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Let $N=\{0,1,2, \cdots\}$ . Every element $a\in N$ can be expressed as

$a=\sum_{i=0}^{n}\alpha_{i}2^{i}$ for some $n$

where $\alpha_{i}\in\{0,1\}$ for all $i’ s$ .
We can identify $a$ with $(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}, 0,0, \cdots)\in\{0,1\}^{N}$ . We also identify

$\{0,1\}^{N}$ in the usual way with $Z_{2}$ , the completion of $Z$ in the 2-adic valuation norm.
Thus $N$ is imbedded in $Z_{2}$ as the O-l-sequences with only finitely many l’s, while

the negative integers are imbedded as those with finitely many $O’ s$ . For example, if $a$ is
a positive integer corresponding to the O-l-sequence as above with $\alpha_{i}=0$ for any $i>n$ ,
then $-a$ is identified with

$\frac{(0,\cdots,0,1}{m+1},$
$\overline{\alpha_{m+1}},$ $\overline{\alpha_{m+2}},$ $\cdots$ ), where $m$ is the smallest $i$ with

$a_{i}=1$ and we denote $\overline{0}=1,$ $\overline{1}=0$ .
We denote by $\overline{E}$ the closure of a subset $E$ of $Z_{2}$ .
Let us denote

$A=\{\sum_{i}\epsilon_{i}2^{2i+1}$ ; $\epsilon_{i}\in\{0,1\}$ and $\epsilon_{i}=1$ for finitely many $i’ s\}$ .

For $\omega=(\omega_{0}, \omega_{1}, \cdots)\in\{-1,1\}^{N}$ with $\omega_{i}=-1$ for infinitely many times, denote

$B_{\omega}=\{\sum_{i}\epsilon_{i}\omega_{i}2^{2i}$ ; $\epsilon_{i}\in\{0,1\}$ and $\epsilon_{i}=1$ for finitely many $i’ s\}$ .

Let us denote

$\mathscr{C}(A)=$ { $C\subset Z;O\in C$ and $A\oplus C=Z$ } ,

where $A\oplus C=Z$ implies that any element in $Z$ can be written uniquely as a sum of
elements in $A$ and $C$.
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THEOREM 1 (Y. Ito [1]). Let $C$ be a subset of $Z$ containing $0$ . Then, $C\in \mathscr{C}(A)iJ$

and only if all of the following conditions are satisfied:
(i) For $\gamma$ and $\delta$ in $C$, either $\gamma=\delta$ or the maximal number $i$ such that 2 divides

$\gamma-\delta$ is even,
(ii) if a subset $C^{\prime}$ of $Z$ satisfies the condition (i) and $C^{\prime}\supset C$ then $C^{\prime}=C$,
(iii) there exists an $\omega=(\omega_{0}, \omega_{1}, \cdots)\in\{-1,1\}^{N}$ with $\omega_{i}=-1$ for infinitely many

times such that $A\oplus C\supset B_{\omega}$ .

Y. Ito [1] conjectured that $B_{\omega}$ in the above condition (iii) can be replaced by any
$D\in \mathscr{C}(A)$ . The aim of this paper is to generalize the above result a little bit toward the
conjecture.

LEMMA 1. Let $C$ be a subset of $Z$ with $O\in C$ Then $C$ satisfies the conditions (i) and
(ii) in Theorem 1, if and only if $C=\overline{C}\cap Z$ and

$(*)$ there exists a unique set of $\phi_{n}$ : $\{0,1\}^{n}\rightarrow\{0,1\}(n=1,2, \cdots)$ such that for
any $n=1,2,$ $\cdots$ and $\xi=(\xi_{0}, \xi_{1}, \cdots, \xi_{n-1})\in\{0,1\}^{n}$ , there exists an element $c=(c_{0},$ $c_{1}$ ,

$)\in C$ such that $c_{2i}=\xi_{i}(0\leq i\leq n-1)$ and that for any $c$ with this property, it holds
that $c_{2i-1}=\phi_{i}(\xi_{0}, \xi_{1}, \cdots, \xi_{i-1})(1\leq i\leq n)$ .

PROOF. Assume that $C$ satisfies the conditions (i) and (ii). Suppose that every
element in $C$ takes $0$ (resp. 1) at 0th coordinate. Let $n\in Z$ be any odd (resp. even)
number. Then $n-c$ is odd for any $c\in C$ and so $C\cup\{n\}$ satisfies the condition (i). It
contradicts the condition (ii). Thus for any $a\in\{0,1\}$ there is an element $c\in C$ whose
0th component is $a$ .

