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1. Introduction.

The purpose of the present paper is to show the existence of an anti-self-dual
connection on 2-plane complex Grassmannian Gr,(C"*?), to classify instantons and to
describe the moduli space. The reason why we use the terminology “instanton’ is that
our anti-self-dual connections are nothing but l-instantons in the case n=1 (CP?).
However we also have proved that there exists another generalization of instantons on
CP? to Gr,(C"*?) [N-N2]. The structure group reflects the main difference between
them. In the present paper, SU(r)-bundles are taken into account, while in [N-N2],
Sp(r)-bundles are considered. By the isomorphism SU(2)=~Sp(1), our two series of
generalizations coincide with instantons on CP? in the case n=1. On HP", which is
another typical example of quaternion-Kédhler manifolds, there exists a generalization
of instantons on 4-dimensional sphere S*~HP!. This instanton bundle also has Sp(r)
as a structure group and so, odd Chern classes of this bundle vanish. Since the
cohomology groups H*(HP", Z)=Z for i=0,1, ---,n and the others vanish, odd
Chern classes of an arbitrary bundle on HP" necessarily vanish. On the contrary, our
examples have the non-vanishing third Chern classes. In higher dimensional case,
these are the first examples such that higher degree odd Chern classes do not vanish.

As for the existence of anti-self-dual connections, Mamone-Capria and Salamon
first give the above examples of instanton bundles on HP" and prove that a well-known
Horrocks bundle on CP? can be obtained as the pull-back of an anti-self-dual bundle
on HP? [M-S]. Applying the monad given by Donaldson [D] to higher dimensional
case, Sp(r)-instanton bundles on Gr,(C"*?) are exhibited in [N-N2]. In both cases, the
typical examples of 1-instantons are homogeneous bundles with canonical connections.
The author determines all irreducible homogeneous bundles with anti-self-dual canonical
connections over compact quaternion symmetric spaces and give a deformation of
canonical connections [Na-3]. Adapting this point of view, we will deform the canonical
connection on a direct sum of a line bundle and a homogeneous bundle on Gr,(C"*?).

To classify anti-self-dual bundles, we make use of the theory of monads on the
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Salamon twistor space.

MAIN THEOREM 1. Let E be a vector bundle on Gr,(C"*?) (n=2) which has
(1) an anti-self-dual connection with the structure group SU(r), where r 2 3, and
(2) cy(E)=xy, cs(E)=xy(x—y) and c,(E)=x>y—x>y?+xy°>.

We denote by E the pull back bundle of E on the twistor space F.
Then, E is the cohomology bundle of the following monad,

(M) o(—-1,0-Veo(-1,1)-00,1),
where V is a trivial bundle Fx V of rank r+1.

In [M-S], Mamone-Capria and Salamon derive a monad using Beilinson’s spectral
sequence of CP2"* 1 Then they need some vanishing theorems. First a vanishing theorem
about an anti-self-dual bundle on higher dimensional positive quaternion-Kihler
manifold is obtained by the author [Na-2]. This vanishing theorem and an inductive
argument give a complete classification of Sp(r)-instantons on HP" [K-N]. This is a
direct generalization of ADHM-construction [A]. Next it is showed that there exists a
spectral sequence for holomorphic bundles on the generalized flag manifold F2"* ! which
is the twistor space of Gr,(C"*?) [N-N2] (see §2). (In the case n=1, our spectral
sequence coincides with Buchdahl’s spectral sequence [Bu].) This spectral sequence,
combined with extended vanishing theorems [N-N1], implies a classification of Sp(r)-
instantons on Gr,(C"*2) [N-N2]. In both cases, since Sp(r) are structure groups, the
dual bundles are isomorphic to the original bundles. However, a similar isomorphism
can not be carried in our case, because the third Chern class does not vanish. Hence,
we need to take a pair of a bundle and its dual into account. (Note that our monad
(M) is not self-dual in the sense of [O-S-S, p. 282].) We use a spectral sequence in the
case n=2 (Gr,(C%) and an induction in higher dimensional cases. In the latter case, a
slightly stronger theorem (Main Theorem 1°) will be proved. This argument also makes
a proof in [N-N2] be complete. Main Theorem 1 can be regarded as a generalization
of a classification by Buchdahl [Bu].

Finally the moduli space will be described.

MAIN THEOREM 2. The moduli space of anti-self-dual connections on E satisfying
the hypothesis in Main Theorem 1 is identified with an open cone over P(C"*?), where
C"*2 s the standard representation space of SU(n+2).

In [N-N3], following Donaldson [D], we give a description of the moduli of
Sp(n)-instantons on Gr,(C"*?) in a coordinate-based fashion by using the embedding
of F2"*1 into CP"*! x CP"**,  On the other hand, the author shows that this moduli
can be described by the representation theory via the Bott-Borel-Weil theorem and this
moduli is identified with an open cone over P(A? C"*?) where A>C"*? is one of the
irreducible representation spaces of SU(n+2) [Na-3]. Now, we also make use of the
representation of SU(n+2) in a slightly different manner from [Na-3]. For example,
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this method makes us enable to observe the degeneration of anti-self-dual connections
easily. In this case, the set of singular points is only a quaternion hypersurface Gr,(C"*!).
In the case of Sp(n)-instantons on Gr,(C"*?), one of HP's where i=0,1, - - -, [1n/2]
appears as the singular set [N-N3]. The structure of SU(n+ 2)-orbits in C"*? and
/N C"*2 causes these phenomena.

2. Preliminaries.

Let M be a connected quaternion-Kédhler manifold with non-zero scalar cur-
vature and Z be the Salamon twistor space of M [S].

From the definition, the vector bundle A?7T*M has the following holonomy
invariant decomposition:

NT*M=S’H® S’ED(S’HD S’E)*,

where H and E are vector bundles associated with the standard representations of Sp(1)
and Sp(n), respectively. For example, H is a tautological quaternionic line bundle when
the base spece is a quaternionic projective space HP".

DEFINITION 2.1. An weQ2T*M is called a self-dual (resp. anti-self-dual) form if
we'(S*H) (resp. I'(S*E)). ’

This definition reduces to the usual one on a 4-dimensional oriented Riemannian
manifold in the case n=1. We shall investigate metric connections on-a complex vector
bundle F equipped with a hermitian metric A.

DEerFINITION 2.2 ([G-P], [M-S] and [Ni]). A connection V is called (resp.
anti-)self-dual if its curvature 2-form RY is a (resp. anti-)self-dual form.

THEOREM 2.3 ([G-P], [M-S] and [Ni]). Self-dual and anti-self-dual connections
are Yang-Mills connections.

REMARK. If M is compact, self-dual and anti-self-dual connections actually
minimize the Yang-Mills functional ([G-P] and [M-S]). Moreover, it is known that
there is an essentially unique non-flat self-dual connection over a simply connected
quaternion-Kéhler manifold whose dimension is greater than or equal to 8 [Na-1].

Let E be an anti-self-dual bundle on M and £ be the pull-back bundle of E on Z.

- Then, it is known that £ is a holomorphic bundle with the induced structure ([M-S]

and [Ni]). The author showed a vanishing theorem about £ at first and this vanishing
theorem was extended as follows.

THEOREM 2.4 ([Na-2] and [N-N]). Let M be a d4n-dimensional compact:
quaternion-Kdhler manifold with positive scalar curvature and Z be the twistor space of
M. If E is the pull back bundle of E on M which has a unitary structure and an anti-self-dual
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connection, then we have
H{(Z,Ek)=0 for 1<i<n and i+k+1<0,
H\(Z, E(-2)=0,
H*Z,E(-3)=0 for n=2,

and
H{(Z,E(k)=0 for n+1<i<2n and i+k>0,
H* YZ,E(-2n+1)=0  for nz=2,
H*(Z, E(—2n))=0.

REMARK. A line bundle @(1) on the twistor space corresponds to L in [S].

From now on, we focus our attention on a complex Grassmanian manifold of
2-planes:

Gry(C**2)=SU(n+2)/S(UQR) x U(n)).
The twistor space of this manifold is a generalized flag manifold F2"*!:
F2r+1 = SU(n +2)/S(U(1) x U(n) x U(1)).
In other words, F?"*! is represented as follows:
FrHi={(, V)|0elcV<=C"*? dim/=1 and dimV=n+1},

where /and ¥ are complex vector subspaces. Then the twistor fibration n: F—Gr,(C"*?)
is

ol V)=leV.

So, note that this is not a holomorphic fibration [S]. (When no confusion can arise,
the dimension 2n+ 1 will be omitted.)

