On Direct Sum Decomposition of Integers and Y. Ito's Conjecture

Masahito DATEYAMA and Teturo KAMAE

Osaka City University
(Communicated by Y. Maeda)

Let $N = \{0, 1, 2, \dots\}$. Every element $a \in N$ can be expressed as

$$a = \sum_{i=0}^{n} \alpha_i 2^i$$
 for some n

where $\alpha_i \in \{0, 1\}$ for all i's.

We can identify a with $(\alpha_0, \alpha_1, \alpha_2, \dots, \alpha_n, 0, 0, \dots) \in \{0, 1\}^N$. We also identify $\{0, 1\}^N$ in the usual way with \mathbb{Z}_2 , the completion of \mathbb{Z} in the 2-adic valuation norm.

Thus N is imbedded in \mathbb{Z}_2 as the 0-1-sequences with only finitely many 1's, while the negative integers are imbedded as those with finitely many 0's. For example, if a is a positive integer corresponding to the 0-1-sequence as above with $\alpha_i = 0$ for any i > n, then -a is identified with $(0, \dots, 0, 1, \overline{\alpha_{m+1}}, \overline{\alpha_{m+2}}, \dots)$, where m is the smallest i with $a_i = 1$ and we denote $\overline{0} = 1$, $\overline{1} = 0$.

We denote by \bar{E} the closure of a subset E of \mathbb{Z}_2 .

Let us denote

$$A = \left\{ \sum_{i} \varepsilon_{i} 2^{2i+1} ; \ \varepsilon_{i} \in \{0, 1\} \text{ and } \varepsilon_{i} = 1 \text{ for finitely many } i\text{'s} \right\}.$$

For $\omega = (\omega_0, \omega_1, \cdots) \in \{-1, 1\}^{\mathbb{N}}$ with $\omega_i = -1$ for infinitely many times, denote $B_{\omega} = \left\{ \sum_i \varepsilon_i \omega_i 2^{2i}; \ \varepsilon_i \in \{0, 1\} \text{ and } \varepsilon_i = 1 \text{ for finitely many } i\text{'s} \right\}.$

Let us denote

$$\mathscr{C}(A) = \{ C \subset \mathbb{Z}; \ 0 \in C \text{ and } A \oplus C = \mathbb{Z} \},$$

where $A \oplus C = \mathbb{Z}$ implies that any element in \mathbb{Z} can be written uniquely as a sum of elements in A and C.

THEOREM 1 (Y. Ito [1]). Let C be a subset of \mathbb{Z} containing 0. Then, $C \in \mathcal{C}(A)$ if and only if all of the following conditions are satisfied:

- (i) For γ and δ in C, either $\gamma = \delta$ or the maximal number i such that 2^i divides $\gamma \delta$ is even,
 - (ii) if a subset C' of **Z** satisfies the condition (i) and $C' \supset C$ then C' = C,
- (iii) there exists an $\omega = (\omega_0, \omega_1, \cdots) \in \{-1, 1\}^N$ with $\omega_i = -1$ for infinitely many times such that $A \oplus C \supset B_{\omega}$.
- Y. Ito [1] conjectured that B_{ω} in the above condition (iii) can be replaced by any $D \in \mathcal{C}(A)$. The aim of this paper is to generalize the above result a little bit toward the conjecture.
- LEMMA 1. Let C be a subset of **Z** with $0 \in C$. Then C satisfies the conditions (i) and (ii) in Theorem 1, if and only if $C = \overline{C} \cap \mathbf{Z}$ and
- (*) there exists a unique set of ϕ_n : $\{0,1\}^n \to \{0,1\}$ $(n=1,2,\cdots)$ such that for any $n=1,2,\cdots$ and $\xi=(\xi_0,\xi_1,\cdots,\xi_{n-1})\in \{0,1\}^n$, there exists an element $c=(c_0,c_1,\cdots)\in C$ such that $c_{2i}=\xi_i$ $(0\leq i\leq n-1)$ and that for any c with this property, it holds that $c_{2i-1}=\phi_i(\xi_0,\xi_1,\cdots,\xi_{i-1})$ $(1\leq i\leq n)$.