If two elements in $C$ have the same 0th coordinate and different values as the lst
coordinates, then the differenoe is divisible by $2^{1}$ and is not divisible by 2. It contradicts
the condition (i). Thus, $\phi_{1}$ in the condition $(*)$ is determined as the mapping from the
value in the 0th coordinate to the value in the 1st coordinate of the elements in $C$.

For $n=1,2,$ $\cdots$ , we define a condition
$(P_{n})$ : there exists a unique $\phi_{n}$ such that for any $(\xi_{0}, \xi_{1}, \cdots, \xi_{n-1})\in\{0,1\}^{n}$ , there

exists a $c=(c_{O}, c_{1}, \cdots)\in C$ such that $c_{2i}=\xi_{i}(i=0,1, \cdots, n-1)$ and that for any $c$ with
this property, it holds that $c_{2n-1}=\phi_{n}(\xi_{0}, \xi_{1}, \cdots, \xi_{n-1})$ .

Assuming $(P_{1}),$ $\cdots,$ $(P_{n})$ , we prove $(P_{n+1})$ . Take any $(\xi_{0}, \xi_{1}, \cdots, \xi_{n})\in\{0,1\}^{n+1}$ . If
there does not exist $c=(c_{O}, c_{1}, \cdots)\in C$ such that $c_{2i}=\xi_{i}(0\leq i\leq n)$ , then for $z=$

$(\xi_{0}, z_{1}, \xi_{1}, z_{3}, \cdots, \xi_{n}, 0,0, \cdots)\in Z$ with $z_{2i-1}=\phi_{i}(\xi_{0}, \xi_{1}, \cdots, \xi_{i-1})(1\leq i\leq n),$ $C\cup\{z\}$

satisfies the condition (i) by $(P_{1}),$ $\cdots,$ $(P_{n})$ , contradicting the condition (ii). Thus there
is an element $c=(c_{0}, c_{1}, \cdots)\in C$ such that $c_{2i}=\xi_{i}(0\leq i\leq n)$ . Take any $c$ like this. Then
by the condition (i) and $(P_{1}),$ $\cdots,$ $(P_{n}),$ $c_{2n+1}$ is determined by $(\xi_{0}, \xi_{1}, \cdots, \xi_{n})$ . Thus,
we determine $\phi_{n+1}(\xi_{0}, \xi_{1}, \cdots, \xi_{n})=c_{2n+1}$ . Then, $(P_{n+1})$ is satisfied with this $\phi_{n+1}$ .

Hence we have $(P_{n})$ for any $n$ . Thus the condition $(*)$ holds.
Assume that $\xi=(\xi_{0}, \xi_{1}, \cdots)\in\overline{C}\cap Z$ . Then, it satisfies that $\xi_{2n-1}=\phi_{n}(\xi_{0},$ $\xi_{2},$ $\cdots$ ,

$\xi_{2n-2})$ for all $n=1,2,$ $\cdots$ by the condition $t*$ ). Then for any $c\in C$, either $\xi=c$ or the
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first nonzero component of $ c-\xi$ occurs at an even coordinate. This shows that $C\cup\{\xi\}$

satisfies the condition (i). By the condition (ii), $\xi\in C$. Thus $C=\overline{C}\cap Z$ .
Conversely, assume that $C$ satisfies the condition $(*)$ together with $C=\overline{C}\cap Z$ . Then,

(i) follows since for any $c\in C$, its odd coordinates are determined by its even coordinates
before it.

To prove (ii), suppose that it is not satisfied. Then there exists $z\in Z\backslash C$ satisfying
that the maximum $k$ such that $2^{k}$ divides $z-c$ is even for any $c\in C$. Let $z=(\xi_{0}, \xi_{1}, \cdots)$ .
Then, for any $n\in N$ , there exists an element $c=(c_{0}, c_{1}, \cdots)\in C$ such that $c_{2i}=\xi_{2i}$

$(0\leq i\leq n-1)$ . Since the Prst $k$ with $\xi_{k}\neq c_{k}$ is even, we have $k>2n-2$ for this $k$ . Hence,
$z\in\overline{C}\cap Z=C$, which is a contradiction.