We give a quick review of the geometry of this generalized flag manifold F?"*!
and refer to [N-N2] for more details.

Fisrt, we describe the ring structure of the cohomology of F. The twistor space
F2"*1 of Gr,(C"*?) has double holomorphic fibrations to P"*! and P"*!* such that

pi:(LV)-[1,
p:(LV)->[V].

We denote by x and y pull-back elements of H*(F, Q) of the standard positive genera-
tors of H2(P"*1, Z) and H*(P"*'*, Z) respectively. Then, by Leray-Hirsch theorem,
the cohomology ring H*(F, Q) is generated by x and y. In our proof of Main Theo-
rem 1, we need to know the ring structure of cohomology in the case F°> (n=2).
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Bernstein-Gelfand-Gelfand theorem [B-G-G] gives that there is a relation on F> such
that

x3—x%y+xyt—y3=0,
2.1 x4=0, x3y—x*y*+xy3=0, »*=0,
x3p2—x2)3=0,
The fundamental class of F3 is x3y2=x2y3,

On the other hand, using the twistor fibration, we have H*(Gr,(C"*?), Q) is
regarded as a subring of H*(F, Q) [B-G-G]. Hence, an element of H*(Gr,(C"*2), Q)
may be written with x and y.

Next, we introduce a spectral sequence of Beilinson type for a holomorphic vector

bundle on the flag manifold. To represent this spectral sequence, we define vector bundles
on F.

DerFINITION 2.5. A vector bundle Q, denotes the quotient bundle of PQp.+: by
O(—1, —1), where Qp.- is the holomorphic cotangent bundle on P"*! and in general,
O(p, q) is the line bundle p *O(p) ® p ¥ O(q). The quotient bundle Q, is defined in a similar
way:

0 0(=1, —1) > pFQpnsr > 0, >0,
0> 0(—1, —1) > pFQpnrin > 0, 5 0.

Using vector bundles Q, and @,, we can show an analogue of theorem of Beilinson
on P™ and refer to [N-N2] for a proof of the next proposition.

PrROPOSITION 2.6. For an arbitrary holomorphic vector bundle S on F, there exists
a spectral sequence EP? converging to

Ep,q={zi"=+olE;””’=S if p+q=0
® 0 otherwise .

The E-terms satisfy exact sequences
p—1
> Y, H(F, N Q¥ ®S(—p,0) @ N~ ' 7" Q3(0, —p) > E{ ™
r=0
p
> Y HUWE N QF@S(—p, )@ N7 Q10 —p) = -+

where, for example, S(p, q) means S® O(p, q) and Y, denotes the direct sum.

Since the above spectral sequence is used in the case n=2, we give vanishing
theorems for anti-self-dual bundles on Gr,(C*). These vanishing theorems can be
obtained from Theorem 2.4 and an induction argument ([N-N2; Theorem 4.10]).

(
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THEOREM 2.7. Let E be an anti-self-dual bundle with a hermitian structure on
Gr,(C*) and E be the pull back bundle on the twistor space F°. Then, we have

HXF® E(p,q)=0 if p+q<—4, HF5 Ep,q)=0 if p+q=-2,
H*F?* E(p,q)=0 if p+q=—4, HF5 Ep,q)=0 if p+q=-5.

The twistor space F° is a homogeneous Kéhler manifold and line bundles O(p, q)
are homogeneous bundles on F°. Hence, by the Bott-Borel-Weil theorem, we can know
the dimension of the cohomology groups for O(p, q) (see, for example, [K]).

THEOREM 2.8. There exist the following formulae:

dim H'(F*, 0(p, 9))=(—1)'1z(p+1)p+2)(g+ 1Ng+2)p+g+3)

i=0  for p=0 and q=0,
i=2  for p=<-3 and p+q=-2 or q=<-3 and p+q=-2,
i=3 for p=0 and p+q=—4 or q=0 and p+q=<—4,
i=5 for p= -3 and q< -3,

and the other cohomology groups vanish.

Finally, we introduce the Ward correspondence. To do so, we make use of the real
structure ¢ on the twistor space which is induced by the quaternionic structure [S].

WARD CORRESPONDENCE. There is a one-to-one correspondence between anti-self-
dual bundles with unitary structures on a quaternion-Kdhler manifold M and holomorphic
vector bundles E on the twistor space such that

(1) the restricted bundles E|,, to the fibre P} are trivial for all xe M, and

(2) there is an isomorphism T: E—o*E* with (6*7)* =1 which induces a positive

definite hermitian form on sections of E Ir; for all xe M.

3. Classification.

In this section, we give a proof of Main Theorem 1. We employ an induction
argument about the dimension of the base manifold Gr,(C"*?). Therefore, we classify
anti-self-dual bundles E satisfying the hypothesis of Main Theorem 1 on Gr,(C*%) (n=2)
at first.

ReMARk. Throughout this section, we do not distinguish between an anti-self-dual
bundle on Gr,(C"*?) and its pull-back on F2"*! and we use the same symbol E for both.
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LemMmA 3.1.  Let y(E(p, q)) be the holomorphic Euler characteristics for E(p, q) on F>:
5
AE(p, @)= 2. (—1)'dimH'(F® E(p, q)) .
i=0

Then we have

x(E(p, q))=r{1 +—161—(p+q)+(p+q)2+%pq +%(p+q)3+%pq(p+q)

1 2,1 22, 1 23
+ 4pqr(prq) ty Pt 5P (p+q)}

_ S 3. .1 2 1 2,1
{3+ > (p+q)+ Pt (p+a)"+2pq+ AR pq(p+q)}-

PrOOF. Note that ¢,(E)=0, because of the relation (2.1). A direct computation
shows that

—y— l - i 2 2__1_ 2,2y
eHE)=r—xy+ L xpee—y+ L xtyio Lxtyiay),

ch(O(p, @))=1+(px+qy) +% (px+qy)* + %(px +qy)? +§12(px +qy)*

1 5

td(F5)=1+;(x+y)+{(x+y)2+—;—xy}+{%(x+y)3+%—xy(x+y)}

+%x2y2+

1

L x2yx+),

where ch means the Chern character and ¢d means the Todd class. Then the
Hirzebruch-Riemann-Roch theorem and our relations (2.1) yield our desired re-
sult. [

COROLLARY 3.2. Under the same notation as in Lemma 3.1, we have

0 if p+q=-3,
1 .
E(p, )= 4 7@ D@+Dirgq+)+6}  if p+g=-2,
WEP D=9 s+ D@+ a=-D+1}  if p+q=—1,

r—3+4{rq(q>—5+6(g+1)} if p+q=0,

and so

A(E(—1, —1))=(E@©, —2))=yx(E(—1, 0))=x(E(1, —2))=0
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and y(E)=r—3.

We also consider the dual bundle £*. Note that we can obtain a similar formulae
for the bundle E*, if we interchange the roles of p and g.

Next, we introduce two divisors using the holomorphic fibrations p, : F°—>P?3 and
P, : F?>P3* We fix linear subspaces P? and P?* in P3 and P 3* respectively, in such
a way that the intersection p; !(P2) n p; '(P?*) is the twistor space F? of Gr,(C3). A
divisor p; !(P?) is denoted by Y, and p, '(P?*) is denoted by Y,. From our definition,
we get exact sequences of sheaves:

3.1 0-0(-1,00> 00— 0y, -0,
(3.2) 0- 0y, (0, —1) > Oy, > Ops >0,
3.3) 0500, —=1)>0—-0y,—0,
3.4 0-0y,(—1,0)> 0Oy, > Op:s >0,

where Oy (p, q) denotes a restriction of O(p, q) to Y, for i=1, 2.

The next lemma has been shown implicitly in [N-N2]. Buchdahl’s vanishing
theorems [Bu] and Theorem 2.7 and the exact sequences (3.1-3.4) imply the desired
result. (For more details, see the paragraph before Theorem 4.10 in [N-N2].)

LEmMMmA 3.3. Let E be an arbitrary anti-self-dual bundle on Gr,(C*). Then we have
the following vanishing theorems:

H(Y,, E(p,q)=0 if p+q=—1, H'(Y,E(p,q)=0 if p+9=-2,
HY, E(p,q)=0 if p+qz—3, H*Y,E(p,q)=0 if p+qz—4,
where i=1 or 2.
We denote by A{(E(p, q)) the dimension of H(F3, E(p, q)).