PROOF. Assume that C satisfies the conditions (i) and (ii). Suppose that every element in C takes 0 (resp. 1) at 0th coordinate. Let $n \in \mathbb{Z}$ be any odd (resp. even) number. Then n-c is odd for any $c \in C$ and so $C \cup \{n\}$ satisfies the condition (i). It contradicts the condition (ii). Thus for any $a \in \{0, 1\}$ there is an element $c \in C$ whose 0th component is a.

If two elements in C have the same 0th coordinate and different values as the 1st coordinates, then the difference is divisible by 2^1 and is not divisible by 2^2 . It contradicts the condition (i). Thus, ϕ_1 in the condition (*) is determined as the mapping from the value in the 0th coordinate to the value in the 1st coordinate of the elements in C.

For $n=1, 2, \dots$, we define a condition

 (P_n) : there exists a unique ϕ_n such that for any $(\xi_0, \xi_1, \dots, \xi_{n-1}) \in \{0, 1\}^n$, there exists a $c = (c_0, c_1, \dots) \in C$ such that $c_{2i} = \xi_i$ $(i = 0, 1, \dots, n-1)$ and that for any c with this property, it holds that $c_{2n-1} = \phi_n(\xi_0, \xi_1, \dots, \xi_{n-1})$.

Assuming (P_1) , \cdots , (P_n) , we prove (P_{n+1}) . Take any $(\xi_0, \xi_1, \cdots, \xi_n) \in \{0, 1\}^{n+1}$. If there does not exist $c = (c_0, c_1, \cdots) \in C$ such that $c_{2i} = \xi_i$ $(0 \le i \le n)$, then for $z = (\xi_0, z_1, \xi_1, z_3, \cdots, \xi_n, 0, 0, \cdots) \in \mathbb{Z}$ with $z_{2i-1} = \phi_i(\xi_0, \xi_1, \cdots, \xi_{i-1})$ $(1 \le i \le n)$, $C \cup \{z\}$ satisfies the condition (i) by (P_1) , \cdots , (P_n) , contradicting the condition (ii). Thus there is an element $c = (c_0, c_1, \cdots) \in C$ such that $c_{2i} = \xi_i$ $(0 \le i \le n)$. Take any c like this. Then by the condition (i) and (P_1) , \cdots , (P_n) , (P_n) , (P_n) , (P_n) is determined by $(\xi_0, \xi_1, \cdots, \xi_n)$. Thus, we determine $\phi_{n+1}(\xi_0, \xi_1, \cdots, \xi_n) = c_{2n+1}$. Then, (P_{n+1}) is satisfied with this ϕ_{n+1} .

Hence we have (P_n) for any n. Thus the condition (*) holds.

Assume that $\xi = (\xi_0, \xi_1, \dots) \in \overline{C} \cap \mathbb{Z}$. Then, it satisfies that $\xi_{2n-1} = \phi_n(\xi_0, \xi_2, \dots, \xi_{2n-2})$ for all $n = 1, 2, \dots$ by the condition (*). Then for any $c \in C$, either $\xi = c$ or the

first nonzero component of $c-\xi$ occurs at an even coordinate. This shows that $C \cup \{\xi\}$ satisfies the condition (i). By the condition (ii), $\xi \in C$. Thus $C = \overline{C} \cap \mathbb{Z}$.

Conversely, assume that C satisfies the condition (*) together with $C = \overline{C} \cap \mathbb{Z}$. Then, (i) follows since for any $c \in C$, its odd coordinates are determined by its even coordinates before it.

To prove (ii), suppose that it is not satisfied. Then there exists $z \in \mathbb{Z} \setminus C$ satisfying that the maximum k such that 2^k divides z-c is even for any $c \in C$. Let $z = (\xi_0, \xi_1, \cdots)$. Then, for any $n \in \mathbb{N}$, there exists an element $c = (c_0, c_1, \cdots) \in C$ such that $c_{2i} = \xi_{2i}$ $(0 \le i \le n-1)$. Since the first k with $\xi_k \ne c_k$ is even, we have k > 2n-2 for this k. Hence, $z \in \overline{C} \cap \mathbb{Z} = C$, which is a contradiction.