The following lemma follows immediately from Lemma 1:

LEMMA 2. Let $C$ be a subset of $Z$ with $O\in C$ satisfying the conditions (i) and (ii) in
Theorem 1. Let $\phi_{n}’ s$ be as in the condition $(*)$ . Then it holds that

$(**)$ $\xi=(\xi_{0}, \xi_{1}, \cdots)\in\overline{C}$ if and only if $\xi_{2n-1}=\phi_{n}(\xi_{0}, \xi_{2}, \cdots, \xi_{2n-2})$ for any $n=$

$1,2,$ $\cdots$ .
LEMMA 3. Let $C$ satisfy the condition $(**)$ in Lemma 2 for some set of $\phi_{n}’ s$. Then

$\overline{A}\oplus\overline{C}=Z_{2}$

holds.

PROOF. Let $\phi_{n}’ s$ satisfy that for any $\xi=(\xi_{0}, \xi_{1}, \cdots)\in Z_{2},$ $\xi\in\overline{C}$ if and only if

$\xi_{2n-1}=\phi_{n}(\xi_{0}, \xi_{1}, \cdots, \xi_{2n-2})$ $(n=1,2, \cdots)$ .

For a given $z=(z_{0}, z_{1}, \cdots)\in Z_{2}$ , we construct $\alpha=(\alpha_{0}, \alpha_{1}, \cdots)\in\overline{A}$ and $\gamma=(\gamma_{0}$ ,
$\gamma_{1},$

$\cdots$ ) $\in\overline{C}$ with $ z=\alpha+\gamma$ as follows.
Since $\alpha_{0}=0,$ $\gamma_{0}=z_{0}$ . By $(**),$ $\gamma_{1}$ is determined by $\gamma_{1}=\phi_{1}(\gamma_{0})$ . So $\alpha_{1}$ is determined

by $\alpha_{1}+\gamma_{1}=z_{1}(mod 2)$ , and the carrier $c_{2}$ is determined by $c_{2}=(\alpha_{1}+\gamma_{1}-z_{1})/2$ .
For $n\geq 2$ we can determine $\gamma_{n},$ $\alpha_{n}$ and $c_{n+1}$ inductively by

$\gamma_{n}+c_{n}=z_{n}$ (mod2), $\alpha_{n}=0$ , and $c_{n+1}=(\gamma_{n}+c_{n}-z_{n})/2$

if $n$ is even, and

$\gamma_{n}=\phi_{\langle n+1)/2}(\gamma_{0}, \gamma_{2}, \cdots, \gamma_{n-1})$ ,

$\alpha_{n}+\gamma_{n}+c_{n}=z_{n}$ (mod2) , and

$c_{n+1}=(\alpha_{n}+\gamma_{n}+c_{n}-z_{n})/2$

if $n$ is odd.
Thus, we obtain $\alpha$ and $\gamma$ in $Z_{2}$ with $ z=\alpha+\gamma$ . It is clear that $\alpha\in\overline{A}$ .
The uniqueness of the decomposition is proved as follows. If $\alpha+\gamma=\alpha^{\prime}+\gamma^{\prime}$ happens,

then $\alpha-\alpha^{\prime}=\gamma^{\prime}-\gamma$ . By $(**),$ $\gamma^{\prime}-\gamma$ is either $0$ or the first coordinate with different values
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in $\gamma$ and $\gamma^{\prime}$ is even. However the first coordinate with different values in $\alpha$ and $\alpha^{\prime}$ is odd
if $\alpha\neq\alpha^{\prime}$ . Thus we have that $\alpha^{\prime}=\alpha$ and $\gamma^{\prime}=\gamma$ .

THEOREM 2. Let $C\subset Z$ with $O\in C$ Then, $C\in \mathscr{C}(A)$ if and only if there exists a $sel$

of $\phi_{n}$ : $\{0,1\}^{n}\rightarrow\{0,1\}(n=1,2, \cdots)$ satisfying the condition $(**)$ in Lemma 2 such that
$(\#)$ for any $n\geq 1$ andfor any $(\xi_{0}, \xi_{1}, \cdots, \xi_{n-1})\in\{0,1\}^{n}$ , there exists an $l_{O}\geq 0$ such

that

$\phi_{n+i}(\xi_{0}, \xi_{1}, \cdots, \xi_{n-1},\frac{1,1,\cdots,1}{i})=1$

for all $l\geq l_{0}$ .