PROPOSITION 3.4. Let E be an anti-self-dual bundle on Gr,(C*) satisfying the
hypothesis of Main Theorem 1. Then we have

h*(E(p, q))=0 if p=0,—1 or gq=—1,—-2 or p=1 and q=0,
h*(E*(p, 9))=0 if p=—1,—-2 or q=0,—1 or p=0 and q=1,
h3(E(p, q))=0 if p=—1,-2 or q=-2,—3 or p<-3and q<—4,
h3*E*(p, q))=0 if p=—2,—-3 or q=—1,—-2 or p<—4 and q<-3.

ProoF. When we make use of Serre duality and the isomorphism Kps =~ 0(—3, —3)
(Kps is the canonical bundle on F?), it suffices to prove vanishing theorems about A2.
Step 1. From Theorem 2.7 and Corollary 3.2, we obtain

h¥E(—1, —1))=h¥E@©, —2))=h¥E*(—1, —1))=h¥E*(—2,0))=0.
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We tensor the sequence (3.1) with E(p, q) and take the long exact sequence of cohomology
groups

- = H'Y(Y,, E(p, q)) > H¥F®, E(p—1, q)) > H*(F>, E(p, q)) > - -
This, together with Lemma 3.3 and A%(E(—1, —1))=h?E(0, —2))=0, implies that
h*(E(—2, —1))=h*E(—1, —2))=0. In a similar way, we get AXE*(—2, —1)=
h*(E*(—3, 0))=0. Applying Serre duality, we obtain A3(E(0, —3))=h3(E*(—1, —2))=0.
These vanishing theorems, Theorem 2.7 and Corollary 3.2 yield that A%*(E(0, —3))=
h3(E*(—1, —2))=0.

Step 2. If we use Serre duality, the results in Step 1 imply
h¥E(=2, —2))=h*E(—1, =3)=h*E(—1, —2)=h>E(©0, —3))=0,
h3AEX(=2, =2))=h*EX(=3, —1))=h*E*(—1, —2))=h*E*(—2, —1))=0.

The same argument as in the last part of Step 1 gives that A3(E(—2, —1))=
h3(E*(—3, 0))=0. Next, we take the same long exact sequence as in Step 1:

U —*HZ(FSB E(pa q))_’HZ(Yla E(ps q))_,H?’(FS, E(p_la ‘I))—’ U

When we substitute (—1, —1), (—1, —2), (0, —2) and (0, —3) into (p, q), our vanishing
theorems in Steps 1 and 2 yield

h*(Yy, E(—1, —1))=h?(Y,, E(—1, =2))=h?*(Y,, E(0, —2))=h?*(Y,, E(0, —3))=0,
where A'(Y,, E(p, q)) =dim H(Y,, E(p, q)). By a similar method, we have
h*(Y,, EX(—2,0)=h*(Y,, EX(—=2, —1))=h*(Y,, E¥(—1, —1))
=h*(Y,, E¥(—1, —2))=0.

Buchdahl’s vanishing theorems H'(F 3, E(p, q)) =0 for p+ q < —2 and the exact sequence
(3.2) imply the injectivity of H*(Y,, E(p, q—1))—»H?*(Y,, E(p, q)), if p+q< —2. Con-
sequently, we obtain

h*(Yy, EQ,q)=0 if g=s—1, h*Y,,E(-1,9)=0 if g<-2,
h*(Yy, E¥(—1,q)=0 if g<—1, h*Y, E¥-2,9)=0 if ¢<0.

By definition, Y, is smooth and the adjunction formula yields the isomorphism between
the canonical bundle Ky, and 0y (—2, —3). Combined with the above vanishing, Serre
duality implies

hZ(Yl,E(O’q))=h2(Y1’E(—'1aq))=0 lf qu,
h*(Yy, EX(—1,9)=h*(Y, E¥(—=2,¢9)=0 if qeZ.

Using vanishing theorems A%(E(—1,0))=h*E*(—2,0))=0 and h*(Y,, E)=h*(Y,,
E*(—1,0)=0, we obtain from the exact sequence (3.1) that A2(E(0, —1))=
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h*(E*(—1,0))=0.
Step 3. Since Y, is p; 1(P?), the dual Euler sequence on P2 gives
0-pFQt: - Oy(—1,0)%3 5 0, > 0.

This, together with Lemma 3.3, implies that H!(Y,, pfQ}:® E(p, q))=0 if p+g=< —1.
Dualizing this sequence and using TP2x~Q}:(3), we get from the above vanishing
theorem H?*(Y,, E(p, 9)—=H?*(Y,, E(p+1, q)®* are injective if p+g=< —4. Hence,
vanishing theorems h2%(Y,, E(—1, q))=h*(Y,, E¥(—2, q))=0 (g€ Z) yield that

h%(Y,, E(—2,q9)=0 if g<-2, h*(Y,,EX(—3,q9)=0 if g<—1.
By induction with respect to p and Serre duality, we have

h*(Y,,E(p,q)=0 if p<—2and q£-2 or p=1 and q=-2,

h%(Y,, E*(p, q))=0 if p<—3and gs—1 or p20and g=2-1.

These vanishing and the long exact sequence associated with the sequence (3.1) show
inductively that '

h*(E(p, —1))=h*(E(p, —2))=0 if qeZ,
h¥E*(p,0)=h2E*(p, —1))=0 if gqeZ.
Using Serre duality, we have
h*(E(p, —2))=h*E(p, —3)=0 if geZ,
h3E*(p, —1))=h*E*(p, —2))=0 if qeZ.

Step 4. In this final step, we make use of the other divisor Y, of F°. Vanishing
theorems in Step 3 and the sequence (3.3) imply that

h*(Y,, E(p, —1))=h*(Y,, E(p, —=2))=0  if peZ,
hz(Y29 E*(pao))=h2(Y2,E*(p’ —1))=0 if pEZ

It is shown in a similar way as in Step 3 that H*(Y,, E(p, q))—>H?*(Y,, E(p, g+ 1))®? are
injective, if p+4g =< —4. Consequently, we have

h*(Y,, E(p, q9))=0 if p<—1and ¢g<-3 or p=-1 and ¢=0,
h*(Y,, EX(p, q))=0 if p<—2and g£—2 or p=-—2and g=1.
Using again the sequence (3.3), we obtain inductively that
h*E(p,q)=0 if p=z—2 and g1,
h*(E*(p,@)=0 if p=—2 and g21,
completing the proof. [
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PROPOSITION 3.5. Let E be an anti-self-dual bundle on Gr,(C*) satisfying the
hypothesis of Main Theorem 1. Then we have

hY(E©0, —1)=1, hY(E(—1,0)=h"(E(1, —2))=0,
hY(E*(—1,0)=1, hY(E*0, —1))=hY(E*(—2,1))=0,
h*E(-2, =3)=1, h*(E(—3, —2))=h*E(—1, —4))=0,
h*E*(—3, =2)=1, h*E*(—2, —3))=h*E*(—4, —1))=0.
ProoOF. Theorem 2.7 and Corollary 3.2 imply
0=yx(E(—1,0))= —h'(E(—1,0)+h*(E(—1,0)).

By Proposition 3.4, we know A %(E(— 1, 0))=0. Hence, A*(E(— 1, 0))=0. In a similar way,
we get desired results about 4! and applying Serre duality, we also obtain results about
Rt O

THEOREM 3.6. Let Ebean anti-self-dual bundle on Gr,(C*) satisfying the hypothesis
of Main Theorem 1. Then we have h°(E)=r—3 and h*(E)=0 on the twistor space F>.

Moreover, E decomposes into a direct sum E=E'® T, where E' is an SU(3) anti-self-
dual bundle and T is a flat bundle of rank r—3.

ProOOF. Theorem 2.7, Corollary 3.2 and Proposition 3.4 yield h°(E)—h*(E)=r—3
and so h°(E)=r-3.

In general, a holomorphic section s€ H%(Z, E) corresponds to a covariant constant
section of E over M, where Z is the twistor space of a quaternion-Kéahler manifold M
and E is an anti-self-dual bundle on M. (See, for example, [W-W: p. 422] or [Na-2].
A direct computation in [Na-2] shows this fact.) Consequently, there exists a
holomorphically trivial bundle 7 such that Ex~T@® E’ and the rank of T is greater than
or equal to r—3, where E’ is a subbundle of E. Then we have the rank of E’ is less
than or equal to 3. However, if the rank of E’ is less than 3, ¢;(E)=c5(E’) vanishes.
This is a contradiction and we have rk(T)=r—3 and rk(E’)=3, where rk(T) means the
rank of 7 and so on. The same argument implies that E’ has no section. Hence we get
h°(E)y=h°(T)=rk(T)=r—3 and so hY(E)=0. O

Due to Theorem 3.6, from now on, we assume that the rank of E is 3 and so,
h°(E)=h*'(E)=0. Then we can apply the same method for the dual bundle E* and we
have h°(E*)=h(E*)=0.