The following lemma follows immediately from Lemma 1:

LEMMA 2. Let C be a subset of **Z** with $0 \in C$ satisfying the conditions (i) and (ii) in Theorem 1. Let ϕ_n 's be as in the condition (*). Then it holds that

(**) $\xi = (\xi_0, \xi_1, \dots) \in \overline{C}$ if and only if $\xi_{2n-1} = \phi_n(\xi_0, \xi_2, \dots, \xi_{2n-2})$ for any $n = 1, 2, \dots$

LEMMA 3. Let C satisfy the condition (**) in Lemma 2 for some set of ϕ_n 's. Then

$$\bar{A} \oplus \bar{C} = \mathbf{Z}_2$$

holds.

PROOF. Let ϕ_n 's satisfy that for any $\xi = (\xi_0, \xi_1, \dots) \in \mathbb{Z}_2, \ \xi \in \overline{C}$ if and only if

$$\xi_{2n-1} = \phi_n(\xi_0, \xi_1, \dots, \xi_{2n-2})$$
 $(n=1, 2, \dots)$.

For a given $z=(z_0, z_1, \cdots) \in \mathbb{Z}_2$, we construct $\alpha=(\alpha_0, \alpha_1, \cdots) \in \overline{A}$ and $\gamma=(\gamma_0, \gamma_1, \cdots) \in \overline{C}$ with $z=\alpha+\gamma$ as follows.

Since $\alpha_0 = 0$, $\gamma_0 = z_0$. By (**), γ_1 is determined by $\gamma_1 = \phi_1(\gamma_0)$. So α_1 is determined by $\alpha_1 + \gamma_1 = z_1 \pmod{2}$, and the *carrier* c_2 is determined by $c_2 = (\alpha_1 + \gamma_1 - z_1)/2$.

For $n \ge 2$ we can determine γ_n , α_n and c_{n+1} inductively by

$$\gamma_n + c_n = z_n \pmod{2}$$
, $\alpha_n = 0$, and $c_{n+1} = (\gamma_n + c_n - z_n)/2$

if n is even, and

$$\gamma_n = \phi_{(n+1)/2}(\gamma_0, \gamma_2, \cdots, \gamma_{n-1}),$$

$$\alpha_n + \gamma_n + c_n = z_n \pmod{2}, \text{ and }$$

$$c_{n+1} = (\alpha_n + \gamma_n + c_n - z_n)/2$$

if n is odd.

Thus, we obtain α and γ in \mathbb{Z}_2 with $z = \alpha + \gamma$. It is clear that $\alpha \in \overline{A}$.

The uniqueness of the decomposition is proved as follows. If $\alpha + \gamma = \alpha' + \gamma'$ happens, then $\alpha - \alpha' = \gamma' - \gamma$. By (**), $\gamma' - \gamma$ is either 0 or the first coordinate with different values

in γ and γ' is even. However the first coordinate with different values in α and α' is odd if $\alpha \neq \alpha'$. Thus we have that $\alpha' = \alpha$ and $\gamma' = \gamma$.

THEOREM 2. Let $C \subset \mathbb{Z}$ with $0 \in C$. Then, $C \in \mathscr{C}(A)$ if and only if there exists a set of $\phi_n : \{0, 1\}^n \to \{0, 1\}$ $(n = 1, 2, \cdots)$ satisfying the condition (**) in Lemma 2 such that (*) for any $n \ge 1$ and for any $(\xi_0, \xi_1, \cdots, \xi_{n-1}) \in \{0, 1\}^n$, there exists an $l_0 \ge 0$ such that

$$\phi_{n+1}(\xi_0, \xi_1, \dots, \xi_{n-1}, \underbrace{1, 1, \dots, 1}_{l}) = 1$$

for all $l \ge l_0$.

PROOF. Assume that $C \in \mathcal{C}(A)$. Then by Theorem 1, Lemmas 1 and 2, there exists a set of ϕ_n : $\{0, 1\}^n \to \{0, 1\}$ $(n = 1, 2, \cdots)$ satisfying (**) together with (*). Suppose that (*) does not hold for it. Then there exists an n and $(\xi_0, \xi_1, \cdots, \xi_{n-1}) \in \{0, 1\}^n$ such that $\phi_{n+l}(\xi_0, \xi_1, \cdots, \xi_{n-1}, \underbrace{1, 1, \cdots, 1}) = 0$ for infinitely many l's.