PROOF. Assume that $C\in \mathscr{C}(\Lambda)$ . Then by Theorem 1, Lemmas 1 and 2, there exists
a set of $\phi_{n}$ : $\{0,1\}^{n}\rightarrow\{0,1\}(n=1,2, \cdots)$ satisfying $t**$ ) together with $t*$ ). Suppose that
(f) does not hold for it. Then there exists an $n$ and $(\xi_{0}, \xi_{1}, \cdots, \xi_{n-1})\in\{0,1\}^{n}$ such that
$\phi_{n+i}(\xi_{0}, \xi_{1}, \cdots, \xi_{n-1}, \frac{1,1,\cdots,1}{l})=0$

for infinitely many $l’ s$ .
Define $z=(z_{O}, z_{1}, \cdots)\in Z_{2}$ so that $z_{2i}=\xi_{i},$ $z_{2i+1}=\phi_{i+1}(\xi_{0}, \xi_{1}, \cdots, \xi_{i})(0\leq i\leq n-1)$

and $z_{i}=1(i\geq 2n)$ . Then, $z$ is a negative integer.
Define $\gamma=(\gamma_{0}, \gamma_{1}, \cdots)\in\overline{C}$ by $\gamma_{2i}=\xi_{i}(0\leq i\leq n-1),$ $\gamma_{2i}=1(i\geq n)$ and $\gamma_{2i-1}=$

$\phi_{i}(\gamma_{0}, \gamma_{2}, \cdots, \gamma_{2i-2})$ for any $i=1,2,$ $\cdots$ . Define $\alpha=(\alpha_{O}, \alpha_{1}, \cdots)\in\overline{A}$ by $\alpha_{i}=1$ for $i\geq 2n$

with $\gamma_{\iota}=0$ , and $\alpha_{i}=0$ otherwise.
Then, $\alpha+\gamma=z$ and $\alpha\in\overline{A}\backslash A$ . This is a contradiction by Lemma 3, since by our

assumption, we have another decomposition of $z$ into elements in $A$ and $C$.
Conversely, assume that there exist $\phi_{n}’ s$ satisfying the conditions $(**)$ and $(\#)$ . By

Lemma 3, we have $\overline{A}\oplus\overline{C}=Z_{2}$ . Therefore, for any $z=(z_{0}, z_{1}, \cdots)\in Z$ there is an
$\alpha=(\alpha_{0}, \alpha_{1}, \cdots)\in\overline{A}$ and a $\gamma=(\gamma_{0}, \gamma_{1}, \cdots)\in\overline{C}$ such that $\alpha+\gamma=z$ . There are two cases for $z$ .

Case 1. $z\geq 0$ . There exists an $n_{0}$ such that $z_{n}=0$ for all $n\geq n_{0}$ .
Assume that there exists an even $n$ with $n\geq n_{0}$ such that there is a carrier to the

n-th coordinate in the addition $\alpha+\gamma$ . Since $z_{n}=0$ and $\alpha_{n}=0,$ $\gamma_{n}=1$ and there is a carrier
to the $(n+1)$-th coordinate. So $\gamma_{n+1}$ must be $1-\alpha_{n+1}$ since $z_{n+1}=0$ , and there is a
carrier to the $(n+2)$-th coordinate. Thus $n+2$ satisfies the assumption again. Therefore
$\gamma_{m}=1$ for all even $m\geq n$ . By the condition $t\#$ ), there exists an $l_{0}\geq 0$ such that $\gamma_{2i-1}=1$

for all $i\geq n/2+l_{O}$ . This shows that $\gamma$ is a negative integer.
Now assume that there is no carrier to the n-th coordinate for all even $n$

with $n\geq n_{O}$ . Then, $\gamma_{n}=0$ and there is no carrier to the $(n+1)$-th coordinate for all even
$n$ with $n\geq n_{0}$ , since $z_{n}=0$ and $\alpha_{n}=0$ . Thus the fact $z_{n+1}=0$ implies $\alpha_{n+1}=\gamma_{n+1}$ . If
$\alpha_{n+1}=\gamma_{n+1}=1$ , there must be a carrier to the $(n+2)$-th coordinate. Hence we have
$\alpha_{n+1}=\gamma_{n+1}=0$ . Therefore $\gamma_{n}=0$ for all $n\geq n_{0}$ . This shows that $\gamma$ is a nonnegative integer.

Case 2. $z<0$ . There exists an $n_{0}$ such that $z_{n}=1$ for all $n\geq n_{0}$ .
Let $n\geq n_{0}$ be even.
Assume that there is no carrier to the n-th coordinate in the addition $\alpha+\gamma$ . Since
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$z_{n}=1,$ $\gamma_{n}=1$ and there is no carrier to the $(n+1)$-th coordinate. So $\gamma_{n+1}$ must be $1-\alpha_{n+1}$

and there is no carrier to the $(n+2)$-th coordinate. Therefore, in this case, $\gamma_{m}=1$ for all
even $m\geq n$ . By the condition $(\#),$ $\gamma_{2i-1}=1$ for all $i\geq n/2+l_{0}$ . This shows that $\gamma$ is a
negative integer.