LemMma 3.7. Let E be an SU(3) anti-self-dual bundle on Gr,(C*) satisfying the
hypothesis of Main Theorem 1. Then we have h°(E(p, —p))=0, h°(E*(p, —p))=0,
h*(E(—p—3,p—3)=0 and h*(E*(—p—3,p—3))=0 where p# + 1.

Proor. The homogeneous bundle O(p, —p) on F?® is the pull-back bundle of an
anti-self-dual bundle on Gr,(C#) from [Na-3; Theorem 3.4]. Consequently, E(p, —p)
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is also the pull-back of an anti-self-dual bundle. A direct computation shows that the
third Chern class c;(E(p, —p))= —(p— 1)}(p+ 1)>xy(x —y) under the relation (2.1). The
same argument as in Theorem 3.6 implies that if 2°(E(p, — p)) does not vanish, E(p, —p)
has a trivial summand and c;(E(p, — p)) vanishes. This is a contradiction when p# +1.
A similar way gives vanishing about the dual bundle E* and Serre duality gives vanishing
about £°. [J

LemMa 3.8. Under the same assumption as in Lemma 3.7, we have h(E(2, —2))=
hY(E*(—2,2)=h*E(—1, —5)=h*E*—5, —1))=0.

PrOOF. From Corollary 3.2, we have x(E(2, —2))=0. Theorem 2.7, Proposition
3.4 and Lemma 3.7 give the desired result. []

We define
W,=HF5 EO0, —1))* and W,=H'(F*% E*(—1,0)*.

By Proposition 3.5, we have dim W, =dim W,=1. On the other hand, we obtain
from our definition that H'(W, ® E0, —1))= W, ® H'(E(0, —1))~End(H'(E(0, —1)))
and HY(W, ® E*(—1, 0))End(H(E*(—1, 0))), where we regard W, as trivial bundles
on F> with fibres W, for i=1, 2. (For brevity, we will omit F> in cohomology groups.)
Consequently, using the identity elements of End(H *(E(0, — 1))) and End(H(E*(—1, 0)))
respectively, we have the extensions S; and S, such that

3.5) 0-E->S,-W¥0,1)-0,
3.6) 0—-E*->S,->W¥1,0)-0.

Dualizing (3.6), tensoring with W (0, —1) and taking the associated cohomology se-
quence, we get from Theorem 2.8

HY(S}® W,(0, —1))= H(E® W (0, — 1))=End(H'(E(0, —1))).
Hence, there is the compatible extension V such that
0S¥ ¥V _— WX0,1)——0

.

0—>E—»S,—W}0,1)——0.

Therefore, we have the display of a monad
Wy(-1,0-V->W¥0,1)
such that
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0 0

0—— Wy(—1,00—> S¥ —» E — 0
(3.7) 0— Wy(—1,00—s V¥V —5 § ——0

S

wi0,1) = W0, 1)
| |
0 0

To prove Main Theorem 1, we must determine the bundle V. We will apply
Proposition 2.6 for the bundle 7(0, —1) and consequently, we consider cohomology

groups H'(V(p, q)) and H'(V® Q¥(p, 9)).

LEMMA 3.9. Let S, be the bundle defined as above. Then we have h'(Sy(p, q))=0 if
i=0  for p+q=0 and (p,9)#(-1,1),(0,0),(0, —1),(1, 1),
i=1  for p+qs—2 or (p,@)=(—1,0,(0,0) (L, —2, (2 —2),
i=2 for p+q<—4 or p=—1and q=-2 or (p,q9=(—-2,-1),(0, —-3),
i=3 for p+q=—-2 or p=—1and qg=—-2 or (p,q9=(—-2,—-1),(0, -3),
i=4  for p+qz-4 or (p,9=(-3, —2),(=3, =3),(-1, -4.(=-1, =5,
i=5  for p+q=—6 and (p,q)#(—4, —2),(—2, —4).

Proor. From the exact sequence (3.5), we get a long exact sequence:

- > HY(E(p, 9)) > H'(S,(p, @) » W@ H'(O(p,q+1) > - -

Our vanishing theorems for H(E(p, q)) (Theorems 2.7 and 3.6, Propositions 3.4 and
3.5, Lemmas 3.7 and 3.8) and the Bott-Borel-Weil theorem for H(0(p, g+ 1)) (Theorem
2.8) yield our results. [

LEMMA 3.10. Let V be the bundle defined as above. Then we have h*(V(p, q))=0 if
i=0  for p+q=0 and (p,q)#(—1,1),(0,0), (0, —1),(1, —1),
i=1  for p+q<—2 or (pa@)=(—1,0),(0,0)(1, —2),(2 —2),
i=2 for p+q<—4 or p=-—1and q=z—-2 or (p,q9=(—2,—-1),(0, —3),
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i=3 for p+q=—2 or p=-—1and q<-2 or (p,q9=(-2,—1),(0, —3),
i=4  for p+qz—4 or (p,q9)=(-3,-2),(-3,-3),(—-1, -4,(-1,-9),
i=5 for p+q=—6 and (p, 9)#(—4, —2),(—3, —3),(—2, —3),(—2, —4).
Proor. From the second row of (3.7), we get a long exact sequence:
> Wo,®H(O(p—1,9) » H'(Vp, 9) > H(S,(p, q)) > - -

Our vanishing theorems for H(S,(p, q)) (Lemma 3.9) and the Bott-Borel-Weil theorem
for H(O(p—1, q)) (Theorem 2.8) yield our results. []

LeMMA 3.11. Let V be the bundle defined as above. For brevity, we denote by T
the pull-back bundle p¥*TP3, where TP? is the holomorphic tangent bundle of P3. Then
we have h'(V® T(p, q))=0 if

i=0  for p+q<—2and (p@#(-1,—1) or (pA=(1,-2),

i=1  for p+q=—4 or (p,9=(-2,—-1),(-1,0)(0, —2),(0, —3),(1, —2),
i=2 Jor p=<—1and q<—2 or p=-—2 and q= -2,

i=3  for p+qz—-3 or (p,q9=(-3,—-1),(-3, -2),(-3, -3),(-1, -3),
i=4  for p+q=-—5 and (p,q)#(—2, —3),

i=5  for p+q=-—7 and (p, q9)#(—5, —2),(—4, —3),(—3, —3),(—3, —4).

Proor. Using the Euler sequence on P* and the holomorphic fibration p,, we
obtain

3.8) 0 Ops—> 01,0094 5T 0.
Taking the associated long exact sequence, we have

> H'(Wp+1,9)%* > H(V®T(p,q)—» H '(Mp,q) > -~
Our vanishing theorems for H'(V(p, q)) (Lemma 3.10) yield our results. [J

LeMMA 3.12. Under the same assumption and the notation as in Lemma 3.11, we
have h'(V® Q¥(p, 9))=0 if

i=0  for p+q=-2 and (p,q9#(—1,—-1) or (p,9=(1, =2),
l=1 for P“TQ§—4 or (P, q)=(_2’ —1)’(0’ —'3),
i=2 for p<—1 and q<—1 and (p,q)#(—1, —2),

i=3 for Pg —2 and ‘12 —3 and (p’ q):'é(_zs _2)’(_23 _3)
and (p,9)=(—3, —2),(—3, —3),

i=4  for p+qz—-4 or (p,9=(-3,-2),(—1, -4,
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i=5  for p+q=—6 and (p,q)#(—3,~3) or (p,q=(—2,—5).

Proor. Dualizing the exact sequence in Definition 2.5, we use Lemmas 3.10 and
3.11. O

LemMMA 3.13.  Under the same hypothesis as in Lemma 3.10, we have h°(V(0, —1))=
h(V(0, —1))=0.

Proor. From the second row of (3.7) and the Bott-Berel-Weil theorem (Theorem
2.8), we obtain H(V(0, —1))= H(S,(0, —1)) fori=0, 1, - - -, 5. Making use of (3.5) and
vanishing theorems A%(E(0, —1))=0 (Theorem 2.7) and h!(0)=0 (Theorem 2.8), we
get an exact sequence:

0 - H%S,(0, —1)) » W¥® H%0) » H'(E(0, —1)) > H'(S4(0, —1)) - 0.