Define $z = (z_0, z_1, \dots) \in \mathbb{Z}_2$ so that $z_{2i} = \xi_i, z_{2i+1} = \phi_{i+1}(\xi_0, \xi_1, \dots, \xi_i)$ $(0 \le i \le n-1)$ and $z_i = 1$ $(i \ge 2n)$. Then, z is a negative integer.

Define $\gamma = (\gamma_0, \gamma_1, \cdots) \in \overline{C}$ by $\gamma_{2i} = \xi_i$ $(0 \le i \le n-1)$, $\gamma_{2i} = 1$ $(i \ge n)$ and $\gamma_{2i-1} = \phi_i(\gamma_0, \gamma_2, \cdots, \gamma_{2i-2})$ for any $i = 1, 2, \cdots$. Define $\alpha = (\alpha_0, \alpha_1, \cdots) \in \overline{A}$ by $\alpha_i = 1$ for $i \ge 2n$ with $\gamma_i = 0$, and $\alpha_i = 0$ otherwise.

Then, $\alpha + \gamma = z$ and $\alpha \in \overline{A} \setminus A$. This is a contradiction by Lemma 3, since by our assumption, we have another decomposition of z into elements in A and C.

Conversely, assume that there exist ϕ_n 's satisfying the conditions (**) and (#). By Lemma 3, we have $\overline{A} \oplus \overline{C} = \mathbb{Z}_2$. Therefore, for any $z = (z_0, z_1, \dots) \in \mathbb{Z}$ there is an $\alpha = (\alpha_0, \alpha_1, \dots) \in \overline{A}$ and a $\gamma = (\gamma_0, \gamma_1, \dots) \in \overline{C}$ such that $\alpha + \gamma = z$. There are two cases for z.

Case 1. $z \ge 0$. There exists an n_0 such that $z_n = 0$ for all $n \ge n_0$.

Assume that there exists an even n with $n \ge n_0$ such that there is a carrier to the n-th coordinate in the addition $\alpha + \gamma$. Since $z_n = 0$ and $\alpha_n = 0$, $\gamma_n = 1$ and there is a carrier to the (n+1)-th coordinate. So γ_{n+1} must be $1 - \alpha_{n+1}$ since $z_{n+1} = 0$, and there is a carrier to the (n+2)-th coordinate. Thus n+2 satisfies the assumption again. Therefore $\gamma_m = 1$ for all even $m \ge n$. By the condition (\sharp), there exists an $l_0 \ge 0$ such that $\gamma_{2i-1} = 1$ for all $i \ge n/2 + l_0$. This shows that γ is a negative integer.

Now assume that there is no carrier to the *n*-th coordinate for all even n with $n \ge n_0$. Then, $\gamma_n = 0$ and there is no carrier to the (n+1)-th coordinate for all even n with $n \ge n_0$, since $z_n = 0$ and $\alpha_n = 0$. Thus the fact $z_{n+1} = 0$ implies $\alpha_{n+1} = \gamma_{n+1}$. If $\alpha_{n+1} = \gamma_{n+1} = 1$, there must be a carrier to the (n+2)-th coordinate. Hence we have $\alpha_{n+1} = \gamma_{n+1} = 0$. Therefore $\gamma_n = 0$ for all $n \ge n_0$. This shows that γ is a nonnegative integer.

Case 2. z < 0. There exists an n_0 such that $z_n = 1$ for all $n \ge n_0$.

Let $n \ge n_0$ be even.

Assume that there is no carrier to the *n*-th coordinate in the addition $\alpha + \gamma$. Since

 $z_n = 1$, $\gamma_n = 1$ and there is no carrier to the (n+1)-th coordinate. So γ_{n+1} must be $1 - \alpha_{n+1}$ and there is no carrier to the (n+2)-th coordinate. Therefore, in this case, $\gamma_m = 1$ for all even $m \ge n$. By the condition (\sharp) , $\gamma_{2i-1} = 1$ for all $i \ge n/2 + l_0$. This shows that γ is a negative integer.