When there is a carrier to the n-th coordinate, $n+2$ satisfies the above assumption.
Indeed, $\gamma_{n}=0$ since $\alpha_{n}=0$ and there is no carrier to the $(n+1)$-th coordinate. Since
$z_{n+1}=1,$ $\gamma_{n+1}=1-\alpha_{n+1}$ and there is no carrier to the $(n+2)$-th coordinate.

DEFINITION. Let $\psi=\{\psi_{n}\}_{n\geq 0}$ be a set ofmaps $\psi_{n}$ : $\{-1,0,1\}^{n}\rightarrow\{-1,1\}$ such that
for any $(\epsilon_{0}, \epsilon_{1}, \cdots)\in\{-1,0,1\}^{N},$ $\psi_{n}(\epsilon_{0}, \epsilon_{1}, \cdots, \epsilon_{n-1})=-1$ for infinitely many $n’ s$ .

For a $\psi=\{\psi_{n}\}_{n\geq 0}$ as above, let $B_{\psi}\subset Z$ be the set of

$\beta=\sum_{n=0}^{\infty}\epsilon_{n}2^{2n}=(\beta_{0}, \beta_{1}, \beta_{2}, \cdots)$

such that $\epsilon_{n}\in\{-1,0,1\}$ satisfies that either $\epsilon_{n}=0$ or $\epsilon_{n}=\psi_{n}(\epsilon_{0}, \epsilon_{1}, \cdots, \epsilon_{n-1})$ where the
constant $\psi_{0}$ can be $\pm 1$ .

THEOREM 3. Suppose that $C$ is an infinite set of $Z$ containing $0$ . Then, $C\in \mathscr{C}(A)$ if
and only if all of the following conditions are satisfied.

(i) For $\gamma$ and $\delta$ in $C$, either $\gamma=\delta$ or the maximal number $k$ such that $2^{k}$ divides
$\gamma-\delta$ is even,

(ii) if a subset $C^{\prime}$ of $Z$ satisfies the condition (i) and $C^{\prime}\supset C$ then $C^{\prime}=C$,
(iii)’ there is $aB_{\psi}$ as in Definition such that $A\oplus C\supset B_{\psi}$ .
LEMMA 4. Let $B_{\psi}$ be as in Definition and $\beta=(\beta_{0}, \beta_{1}, \beta_{2}, \cdots)=\sum\epsilon_{i}2^{2i}\in\overline{B_{\psi}}$ . Then,

for any $n=0,1,2,$ $\cdots$ ,
(i) $\beta_{2n}=\beta_{2n-1}$ if and only if $\epsilon_{n}=0$ , while $\epsilon_{n}=0$ implies $\beta_{2n+1}=\beta_{2n}$ ,
(ii) $\beta_{2n}\neq\beta_{2n-1}$ if and only if $\epsilon_{n}\neq 0$ , while $\epsilon_{n}\neq 0$ implies $\beta_{2n+1}=(1-\epsilon_{n})/2$ ,

where we put $\beta_{-1}=0$ .
PROOF. Since $\beta\equiv 0,1,3$ (mod4) according to $\epsilon_{0}=0,1,$ $-1$ , respectively, we have

(i) and (ii) for $n=0$ . Let $n\geq 1$ . Denote by $s(n)$ , the maximal number $i$ with $0\leq i\leq n-1$

such that $\epsilon_{i}\neq 0$ . Put $s(n)=-1$ if $\epsilon_{i}=0$ for all $0\leq i\leq n-1$ . Then $\beta_{2n-1}=1$ if and only
if $s(n)\geq 0$ and $\epsilon_{s(n)}=-1$ . For, $\beta_{2n-1}=1$ is equivalent to the fact that $\beta$ is congruent to
a negative integer not less than $-2^{2n-1}$ modulo 2, and that $\beta_{2n-1}=0$ otherwise.

(i) If $\beta_{2n}=\beta_{2n-1}$ , then $\beta$ is congruent to an integer whose absolute value is
not greater than 2 modulo 2. Hence we have $\epsilon_{n}=0$ . The converse is also true.
If $\epsilon_{n}=0$ , then $\beta_{2n+1}=\beta_{2n}$ since $s(n+1)=s(n)$ .

(ii) By (i), $\beta_{2n}\neq\beta_{2n-1}$ if and only if $\epsilon_{n}\neq 0$ . Moreover $\epsilon_{n}\neq 0$ implies $s(n+1)=n$ ,
and so $\beta_{2n+1}=0$ if $\epsilon_{n}=1$ , and $\beta_{2n+1}=1$ if $\epsilon_{n}=-1$ .