From our definition of the extension of E by W0, 1), the Bockstein operator
W¥® H°(O)— HY(E(0, — 1)) = W} is the identity. Hence, £°(S;(0, —1))=h!(S,(0, —1))=
0. O

LEMMA 3.14. Under the same hypothesis as in Lemma 3.10, h3(V(—3, —1))=1.

ProOF. By Lemma 3.10, we get h{(V(—3, —1))=0 for i#3. A direct computa-
tion and our definition of E and V give ch(V)=ch(0®*® 0(—1, 1)). Consequently,
the Hirzeburch-Riemann-Roch theorem implies x(V(—3, —1))=4x(O0(—3, —1))+
x(O(—4, 0)). The Bott-Borel-Weil theorem (Theorem 2.8) yields y(0(—3, —1))=0 and
x(0(—4,0))= —1 and so, A3(N(=3, —1)=1. O

LEMMA 3.15. Under the same hypothesis as in Lemma 3.10, we have h®(V®
¥(—1, —1))=0 and the identification H'(V® Q¥(—1, —1)=xW¥®C*, where C* is
the standard representation space of SU(4).

Proor. The exact sequence (3.8), Lemmas 3.10 and 3.13 yield A°(V®
T(—1, —1))=A*(V® T(—1, —1))=0. These vanishing, combined with the dualized
exact sequence in Definition 2.5 and Lemma 3.10, imply that 2°(V® Q#(—1, —1))=0
and H' (M) =H (V® Qf(—1, —1)). From the second row of (3.7) and Theorem 2.8,
we get Ho(V)= H°(S,). Theorem 3.6 and (3.5) yield that H°(S,)= W ® H°(0(0, 1)).
The Bott-Borel-Weil theorem implies the identification H?(0(0, 1))=~C* as the
representation space of SU4). [

LEMMA 3.16. Under the same hypothesis as in Lemma 3.10, h*(V® Q¥(—3, —1))
=0.

ProoF. In the same way as in Lemma 3.14, we obtain y(V® @f(—3, —1))=
4y(Q¥(—3, — 1))+ x(QF(—4,0)). Since the bundle Q is homogeneous, the Bott-Borel-
Weil theorem implies that y(Q¥(—3, —1))=0 and x(QF(—4, 0)) 0. Hence, Lemma
3.12 yields B3 (V® QX —3, —1))=0. O
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LEMMA 3.17. Under the same hypothesis as in Lemma 3.10, h3(V® Q¥ (—4, —1))=
h*(V® QH(—4, —1))=0. _

ProOOF. Using the homogeneity of bundles Q, and Qf, we get an isomorphism
between QF and Q,(3, —1). Consequently, 2(V® Q*(—4, —1)=h'(V® Q,(—1, —2))
fori=0,1,---,5. ,

Serre duality implies that A*(V(—2, —3))=h'(V*(—1, 0)) and h5(V(—2, —3))=
h°(V*(—1, 0)). Dualizing the first column of (3.7), we obtain from Theorem 2.8 that
H'(V*(—1,0)=H(S,(—1,0)), for i=0,1, ---, 5. Making use of (3.6) and vanishing
theorems h°(E*(—1, 0))=0 (Theorem 2.7) and 4 !(0) =0 (Theorem 2.8), we get an exact
sequence:

0— H°S,(—1,0) » W*®@ H°(0) - HY(E*(—1,0)) » H(S,(—1,0)) - 0.
From our definition of the extension of E* by W¥(1, 0), the Bockstein operator W3 ®
H°(0)—>HYE*(—1,0))= W¥ is the identity. Hence, 2°(S,(—1,0))=h S,(—1,0))=0
and so, h*(V(=2, =3)=h3(V(-2, —3))=0.
The exact sequence in Definition 2.5, Lemma 3.10 and the above vanishing theorem
yield that H(V® T*(—1, —2)) = H'(V® Q,(—1, —2)) for i=3, 4. Next, dualizing (3.8),
we obtain from Lemma 3.10 that H(V® T*(—1, —2))=0 for i=3,4. O

THEOREM 3.18. Under the same hypothesis as in Lemma 3.10, we have an iso-
morphism between V and W¥ Q@ C*@® O(—1, 1), where W, = HY(E(0, —1))* and C* is the
standard representation space of SU(4).

ProOF. We apply our spectral sequence (Proposition 2.6) to the vector bundle
V(0, —1). Our vanishing theorems (Lemmas 3.10, 3.12-3.17) imply that

E;I,I;Wik@(:‘t@@(o’ _l)a E1_3'3;@(—1,0)9
and the other E,-terms vanish. Hence, by Proposition 2.6, we have
0->WFrRC*®00, —1)—- V0, —1) > 0(—1,0)—>0.

However, the Bott-Borel-Weil theorem (Theorem 2.8) yields that HY(0(1,0)®
00, — 1))~ H'(O(1, —1))=0 and so, the above exact sequence splits. Consequently, we
obtain V(0, —1)=W}RC*®@ 00, —1)®0O(—1,0). O

Theorem 3.18, together with Theorem 3.6, yields Main Theorem 1 in the case n=2.

4. Classification II.

In this section, we also use the same symbol E for an anti-self-dual bundle on
Gr,(C"*?) and its pull-back on F?"*1,
We apply Theorem 2.4 to an anti-self-dual bundle on Gr,(C"*?).
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ProrosITION 4.1. Let E be an anti-self-dual bundle with a hermitian structure on

Gr,(C"*?). We assume that p+q is an even number. Then we have for 2<i<n
HY(F>"* L E(p,q))=0  if p+q=-2,
. i odd and <—-i-3,
HY(F>"* ', E(p,q)=0  if {‘ odd and pra= =
i:even and p+q=< —i—2.

REMARK. The assumption that p + ¢ is even is caused by the non-existence of the
line bundle L (¢(1)) in [S]. Under the notation in Theorem 2.4, we have an identifica-
tion 0(2)= (1, 1). However, this assumption is not needed from the viewpoint of the
Penrose transform ([Ba] and [M-S]). We will give an elementary proof for this fact in
Proposition 4.3.

For H°(F?"*1 E(p, q)), we have the next lemma (see also [N-N2; Lemma 3.3]).

LemMMA 4.2. Let E be an anti-self-dual bundle with a hermitian structure on
Gr,(C"*?). Then we have H(F*"*', E(p, q))=0 if p+q=< —1.

ProOF. Let s be a section of E(p,q). We denote by P, the twistor fibre (xe
Gr,(C"*?)). From [Na-3; Lemma 3.3], we have E(p,q) lp.=E.®@Up(p+q). If
p+q=—1, H°(P', O(p+q))=0. Hence, the restricted section s |p_ vanishes. [J

PROPOSITION 4.3. The assumption in Proposition 4.1 that p+q is an even number
IS unnecessary.

ProOF. We employ an induction. When n=1, this result is obtained in [Bu] and
when n=2, this is nothing but Theorem 2.7.

Using the holomorphic fibration p, : F2*"*15P**1 we denote by Y, the divisor
p{'(P™ in a similar way as in §3. Hence we have exact sequences of sheaves:

4.1 0-0(—-1,00>0—>0y, -0,
4.2) 0—- 0y,0, —=1) > Oy, > Opzn-1 0.

From Lemma 4.2, the sequence (4.2) and the hypothesis of induction, we obtain that
for 2<i<n—1,
H°(Y,, E(p,q—1)=H*(Y,, E(p,q)) if p+q=-1,
@3 H'YuEpq-D)=H'(Y,,E(p.q) if p+qs-2,
; ; . i:odd and p+gq=—i—3,
HY(Y,, E(p, q— )= H'(Y,, E(p,q)  if { , prd=—t
i:even and p+g=—i—2.

The sequence (4.1), Proposition 4.1 and Lemma 4.2 imply that
H(Y,, E(p,q)=0 if p+qisodd and p+q=<—1.
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This, together with (4.3), yields H°(Y,, E(p, q¢))=0 if p+q< —1. Using again (4.1) and
Proposition 4.1, we get HY(F*"*!, E(p—1, q))=0 if p+q is even and is less than or
equal to —2. Consequently, we have H(F*"*!, E(p, q))=0if p+qg< —2.
The similar way implies the desired result. [
REeMARK. In this proof, we also obtain for 2<i<n—1
H(Y,, E(p,q)=0 if p+qs-—1,
1 = i < —
(4.4) H(Y, E(p,q)=0 if p+q=-2,
; ] i:odd and p+g=—-i-3,
H'(Y,, E(p,q)=0 if { .
i:even and p+q=—i-—2.
From now on, we give a proof of Main Theorem 1 in the case n=3. To do so, we
will prove a slightly stronger theorem.