When there is a carrier to the *n*-th coordinate, n+2 satisfies the above assumption. Indeed, $\gamma_n=0$ since $\alpha_n=0$ and there is no carrier to the (n+1)-th coordinate. Since $z_{n+1}=1$, $\gamma_{n+1}=1-\alpha_{n+1}$ and there is no carrier to the (n+2)-th coordinate.

DEFINITION. Let $\psi = \{\psi_n\}_{n\geq 0}$ be a set of maps $\psi_n : \{-1, 0, 1\}^n \to \{-1, 1\}$ such that for any $(\varepsilon_0, \varepsilon_1, \cdots) \in \{-1, 0, 1\}^N$, $\psi_n(\varepsilon_0, \varepsilon_1, \cdots, \varepsilon_{n-1}) = -1$ for infinitely many n's.

For a $\psi = \{\psi_n\}_{n \ge 0}$ as above, let $B_{\psi} \subset \mathbb{Z}$ be the set of

$$\beta = \sum_{n=0}^{\infty} \varepsilon_n 2^{2n} = (\beta_0, \beta_1, \beta_2, \cdots)$$

such that $\varepsilon_n \in \{-1, 0, 1\}$ satisfies that either $\varepsilon_n = 0$ or $\varepsilon_n = \psi_n(\varepsilon_0, \varepsilon_1, \dots, \varepsilon_{n-1})$ where the constant ψ_0 can be ± 1 .

THEOREM 3. Suppose that C is an infinite set of **Z** containing 0. Then, $C \in \mathcal{C}(A)$ if and only if all of the following conditions are satisfied.

- (i) For γ and δ in C, either $\gamma = \delta$ or the maximal number k such that 2^k divides $\gamma \delta$ is even,
 - (ii) if a subset C' of **Z** satisfies the condition (i) and $C' \supset C$ then C' = C,
 - (iii)' there is a B_{ψ} as in Definition such that $A \oplus C \supset B_{\psi}$.

LEMMA 4. Let B_{ψ} be as in Definition and $\beta = (\beta_0, \beta_1, \beta_2, \cdots) = \sum \varepsilon_i 2^{2i} \in \overline{B_{\psi}}$. Then, for any $n = 0, 1, 2, \cdots$,

- (i) $\beta_{2n} = \beta_{2n-1}$ if and only if $\varepsilon_n = 0$, while $\varepsilon_n = 0$ implies $\beta_{2n+1} = \beta_{2n}$,
- (ii) $\beta_{2n} \neq \beta_{2n-1}$ if and only if $\varepsilon_n \neq 0$, while $\varepsilon_n \neq 0$ implies $\beta_{2n+1} = (1 \varepsilon_n)/2$, where we put $\beta_{-1} = 0$.

PROOF. Since $\beta \equiv 0, 1, 3 \pmod 4$ according to $\varepsilon_0 = 0, 1, -1$, respectively, we have (i) and (ii) for n = 0. Let $n \ge 1$. Denote by s(n), the maximal number i with $0 \le i \le n - 1$ such that $\varepsilon_i \ne 0$. Put s(n) = -1 if $\varepsilon_i = 0$ for all $0 \le i \le n - 1$. Then $\beta_{2n-1} = 1$ if and only if $s(n) \ge 0$ and $\varepsilon_{s(n)} = -1$. For, $\beta_{2n-1} = 1$ is equivalent to the fact that β is congruent to a negative integer not less than -2^{2n-1} modulo 2^{2n} , and that $\beta_{2n-1} = 0$ otherwise.

- (i) If $\beta_{2n} = \beta_{2n-1}$, then β is congruent to an integer whose absolute value is not greater than 2^{2n-1} modulo 2^{2n+1} . Hence we have $\varepsilon_n = 0$. The converse is also true. If $\varepsilon_n = 0$, then $\beta_{2n+1} = \beta_{2n}$ since s(n+1) = s(n).
- (ii) By (i), $\beta_{2n} \neq \beta_{2n-1}$ if and only if $\varepsilon_n \neq 0$. Moreover $\varepsilon_n \neq 0$ implies s(n+1) = n, and so $\beta_{2n+1} = 0$ if $\varepsilon_n = 1$, and $\beta_{2n+1} = 1$ if $\varepsilon_n = -1$.