LEMMA 5. Let $B_{\psi}$ be as in Definition. Then, $B_{\psi}$ satisfies the condition $(**)$ .

PROOF. Let $\{\psi_{n}\}_{n\geq 0}$ be as in Definition. Let $\beta=\sum_{n=0}^{\infty}\epsilon_{n}2^{2n}=(\beta_{0}, \beta_{1}, \cdots)$
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$(\epsilon_{n}\in\{-1,0,1\})$ be a number in $\overline{B_{\psi}}$ .
If $\beta_{0}=0$ , then $\epsilon_{0}=0$ and so $\phi_{1}(0)=\beta_{1}=0$ . If $\beta_{0}=1$ , then $\epsilon_{0}=1$ or $\epsilon_{0}=-1$

according to the constant value $\psi_{0}$ . Hence $\phi_{1}(1)=0$ if $\epsilon_{0}=1$ and $\phi_{1}(1)=1$ if $\epsilon_{O}=-1$ .
Assume that $\phi_{1},$ $\phi_{2},$ $\cdots,$

$\phi_{n}$ are already defined.
If $\beta_{2n}=\beta_{2n-1}$ , then $\beta_{2n+1}=\beta_{2n}$ by Lemma 4. If $\beta_{2n}\neq\beta_{2n-1}$ , then $\beta_{2n+1}=(1-\epsilon_{n})/2$

and $\epsilon_{n}\neq 0$ . In this case, $\epsilon_{n}=\psi_{n}(\epsilon_{O}, \epsilon_{1}, \cdots, \epsilon_{n-1})$ by the definition of $B_{\psi}$ . We define $\phi_{n+1}$

by $\phi_{n+1}(\beta_{0}, \beta_{2}, \cdots, \beta_{2n})=\beta_{2n}$ if $\beta_{2n}=\phi_{n}(\beta_{0}, \beta_{2}, \cdots, \beta_{2n-2})$ and $\phi_{n+1}(\beta_{0},$ $\beta_{2},$ $\cdots,$ $\beta_{2n}J$

$=(1-\psi_{n}(\epsilon_{0}, \epsilon_{1}, \cdots, \epsilon_{n-1}))/2$ otherwise.
Thus we have a set of maps $\phi_{n}$ : $\{0,1\}^{n}\rightarrow\{0,1\}(n=1,2, \cdots)$ .
By the construction of $\phi_{n}’ s$ , it is obvious that any $\beta=(\beta_{0}, \beta_{1}, \cdots)\in\overline{B_{\psi}}$ satisfies

$\beta_{2n-1}=\phi_{n}(\beta_{0}, \beta_{1}, \cdots, \beta_{2n-2})(n\geq 1)$ .
Conversely assume that $\beta=(\beta_{0}, \beta_{2}, \cdots)\in Z_{2}$ satisfies that $\beta_{2n-1}=\phi_{n}(\beta_{0},$ $\beta_{2},$ $\cdots$

$\beta_{2n-2})$ for any $n=1,2,$ $\cdots$ . We define $\epsilon_{n}(n=0,1,2, \cdots)$ by

$\epsilon_{n}=\left\{\begin{array}{ll}0 & (\beta_{2n}=\beta_{2n-1})\\1-2\beta_{2n+1} & (\beta_{2n}\neq\beta_{2n-1}).\end{array}\right.$

Then, by the definition of $\phi_{n}’ s,$ $\epsilon_{n}\neq 0$ implies that $\epsilon_{n}=\psi_{n}(\epsilon_{0}, \epsilon_{1}, \cdots, \epsilon_{n-1})$ .
Moreover, it is not difficult to prove that

$\sum_{i=0}^{n}\epsilon_{i}2^{2i}\equiv\sum_{i=0}^{2n}\beta_{i}2^{i}$ $(mod 2^{2n})$

for any $n=1,2,$ $\cdots$ .
Hence we have $\beta=\sum_{i=0}^{\infty}\epsilon_{i}2^{2i}\in\overline{B_{\psi}}$ .