MAIN THEOREM1'. Let E be a holomorphic vector bundle of rank r on F?"*! (n=2)
which satisfies the following condition.
(1) The bundle E (resp. E*) and the restricted bundle E | pam+1 (resp. E* | Fam+1) 1O
an arbitrary F>™*' c F?"*! satisfies the same type of vanishing theorems as in
Lemma 4.2 and Proposition 4.3, where 1 <mZ<n.
(2) ci(E)=0, c(E)=xy, c3(E)=xy(x—y) and c(E)=x3y—x?y*+xy>.
Then, E is the cohomology bundle of the following monad, '

(M) 0(—1,0)-> Ve o(—1,1) - 00, 1),
where V is a trivial bundle Fx V of rank r+1.

ReMARk 1. In §3, we mainly use vanishing theorems and a spectral sequence for
holomorphic vector bundles. Moreover, F>™*! can be regarded as the twistor space of
Gr,(C™*?). Consequently, we also have proved Main Theorem 1’ in the case n=2.
Hence, we employ an induction with respect to the dimension of the base space F2"*1,
We assume that Main Theorem 1’ is true on F2"~! (n>3).

REMARK 2. For brevity, we refer to the above condition (1) as Lemma 4.2 and
Proposition 4.3. Note that the condition (1) implies (4.4) from a similar argument as
in the proof of Proposition 4.3.

LEMMA 4.4. Let E be a holomorphic vector bundle on F>"* ! satisfying the hypothesis
of Main Theorem 1'. Then we have

dimHYF?"*1, E0, —1))=1 and dimHYF?"*!, E¥(—1,0)=1.

Proor. Fix F?""!'c Y, cF?"*! and we restrict the bundle E to F2"*!, The
restricted bundle satisfies the conditions in Main Theorem 1’, because # > 3. (The third
Chern class c3(E) does not vanish.) From the hypothesis of induction, the restricted
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bundle E|.,,-, is the cohomology bundle of the monad (M). Now the Bott-Borel-

WEeil theorem implies that H{(F?"~1, 0(—1, —1)), H(F*"~1, ©(0, —1)) and H{(F?"~!,

O(—1, 0)) vanish for i=0, 1. Combined with the first row and the first column of the

display of (M), these vanishing yields that H°(0)=~ H!(F*"~!, E(0, —1)). Consequently,

we have dimH'(F?"~1, E(0, —1))=1and dimH'(F?"~ 1, E¥(—1,0))=1 in a similar way.
If n=3, the Bott-Borel-Weil theorem yields that

p=—2 and g2 -2,
or p+gq=<=-3

p=—3 and g= -3,
or p<—1 and g=—1.

H*F*"~1, 0(p,)=0 if {

H3F*~ 1, 0(p,q)=0  if {

This, together with the display of the monad (M), implies that H%(F2"~1, E(p, q))=0 if
p=0 and g=< —1. Hence, Proposition 4.3 and the exact sequence (4.2) yield that
Hz( Yl: E(p9 q— 1));H2( Yl, E(p’ q)) if p §0> q é —1 and (pa q) :,é(O’ - 1) From (44)a we
obtain

4.5) H*(Y,E(p,q)=0 if p=<0, g<—1 and (p,q)#(0, —1).

Since H'(Y,, E(0, —2))=0 from (4.4) and H3(Y,, E(0, —2))=0 from (4.5), (4.2) implies
that H}(Y, E(0, —1)=H(F?*"~ 1, E(0, —1)).

On the other hand, (4.1), (4.4) and (4.5) yield H*(F*"*!, E(p—1, q))= H*(F*"*!,
E(p, q) if p<0, g=< —1 and (p, 9)#(0, —1). From Proposition 4.3, we get

(4.6) H*F*"*1, E(p,g)=0 if p=<0, g<—1 and (p,q)#(0, —1).

Since HY(F?"*!, E(—1, —1))=0 from Proposition 4.3 and H?(F*"*! E(—1, —1))=0
from (4.6), (4.1) implies that H'(F?"*!, E(0, — 1))~ H(Y,, E(0, —1)). Consequently, we
have dimH(F2"*1, E(0, — 1))=dim H'(F2" 1, E(0, —1))=1.
In a similar way, we obtain dimH'(F2"*!, EX(—1,0)=dimH(F?"~1, E*¥(—1, 0))
=1. O
We define
W, =HYF2*! EO, —1))* and W,=H (F2"*! E*(—1,0)*.

By Lemma 4.4, we have dimW,=dimW,=1. Using the identity elements of
End(H'(E(0, — 1)) and End(H(E*(—1, 0)) respectively, we have the extensions S, and
S, such that

4.7 0-E—->S,»>W¥&0,1)>0,
(4.8) O->E*->S,->W¥1,00-0,

in a similar way as in §3. Since n=3, the Bott-Borel-Weil theorem implies that
HY(F**1 O(p, q)=HXF?**!, O(p, q))=0. Dualizing (4.8), tensoring with W (0, —1)
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and taking the associated cohomology sequence, we get

HY(F2+1 S3® W,(0, — 1)) x H\(F>"*1, E®Q W,(0, —1))
~End(H'(F2"*!, E, —1)).

Hence, there is the compatible extension ¥ such that

0——SF— ¥V, — > WH*0,1)——0

oL

00— E— S, —>WX0,1)—0.

Therefore, we have the display of a monad
(M1) Wy(—1,0)->V, > W¥0,1)

such that

L 4

0—— Wy(—1,00—> S¥ —» E —0

|| | |

(4.9) 0 — Wy(—1,00—> V¥V, —>s S, —-0

l !
wi0,1) = W¥0,1)

! !
0 0

To prove Main Theorem 1’, we must determine the bundle V.
Now we introduce another monad on F?"*1:

(M2) Wy(—-1,0-VYeo(—-1,1)-> WH0,1),

where V is a trivial bundle of rank r+ 1. The cohomology bundle of (M2) satisfies the
condition (1) and the condition (2) in Main Theorem 1’ by the Bott-Borel-Weil theorem
and a direct computation respectively.

PROPOSITION 4.5. We have an isomorphism on F*"~! that
a:V®O(—1, )| 2V | pan-s-

Proor. By the hypothesis of induction, there are isomorphisms between the
cohomology bundles of the restricted monad (M1) to F?"~! and the cohomology
bundles of the restricted monad (M2) to F2"~!. From a theorem of Okonek-Schneider-
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Spindler ([O-S-S; Corollary 1, p. 279]), if H(F?*"~ !, V*(—1,0@® 00, —1)), H(F?*"~1,
V0, —1)), H(F*~ !, 0(—1, —1)), H(F*"~ ', V¥ —1,0)) and H(F* !, (0, — 1)@
O(—1, 0)) vanish for i=0, 1 and j=1, 2, we obtain the desired isomorphism.

Since V is a trivial bundle, the Bott-Borel-Weil theorem implies that H{(F?3""!,
*(—1,0@ 00, —1))=0, H(F*"~!,0(—1, —1))=0 and H{(F?""!, N0, — D@ O(—1,
0))=0 for i=0,1 and j=1, 2.

Next, since H(F*"™',0(—1, —1))=0 (i=0, - -+, 2n—1) by the Bott-Borel-Weil
theorem, if we restrict the second row of the display (4.9) to F?"~!, we have
HY(F>""', V0, —1)=H(F?* ' 5,0, —1)) for i=0, 1. ' ‘

Making use of the second column of (4.9) and Lemma 4.2, we obtain an exact
sequence: R

0— HO(F?"*1, 8,0, —1)) > W
— H'(F>"*1 E©, —1)) > HY(F?"*1,8,(0, —1)) -» 0,

where H'(F"*!, 0)=0 by the Bott-Borel-Weil theorem. The definition of the extension
yields that W¥—H'(F?"*1 S,(0, —1)) is the identity. Hence H{(F?"*1,5,(0, —1))=0
for i=0, 1. Moreover, from the second column of the display (4.9), Lemma 4.2 and
Proposition 4.3, the Bott-Borel-Weil theorem implies that

HO(F?>"*1, Sy(p,q)=0 if p+q=-1,
(4.10) H'(F>*,S,(p,)=0 if p+qgs—2,
H*(F?"*1,8(p,g)=0 if p+q=-—4.
Then the exact sequence (4.1) and (4.10) yield that
4.11) H°(Y,, S,(p,q)=0 if p+q§—1v,
4.12) HY(Y,, S{(p,q)=0 if p+g=-3.