LEMMA 5. Let B_{ψ} be as in Definition. Then, B_{ψ} satisfies the condition (**).

PROOF. Let $\{\psi_n\}_{n\geq 0}$ be as in Definition. Let $\beta = \sum_{n=0}^{\infty} \varepsilon_n 2^{2n} = (\beta_0, \beta_1, \cdots)$

 $(\varepsilon_n \in \{-1, 0, 1\})$ be a number in $\overline{B_{\psi}}$.

If $\beta_0 = 0$, then $\epsilon_0 = 0$ and so $\phi_1(0) = \beta_1 = 0$. If $\beta_0 = 1$, then $\epsilon_0 = 1$ or $\epsilon_0 = -1$ according to the constant value ψ_0 . Hence $\phi_1(1) = 0$ if $\epsilon_0 = 1$ and $\phi_1(1) = 1$ if $\epsilon_0 = -1$.

Assume that $\phi_1, \phi_2, \dots, \phi_n$ are already defined.

If $\beta_{2n} = \beta_{2n-1}$, then $\beta_{2n+1} = \beta_{2n}$ by Lemma 4. If $\beta_{2n} \neq \beta_{2n-1}$, then $\beta_{2n+1} = (1 - \varepsilon_n)/2$ and $\varepsilon_n \neq 0$. In this case, $\varepsilon_n = \psi_n(\varepsilon_0, \varepsilon_1, \dots, \varepsilon_{n-1})$ by the definition of B_{ψ} . We define ϕ_{n+1} by $\phi_{n+1}(\beta_0, \beta_2, \dots, \beta_{2n}) = \beta_{2n}$ if $\beta_{2n} = \phi_n(\beta_0, \beta_2, \dots, \beta_{2n-2})$ and $\phi_{n+1}(\beta_0, \beta_2, \dots, \beta_{2n}) = (1 - \psi_n(\varepsilon_0, \varepsilon_1, \dots, \varepsilon_{n-1}))/2$ otherwise.

Thus we have a set of maps $\phi_n : \{0, 1\}^n \to \{0, 1\} \ (n = 1, 2, \cdots)$.

By the construction of ϕ_n 's, it is obvious that any $\beta = (\beta_0, \beta_1, \dots) \in \overline{B_{\psi}}$ satisfies $\beta_{2n-1} = \phi_n(\beta_0, \beta_1, \dots, \beta_{2n-2})$ $(n \ge 1)$.

Conversely assume that $\beta = (\beta_0, \beta_2, \dots) \in \mathbb{Z}_2$ satisfies that $\beta_{2n-1} = \phi_n(\beta_0, \beta_2, \dots, \beta_{2n-2})$ for any $n = 1, 2, \dots$. We define ε_n $(n = 0, 1, 2, \dots)$ by

$$\varepsilon_{n} = \begin{cases} 0 & (\beta_{2n} = \beta_{2n-1}) \\ 1 - 2\beta_{2n+1} & (\beta_{2n} \neq \beta_{2n-1}) \end{cases}.$$

Then, by the definition of ϕ_n 's, $\varepsilon_n \neq 0$ implies that $\varepsilon_n = \psi_n(\varepsilon_0, \varepsilon_1, \dots, \varepsilon_{n-1})$. Moreover, it is not difficult to prove that

$$\sum_{i=0}^{n} \varepsilon_i 2^{2i} \equiv \sum_{i=0}^{2n} \beta_i 2^i \pmod{2^{2n}}$$

for any $n=1, 2, \cdots$.

Hence we have $\beta = \sum_{i=0}^{\infty} \varepsilon_i 2^{2i} \in \overline{B_{\psi}}$.

LEMMA 6. For any B_{ψ} as in Definition, we have $B_{\psi} \in \mathscr{C}(A)$.

PROOF. By Lemma 5, we can take ϕ_n 's satisfying the condition (**) for this B_{ψ} . By Theorem 2, it is sufficient to prove the condition (#) for this ϕ_n 's.