LEMMA 6. For any $B_{\psi}$ as in Definition, we have $B_{\psi}\in \mathscr{C}(A)$ .
PROOF. By Lemma 5, we can take $\phi_{n}’ s$ satisfying the condition $t**$ ) for this $B_{\psi}$

By Theorem 2, it is sufficient to prove the condition $(\#)$ for this $\phi_{n}’ s$ .
Take any $n$ and $\xi=(\xi_{0}, \xi_{1}, \cdots, \xi_{n-1})\in\{0,1\}^{n}$ . Then by the definition for $\phi_{n}’ s,$ $i|$

holds that if there exists $l_{0}\geq 0$ such that

$\phi_{n+i_{O}}(\xi_{0}, \xi_{1}, \cdots, \xi_{n-1}, \frac{1,1,\cdots,1}{i_{O}})=1$
,

then
$\phi_{n+i}(\xi_{0}, \xi_{1}, \cdots, \xi_{n-1}, \frac{1,1,\cdots,1}{i})=1$

for any $l\geq l_{o}$ by Lemma 4 (i). In this case

the condition $(\#)$ holds. Suppose to the contrary that $\phi_{n+i}(\xi_{0},$ $\xi_{1},$ $\cdots,$ $\xi_{n-1^{}}$

$\frac{1,1,\cdots,1}{i})=0$
for any $l\geq 0$ . This implies the existence of

$(\epsilon_{O}, \epsilon_{1}, \cdots)$
such thal

$\psi_{n+l}(\epsilon_{0}, \epsilon_{1}, \cdots, \epsilon_{n+l-1})=1$ for any $l\geq 0$ , which contradicts the condition stated in
Definition. Hence, we have the condition (f).
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Proof of Theorem 3.

Assume that $C\subset Z$ satisfies the conditions (i), (ii) and (iii)’. By Lemmas 2 and 3,
there exist $\phi_{n}’ s$ such that $C$ satisfies the condition $(**)$ as well as $\overline{A}\oplus\overline{C}=Z_{2}$ . By Theorem
2, it remains only to show that $\phi_{n}’ s$ satisfy the condition $(\#)$ .

Suppose that $\phi_{n}’ s$ do not satisfy the condition $(\#)$ . Then there exist an $m$ and
$(\xi_{0}, \xi_{1}, \cdots, \xi_{m-1})\in\{0,1\}^{m}$ such that

$\phi_{m+i}(\xi_{0}, \xi_{2}, \cdots, \xi_{m-1}, \frac{1,1,\cdots,1}{i})=0$
for infinite-

ly many $l’ s$ .
Let $\gamma=(\gamma_{0}, \gamma_{1}, \gamma_{2}\cdots)\in\overline{C}$ be the element defined by

$\gamma_{2i}=\xi_{i}(i=0,1, \cdots, m-1)$ and $\gamma_{2i}=1(i\geq m)$ .

Note that $\gamma\not\in Z$ .
We denote $\tau_{n}(n=1,2, \cdots)$ in the place of $\phi_{n}$ in the condition $(**)$ for $B_{\psi}$ . We

can define $\alpha=(\alpha_{O}, \alpha_{1}, \cdots)\in\overline{A}$ and $\beta=(\beta_{0}, \beta_{1}, \cdots)\in\overline{B_{\psi}}$ such that $\alpha+\gamma=\beta$ in a similar
way as in the proof of Lemma 3 as follows.

Since $\alpha_{0}=0,$ $\beta_{0}=\gamma_{0}$ . Let $\beta_{1}=\tau_{1}(\beta_{0})$ and define $\alpha_{1}$ by $\alpha_{1}+\gamma_{1}=\beta_{1}$ (mod2), and the
carrier $c_{2}$ is determined by $c_{2}=(\alpha_{1}+\gamma_{1}-\beta_{1})/2$ .

For $n\geq 2$ , we can determine $\beta_{n},$
$\alpha_{n}$ and $c_{n+1}$ inductively by

$\gamma_{n}+c_{n}=\beta_{n}$ (mod2) , $\alpha_{n}=0$ , and $c_{n+1}=\frac{\gamma_{n}+c_{n}-\beta_{n}}{2}$

if $n$ is even, and

$\beta_{n}=\tau_{(n+1)/2}(\beta_{0}, \beta_{2}, \cdots, \beta_{n-1})$ ,

$\alpha_{n}+\gamma_{n}+c_{n}=\beta_{n}$ (mod2) , and

$c_{n+1}=\frac{\alpha_{n}+\gamma_{n}+c_{n}-\beta_{n}}{2}$

if $n$ is odd. We denote also $\beta=\sum_{n=0}^{\infty}\epsilon_{i}2^{2i}$ where $\epsilon_{i}\in\{-1,0,1\}$ satisfying Definition
and determined by $\beta_{2i-1},$ $\beta_{2i}$ , and $\beta_{2i+1}$ by Lemma 4.