Using again the second column of the restricted display (4.9) to F2"~ 1, we obtain from
Lemma 4.2 and Proposition 4.3 that H°(F?"~ ', S{(p, q))=0if p+q< —1 and (p, q)#
(0, —1) and H'(F?"~1, §,(p, 9))=0 if p+ g < —2. These vanishing, combined with (4 2),
shows that

(4.13) HY (Y, S(p,q—1)=H (Y, Si(p,q) if p+qs-2.

By (4.12) and (4.13), we have H' (Y, S;(p, ) =0 if p+q< —2. These, together with
(4.2) and (4.10), yield that H°(F*"~',S,(p,q)=0 if p+g=—1, in particular,
H°(F?"~1 §,(0, —1))=0. Then, from the second column of the restrlcted display (4.9),
we have

0— W} — HY(F?~1 EQ0, —1)) —» HY(F2"~1, §,(0, —1))—>0
Lemma 4.4 and its proof implies that dim W¥=dim H'(F?"~ 1, EQ0, —1))=1 and $0,
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HY(F*~1, 8,0, —1))=0. .
As for H(F?"~! V¥*(—1,0)) (i=0, 1), we may apply a similar method to the dual
monad of (M1).

PROPOSITION 4.6. There exists a unique element Ac H°(F?"*' End(V ® 0(—1, 1),
V,)) such that the restriction A to F?>"~! corresponds to a in Proposition 4.5.

Proor. Since End(Y@oO(—1,1), V)=V*QV,®V,(1, —1), if H(Y,, V0,
—1)), H(Y,, V,(—1,0)), H(F*>"*', V,(—1,1)) and H'(F*"*!, V,(—2, 1)) vanish for
i=0,1, from (4.1) and (4.2), we obtain that HO(F2"~! End(V@® O(—1, 1), V,)) =
HO(F?**1 End(V® 0(—1, 1), V,)) and so, we have the desired 4.

First Proposition 4.5 and the Bott-Borel-Weil theorem imply that

HOF* L Vi(p,g)=0 if p<—1or g<-2or(pqg=(00 -1,

HYF*~1, Vy(p,9)=0.

By (4.2) and (4.14), we have for i=0, 1.

HY(Yy, Vi(p, q— D))= H'(Yy, Vi(p, 9))

if p<—1org<-2or (p,q=(0,—1).

The second row of (4.9), (4.10) and the Bott-Borel-Weil theorem yields that
HOF> ', Vi(p, q)=0 if p+qs-—1,

(4.16) HY(F** 1L, Vi(p,q)=0 if p+q=s-2,
H*(F>"*1 V(p,q)=0 if p+g=-—4.

From (4.1) and (4.16), we obtain that

H(Y,, Vi(p,q)=0 if p+q=<-1,

H\(Y,, Vip, q)=0 if p+gq=-3.

(4.14)

(4.15)

These vanishing, together with (4.15), imply that for i=0, 1,
4.17) H{(Y,, Vi(p, 9)=0 if p<—1or g=<-2 or (p,q)=(0, —1).
In a similar way, (4.1), (4.16), (4.17) shows that for i=0, 1,
H(F** ', Vi(p,q)=0 if p<—1or g=—2 or (p,q)=(0, —1). O

THEOREM 4.7. The vector bundle V, in the monad (M) is identified with V&®
O(—1, 1), where V is a trivial bundle of rank r+ 1.

ProoOF. By Proposition 4.6, we obtain a homomorphism 4: V@ O(—1, 1)-V,
such that the restriction A4 | ran-1 18 an isomorphism. Hence we also have det4:
NTZ2(Y®O(—1,1)»N*?V,. Since Vis trivial, N*>(Y®0(—1, 1))= 0(—1,1). On
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the other hand, from the monad (M1), we get c(V,)=c(E)c(O(—1, 0))c(0(0, 1)) and
s0, ¢ (N*2V)=c(0(—1,1)). Consequently, we regard det4 as an element of
HOF> 1, 0(—1, )*®@0(—1, 1)) HYF**', 0)=~C. Since 4 | .-, is an isomorphism,
det A =detA| rn-170, and so 4 is also an isomorphism. [J

5. Moduli spaces.

To describe homomorphisms in the monad (M), we make use of the expression
of F?"*! as a homogeneous space. For brevity, SU(n+2) is denoted by G and
S(U1) x U(n) x U(1)) is denoted by K,. Let C"*2 be the standard representation space
of G with a G-invariant hermitian inner product 4. Now we denote by e (resp. f) the
highest (resp. lowest) weight vector with the norm 1 in C"*2. Then, by the restriction
of the action of G to K,, we have two irreducible representation spaces Ce and Cf of
K;. We also obtain an irreducible representation Ce® f of K, by the tensor product.
Under this notation, we have

O(—1,0)=Gxg,Ce, 00,1)=Gxx,Cf and O(—1,1)=GCGxg, Ce® f.

Hence, for example, an element of (O(—1,0) is denoted by [g, ce], where ¢ is a
complex number and [g, ce] is the coset represented by (g, ce) e G x Ce.

PROPOSITION 5.1. Let o and B be homomorphisms in the monad (M):
™) 0(—1,0 2> r@o(-1, - 00,1 .

Then, there exist Ace Hom(C"*2, V), Be Hom(V, C"*?), zeC"*2 and we C"*?* such
that

(.1 *([g, ce])=((Lg], cAge), [g, ch(z, gf)e® f]) ,
(5.2) B((Lg], v), [g, c'e® fD) =g, {H(Bv, gf )+ c'wlge)} f],

where ge G, ¢,c’'e€C, and ve V.

PrOOF. A homomorphism « is regarded as an element of H°(Hom(0(—1, 0), V&
O(—1, D)=V H(0(1, 0)) ® H°(0(0, 1)). (For brevity, we omit F>"*! in cohomology
groups.) The Bott-Borel-Weil theorem implies that H%(O(1,0)=C"*?* and
H°(0(0, 1))=~C"*2. Consequently, « is identified with an element of Hom(C"*2, )@
C"* 2. In a similar way, f belongs to Hom(V, C"*?)@® C"*2*, For example, the method
of Kostant [K] yields the explicit expressions of o and . [

Since (M) is a monad, « is an injection, f is a surjection and foa=0.

LeMMA 5.2. A homomorphism o in (M) is injective if and only if A is injective. A
homomorphism B in (M) is surjective if and only if B is surjective.
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PrOOF. If A is injective, (5.1) implies that « is injective. We assume that A4 is not
injective. Then, Ker 4 (#{0}) is a subspace in C"*2. Let u be an element in Ker 4 with
the norm 1. Since n = 2, there exists ve C"* 2 such that h(v, v)=1, h(u, v)=0 and h(z, v)=0.
Considering the standard representation of SU(n+2), we obtain g€ G such that u=ge
and v=gf. Hence, from our choice of u, v and g, (5.1) yields that a([g, e])=0. This is
a contradiction with the injectivity of a.

As for f and B, the surjectivity of B implies the surjectivity of § by (5.2). If B is
not surjective, there exists g € G such that h(Bv, gf) =0 for an arbitrary ve V and w(ge) =0.
Consequently, f is not surjective. [J

COROLLARY 5.3. That the rank r of E is greater than or equal to n+ 1 is a necessary
condition for the existence of E satisfying the conditions in Main Theorem 1 (or 1).

Proor. The vector bundle E is the cohomology bundle of (M) by Main Theorem
1. From Proposition 5.2, the dimension of the vector space V is greater than or equal
ton+2. [J

LEMMA 5.4. A composition homomorphism Boa is a O-map if and only if there exists
a constant ceC such that BA+z@w=cld¢.+2, where we regard z@w as an element of
C'*2®C"*2*~End(C"*?) and Idcn+: is the identity on C"*?2.

Proor. This proof is a slight modification of [Na-3, Proposition 5.1.2].
From (5.1) and (5.2), foa=0 if and only if

h(g~'BAge, )+ w(ge)h(g ™'z, f)=h({g~(BA+z@w)g}e, )=0,

for an arbitrary geG.

