dt t=0 dt t=0

% (V,V,hjk+V,th,k—V,th,J—VJV,h,k—V,V,hlk+V1V"h,,) .

Because 4 is traceless and divergence-free, we get, from the second Bianchi identity,

d 1 - R
-—Ric =——Ah+—2h+Rmyh), 8
ar G| 5y Ah+— Q) ®
where 4, is the rough Laplacian acting on symmetric 2-tensor defined by
(A_gh)lj = Vkah,-j . (9)
The Einstein-Weyl equation is
. -2 -2
R1cg+f—4—— L9+ ! w,®w,=A,9, (10
where
n—2 n—2
Ag;=% {Rg+—4—|wg|2— 5 59%}. 11)
Differentiating this, we get
d d
—Ric +——Laug=Ah+—A . 12
& g=Ah+— gt=0g (12)
Therefore, we have
1 + n—2 d
—=A4h+Rm (h)+——FLug=—A . 13
3 g +Rmy(h)+ 2 «*d dr gz=og (13)

Define the operators T': I'(S*(T*M))— I(T3(M)) and S: I'(S*(T*M)) - I'(T(M)) by
(T(XX, Y, Z)=a(Vxh)(Y, Z)+ B(Vyh)Z, X)+9(V h)X, Y),
(SXX, Y, Z)=(Vyh)Z, X),

where o, 8, yeR, a*+ B2 +72=1. Set u=af + By +ya. Then maxu=1 and minu= —1/2.
By a direct caluculation, we get
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j |T(h)|2dug=j | VA Pdp,+2u f (S(h), Vh)du,
M M M

_ J (=41, h)dp, +2u j (6,S(h), hydp, .
M M

Note that 4 is divergence-free, and we have, from the second Bianchi identity,
(5gS (h))ij= —Vk(S (h))kij= _Vkvihjk
= —VV¥*h +g"" R} by + 9" Rimit

Jjl

R
= - (ng(h))i i -Ril h = (ng(h))i j —Tg h; j-
Hence using the tracelessness and divergence-freeness of A, we get
0< (—Zgh—2ung(h)—2u&h, h)dug .
IM h

»

= (—(1+u)ng(h)—2u51h—
n

M

n—2

%’g s h )dy‘g

™

= (— 2(1+wRmy(h)—2u 3"— h, h)dyg .
n

v M

Thus we get

R
u—ij | h|2dp, < —(1 +u)f (Rmy(h), h)dp, .
n Jm M

Assume h#0. If u= —-1, then

& > ( J (Rm,(h), h)dug>/< J |h Izdug) >4,(Rm,) >—1Ei s
n M M n

which is a contradiction. If u=1, then

_R > ( f (Rmy(h), h)dug>/( J | h lzd/.tg> >4;(Rm,)> _& ,
2n M M 2n

(14)

(15)

(16)

which leads also a contradiction. Therefore A=0, and «* is a conformal Killing vector

ofg. O

REMARK 4. (1) The deformations of Einstein-Weyl structures on odd dimen-

sional sphere includes all the perturbation of the standard Einstein metric.

(2) If (M, g) is not conformal to the standard sphere, then all conformal Killing

vector fields are Killing ([4]).

(3) Recently, Pedersen et al. also consider the deformations of Einstein-Weyl
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structures at Einstein metrics using the Gauduchon metrics (see [7)).
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