Take any n and $\xi = (\xi_0, \xi_1, \dots, \xi_{n-1}) \in \{0, 1\}^n$. Then by the definition for ϕ_n 's, it holds that if there exists $l_0 \ge 0$ such that

$$\phi_{n+l_0}(\xi_0, \xi_1, \dots, \xi_{n-1}, \underbrace{1, 1, \dots, 1}_{l_0}) = 1$$
,

then $\phi_{n+l}(\xi_0, \xi_1, \dots, \xi_{n-1}, \underbrace{1, 1, \dots, 1}_{l}) = 1$ for any $l \ge l_0$ by Lemma 4 (i). In this case, the condition (#) holds. Suppose to the contrary that $\phi_{n+l}(\xi_0, \xi_1, \dots, \xi_{n-1}, \underbrace{1, 1, \dots, 1}_{l}) = 0$ for any $l \ge 0$. This implies the existence of $(\varepsilon_0, \varepsilon_1, \dots)$ such that $\psi_{n+l}(\varepsilon_0, \varepsilon_1, \dots, \varepsilon_{n+l-1}) = 1$ for any $l \ge 0$, which contradicts the condition stated in Definition. Hence, we have the condition (#).

Proof of Theorem 3.

Assume that $C \subset \mathbb{Z}$ satisfies the conditions (i), (ii) and (iii)'. By Lemmas 2 and 3, there exist ϕ_n 's such that C satisfies the condition (**) as well as $\overline{A} \oplus \overline{C} = \mathbb{Z}_2$. By Theorem 2, it remains only to show that ϕ_n 's satisfy the condition (#).

Suppose that ϕ_n 's do not satisfy the condition (#). Then there exist an m and $(\xi_0, \xi_1, \dots, \xi_{m-1}) \in \{0, 1\}^m$ such that $\phi_{m+l}(\xi_0, \xi_2, \dots, \xi_{m-1}, \underbrace{1, 1, \dots, 1}_{l}) = 0$ for infinitely many l's.

Let $\gamma = (\gamma_0, \gamma_1, \gamma_2 \cdots) \in \overline{C}$ be the element defined by

$$\gamma_{2i} = \xi_i \ (i = 0, 1, \dots, m-1)$$
 and $\gamma_{2i} = 1 \ (i \ge m)$.

Note that $\gamma \notin \mathbb{Z}$.

We denote τ_n $(n=1, 2, \cdots)$ in the place of ϕ_n in the condition (**) for B_{ψ} . We can define $\alpha = (\alpha_0, \alpha_1, \cdots) \in \overline{A}$ and $\beta = (\beta_0, \beta_1, \cdots) \in \overline{B_{\psi}}$ such that $\alpha + \gamma = \beta$ in a similar way as in the proof of Lemma 3 as follows.

Since $\alpha_0 = 0$, $\beta_0 = \gamma_0$. Let $\beta_1 = \tau_1(\beta_0)$ and define α_1 by $\alpha_1 + \gamma_1 = \beta_1 \pmod{2}$, and the carrier c_2 is determined by $c_2 = (\alpha_1 + \gamma_1 - \beta_1)/2$.

For $n \ge 2$, we can determine β_n , α_n and c_{n+1} inductively by

$$\gamma_n + c_n = \beta_n \pmod{2}$$
, $\alpha_n = 0$, and $c_{n+1} = \frac{\gamma_n + c_n - \beta_n}{2}$

if n is even, and

$$\beta_n = \tau_{(n+1)/2}(\beta_0, \beta_2, \cdots, \beta_{n-1}),$$

$$\alpha_n + \gamma_n + c_n = \beta_n \pmod{2}, \text{ and}$$

$$c_{n+1} = \frac{\alpha_n + \gamma_n + c_n - \beta_n}{2}$$

if *n* is odd. We denote also $\beta = \sum_{n=0}^{\infty} \varepsilon_i 2^{2i}$ where $\varepsilon_i \in \{-1, 0, 1\}$ satisfying Definition and determined by β_{2i-1} , β_{2i} , and β_{2i+1} by Lemma 4.

We shall show that $\alpha + \gamma \in \mathbb{Z}$. Then, α and γ must be integers by the fact that $A \oplus C \supset B_{\psi}$. It contradicts the fact that $\gamma \notin \mathbb{Z}$.