We shall show that $\alpha+\gamma\in Z$ . Then, $\alpha$ and $\gamma$ must be integers by the fact that
$A\oplus C\supset B_{\psi}$ . It contradicts the fact that $\gamma\not\in Z$ .

For $i\geq m$ , we call $j$ of type $(b, e, c)$ if $\beta_{2i-1}=b,$ $\epsilon_{i}=e$ and if $c_{2i}=c$ . We use the
symbol $‘*$ to define a type which is indifferent to the values in the position of $‘*$ .
For example, $i$ is of type $(*, 1,1)$ if and only if $\epsilon_{i}=1$ and $c_{2i}=1$ .

Case 1. If there exists $i(i\geq m)$ of type $(0, *, 1)$ or of type $(*, 1,1)$ , then $\beta\in Z$ .
Indeed, $\beta_{2i}=0$ since there is a carrier to the 2 $i$-th coordinate, $\alpha_{2i}=0$ and $\gamma_{2i}=1$ .

By Lemma 4, we have that $\beta_{2i+1}=0$ . Since there is a carrier to the $(2i+1)$-th coordinate,
there must be a carrier to the $(2i+2)$-th coordinate. This shows that $i+1$ is of type
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$(0, *, 1)$ . Therefore we have $\beta_{k}=0$ for all $k\geq 2i$ inductively. In this case, $\beta$ is a non
negative integer.

Case 2. If there exists $i(i\geq m)$ of type $(1, *, 0)$ or of type $(*, -1,0)$ , then $\beta\in Z$

Indeed, $\beta_{2i}=1$ since there is no carrier to the $2i$-th coordinate, $\alpha_{2i}=0$ and $\gamma_{2i}=1$

By Lemma 4, we have that $\beta_{2i+1}=1$ . Since there is no carrier to the $(2i+1)$-th coordinate
there must be no carrier to the $(2i+2)$-th coordinate. This shows that $i+1$ is of $typ$

$(1, *, 0)$ . Therefore we have $\beta_{k}=1$ for all $k\geq 2i$ inductively. In this case, $\beta$ is a negativt
integer.

It remains to show that Case 1 or Case 2 always happen.
If $i(l\geq m)$ is of type $(1, -1,1)$ , then $\beta_{2i}=0$ since there is a carrier to the 2i-tl

coordinate, $\alpha_{2i}=0$ and $\gamma_{2i}=1$ . By Lemma 4, we have that $\beta_{2i+1}=1$ . Sinoe there is ’

carrier to the $(2l+1)$-th coordinate, $\alpha_{2i+1}+\gamma_{2i+1}=0$ (mod2). There will be two cases.
If $\alpha_{2i+1}=\gamma_{2i+1}=0$ , then there is no carrier to the $(2i+2)$-th coordinate. Thi:

shows that $i+1$ is of type $(1, *, 0)$ in the Case 2.
If $\alpha_{2i+1}=\gamma_{2i+1}=1$ , then there is a carrier to the $(2i+2)$-th coordinate. Thi.

shows that $i+1$ is of type $(*, 1,1)$ in the Case 1 or of type $(1, -1,1)$ . However, typt
$(1, -1,1)$ cannot last indefinitely because of the assumption that $\gamma_{2m+2i-1}=$

$\phi_{m+i}(\xi_{0}, \xi_{1}, \cdots, \xi_{m-1}, \frac{1,1,\cdots,1}{i})=0$ for infinitely many $l’ s$ .
If $i(i\geq m)$ is of type $(0,1,0)$ , then $\beta_{2i}=1$ since there is no carrier to the 2i-tl

coordinate. $\alpha_{2i}=0$ and $\gamma_{2i}=1$ . By Lemma 4, we have that $\beta_{2i+1}=0$ . Since there is ne
carrier to the $(2i+1)$-th coordinate, $\alpha_{2i+1}+\gamma_{2i+1}=0$ (mod2). There will be two cases.

If $\alpha_{2i+1}=\gamma_{2i+1}=1$ , then there is a carrier to the $(2i+2)$-th coordinate. This shows
that $i+1$ is of type $(0, *, 1)$ in the Case 1.

If $\alpha_{2i+1}=\gamma_{2i+1}=0$ , then there is no carrier to the $(2i+2)$-th coordinate. This show!
that $i+1$ is of type $(*, -1,0)$ in the Case 2 or of type $(0,1,0)$ again. However, typt
$(0,1,0)$ cannot last indefinitely because of the assumption that $\psi_{i}(\epsilon_{0}, \epsilon_{1}, \cdots, \epsilon_{i-1})=-$ ]

for infinitely many $i’ s$ .
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