For $i \ge m$, we call i of type (b, e, c) if $\beta_{2i-1} = b$, $\varepsilon_i = e$ and if $c_{2i} = c$. We use the symbol '*' to define a type which is indifferent to the values in the position of '*'. For example, i is of type (*, 1, 1) if and only if $\varepsilon_i = 1$ and $c_{2i} = 1$.

Case 1. If there exists $i \ (i \ge m)$ of type (0, *, 1) or of type (*, 1, 1), then $\beta \in \mathbb{Z}$.

Indeed, $\beta_{2i}=0$ since there is a carrier to the 2i-th coordinate, $\alpha_{2i}=0$ and $\gamma_{2i}=1$. By Lemma 4, we have that $\beta_{2i+1}=0$. Since there is a carrier to the (2i+1)-th coordinate, there must be a carrier to the (2i+2)-th coordinate. This shows that i+1 is of type

(0, *, 1). Therefore we have $\beta_k = 0$ for all $k \ge 2i$ inductively. In this case, β is a non-negative integer.

Case 2. If there exists i ($i \ge m$) of type (1, *, 0) or of type (*, -1, 0), then $\beta \in \mathbb{Z}$. Indeed, $\beta_{2i} = 1$ since there is no carrier to the 2i-th coordinate, $\alpha_{2i} = 0$ and $\gamma_{2i} = 1$. By Lemma 4, we have that $\beta_{2i+1} = 1$. Since there is no carrier to the (2i+1)-th coordinate, there must be no carrier to the (2i+2)-th coordinate. This shows that i+1 is of type (1, *, 0). Therefore we have $\beta_k = 1$ for all $k \ge 2i$ inductively. In this case, β is a negative integer.

It remains to show that Case 1 or Case 2 always happen.

If i ($i \ge m$) is of type (1, -1, 1), then $\beta_{2i} = 0$ since there is a carrier to the 2i-th coordinate, $\alpha_{2i} = 0$ and $\gamma_{2i} = 1$. By Lemma 4, we have that $\beta_{2i+1} = 1$. Since there is a carrier to the (2i+1)-th coordinate, $\alpha_{2i+1} + \gamma_{2i+1} = 0 \pmod{2}$. There will be two cases.

If $\alpha_{2i+1} = \gamma_{2i+1} = 0$, then there is no carrier to the (2i+2)-th coordinate. This shows that i+1 is of type (1, *, 0) in the Case 2.

If $\alpha_{2i+1} = \gamma_{2i+1} = 1$, then there is a carrier to the (2i+2)-th coordinate. This shows that i+1 is of type (*,1,1) in the Case 1 or of type (1,-1,1). However, type (1,-1,1) cannot last indefinitely because of the assumption that $\gamma_{2m+2l-1} = \phi_{m+l}(\xi_0,\xi_1,\dots,\xi_{m-1},\underbrace{1,1,\dots,1}_{l}) = 0$ for infinitely many l's.

If i ($i \ge m$) is of type (0, 1, 0), then $\beta_{2i} = 1$ since there is no carrier to the 2i-th coordinate. $\alpha_{2i} = 0$ and $\gamma_{2i} = 1$. By Lemma 4, we have that $\beta_{2i+1} = 0$. Since there is no carrier to the (2i+1)-th coordinate, $\alpha_{2i+1} + \gamma_{2i+1} = 0$ (mod 2). There will be two cases.

If $\alpha_{2i+1} = \gamma_{2i+1} = 1$, then there is a carrier to the (2i+2)-th coordinate. This shows that i+1 is of type (0, *, 1) in the Case 1.

If $\alpha_{2i+1} = \gamma_{2i+1} = 0$, then there is no carrier to the (2i+2)-th coordinate. This shows that i+1 is of type (*, -1, 0) in the Case 2 or of type (0, 1, 0) again. However, type (0, 1, 0) cannot last indefinitely because of the assumption that $\psi_i(\varepsilon_0, \varepsilon_1, \dots, \varepsilon_{i-1}) = -1$ for infinitely many i's.

References

[1] Y. Ito, Direct sum decomposition of the integers, Tokyo J. Math. 18 (1995), 259-270.

Present Address:

DEPARTMENT OF MATHEMATICS, OSAKA CITY UNIVERSITY, SUGIMOTO, SUMIYOSHI-KU, OSAKA, 558–8585 JAPAN.