As a representation space, End(C"*?) is decomposed into sl(n+2)@® CIdcn«2.
According to this decomposition, BA +z ®@ w is assumed to be expressed as X+ ¢ Idcn+ 2,
where c is a constant. Then, we have h({g ™ '(BA +z®@ w)g}e, f)=h(g~ ' Xge, f). Combined
with the irreducibility of the adjoint representation of G, X #0 if and only if there exists
g€ G such that h(g~'Xge, /)#0. O

THEOREMS5.5. Let E be a vector bundle satisfying the conditions in Main Theorem
1. If E has an irreducible SU(r) anti-self-dual connection, then we have r=n+1 and an
identification between V and C"*?2.

Proor. First, we assume that H°(E)#0. The same argument as in the proof of
Theorem 3.6 implies that E has a trivial subbundle with a flat connection. This is a
contradiction with the irreducibility and so H%(E)=0.

The first row of the display of (M) and the Bott-Borel-Weil theorem yield that
H'(Kerp)=HYE) for i=0, - -- 2n+1. Consequently, H°(Kerf)=0. Since n=2, the
Bott-Borel-Weil theorem implies that H'(O(p, q))=0 for arbitrary p, q. By the first
column of the display of (M), we obtain
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(5.3) 0 — V — H(((0, 1)) » H'(Kerf) > 0.

Using again the Bott-Borel-Weil theorem, we have H°(0(0,1))=C"*? as the
representation space of G. Hence, dimH'(E)=dimH'(Kerf)=n+2—dim¥ and so,
dim V<n+2. Since rank E=dim VV'—1, we obtain rank E<n+ 1. However, Corollary
5.3 asserts that rank E=n + 1. Consequently we have rank E=n+ 1 and H'(E)=0. Then,
(5.3) yields that V= H(0(0, 1))=C"*2. [

By Theorem 5.5, we assume that the trivial bundle }J in the monad (M) is
Crt2=F?"*!1x C"*? and the monad (M) is described as

(MI) O(—1,0)—2>Cm2@0(—1, 1) —2 - 000, 1).

Then, note that 4 and B are automorphisms on C"*? by Lemma 5.2.

PROPOSITION 5.6. Monads (MI) and (MI') are isomorphic to each other, in other

words, the following diagram is commutative,

MI) : O(—1,0) ——C"™* 2@ 0(—1, 1)—— 0(0, 1)

pl lF Jq

MI): O(—-1, O)T»C"”(-B(Q(—l, I)T(D(O, 1)

where F is an automorphism of C"*2@® O(—1, 1), p and q are automorphisms of O(—1, 0)
and 0(0, 1), respectively, if and only if there exists a non-zero constant a, b and c such
that aB’A’'=bBA, cz=az’' and bw=cw' under the notations in (5.1) and (5.2).

Proor. The Bott-Borel-Weil theorem implies that H°End(O(—1, 0)))=
H°End(0(0, 1)))=C and H°End(C"*2 @ 0(—1, 1))=H°(End(C"*?)® H°(O)=
End(C"*?)@C. Consequently p and g can be regarded as non-zero constants and
the automorphism F is expressed as (C,r)e Aut(C"*?)@ C*. Then the commutative
diagram, (5.1) and (5.2) yield that

5.4 ((Lg1, CAge), r[ g, h(z, gf)e® f1)=p(([g], A'ge), L9, h(z’, gf)e® f]1),
(5.5) q{h(Bv, gf)+ w(ge)} =h(B’'Cv, gf) +rw'(ge)

for arbitrary ge G and ve C"*2. Consequently, (5.4) implies that CAge=pA’'ge and
rh(z, gf)=ph(z’, gf) for an arbitrary ge G. From the irreducibility of the standard
representation of G, we have CA=pA’ and rz=pz'. If we put v=0 in (5.5), the
irreducibility yields gw=rw’. Then we obtain ¢gB= B’C, using again the irreducibility.
Now A4 and B are automorphisms and so, C=p4A’'A~'=¢qB’ " 'B.

Conversely, if aB’A’=bBA, cz=az' and bw=cw’, we may put C=ad’'4"'=
bB'"!B,p=a,q=band r=c. O

Let .#€ be the set consisting of the isomorphism classes of the cohomology bundles
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of the monad (MI). We call .#€ the complex moduli space.
THEOREM 5.7. The complex moduli space .#°€ is identified with
{(z, w)eC"*2x C"*2* | w(z)#1}/C*,
where C*-action is defined as p - (z, w)=(pz, S w) for pe C*.

Proor. Using a theorem of Okonek-Schneider-Spindler ([O-S-S; Corollary 1, p.
279]) and the Bott-Borel-Weil theorem, we have a bijection between the isomorphism
classes of the monads (MI) and the isomorphism classes of the cohomology bundles.
From Propositions 5.1 and 5.6 and Lemmas 5.2 and 5.4, we obtain

,//[C____{(A, B, Z,w, c)eAut(Cn+2)xAut(Cn+2) XC”+2 xcn+2* XC l
BA+Z®W=CIdcn+2}/~ ,

where (A, B, z, w, c)~(A’, B, z’, w’, ¢’) means that there exist non-zero constants p, g
and r such that pB’A’'=qBA, pz’'=rz, rw'=qw and so, pc’'=qc.

If c=0, then BA= —z®w. Since z®w is not an automorphism, there is a con-
tradiction and so, ¢#0. Using our C*-action, we may put ¢c=1. Then, if we fix (z, w),
BA is uniquely determined and automorphisms 4 and B are uniquely determined up
to the equivalence relation. However, we must consider the condition that Idgn+2—z®@w
is an automorphism, because BA is an automorphism. It is easy to show that
Id¢a+2—z® w is invertible if and only if w(z)#1. [

REMARK. Making use of the proof of Theorem 5.7, we obtain another description
of M€:

(5.6) ME={(z,w,c)eC""T2x C"** x C* | w(z) #£c}/C* x C* x C*,
where the C* x C* x C*-actionis defined as (p, g, 7) * (z, w, ¢)=(5 z, ¢w, 4c)for p,q,re C*.

To obtain the moduli of anti-self-dual connections, the reality condition (the Ward
correspondence in §2) must be taken into account. First, we describe the real structure
o on F?"*1 We define je G as je=f, je= —f and ju=u for an arbitrary ue C"*? which
is orthogonal to e and f. Then we have o([g])=[gj] (for example, [Na-3]). Let
P.=7n"'(x) be a twistor fibre, where x € Gr,(C"*2).

PROPOSITION 5.8. Let E be the cohomology bundle of the monad (M1). The restricted
bundle E|, to the twistor fibre is trivial for each x € Gr,(C"*?) if and only if (z, w, ¢) in
(5.6) satisfies w(u)h(z, u)+w(v)h(z, v)#c for arbitrary u, ve C"*? such that |u|=|v|=1
and h(u, v)=0.

Proor. This proof is a slight modification of [O-S-S, Lemma 4.2.3, p. 325].

From the theorem of Grothendieck ([O-S-S, Theorem 2.1.1, p. 22]) and ¢,(E)=0,
E|p_is trivial if and only if for an arbitrary non-zero section s of E|,_ we have s(z) #0
for all z in P,.



INSTANTON BUNDLES 293

Since O(—1, 0) |,_=0O(—1),0(0, )|, =0(1)and O(—1, 1)|, =0 by [Na-3, Lemma
3.3], the display of the restricted monad (MI) to the twistor fibre P, implies that
1: H(P,, E|, )=H°(P,, Kerf|, )»C"**@C is injective.

If E|p_is trivial, the injectivity of I: H(P,, E|, )>C""?@ C yields that there
exists a subspace E,=C"*?@ C such that

(5.7) () Kerf,;=E, and U Imayg,;nE,={0},
[9]ePx [9]1ePx
where we denote a([g], ) by o, : Ce—C"*2@ C and B([g], (+, *)) by By : C"?*@C—~
Cf, using (5.1) and (5.2). We claim that if [g,] and [g,] are different points in P,, then
Imay,,; n Imoyg,,,={0}. Let Sp(1) be the subgroup in G of which the corresponding Lie
~algebra is generated by the highest root and U(1) be the standard subgroup of Sp(1).
Note that jeSp(1)\U(1). Then by definition of the twistor space [S], there exists
seSp(1)\U(1) such that g,=g,s. We assume that there exists a non-zero constant ¢
such that «([g,, ce])=a([g,, €]). By (5.1), we have cAg,e=Ag,se. Lemma 5.2, yields
that se=ce and so, se U(1). This is a contradiction. Hence, C"*?@® C is decomposed
into Imoy, ;@ Imoy,,;® E,. Then f,, 0%y, : Ce—Cf is an isomorphism by (5.7).
Next, we assume that the restricted bundle F ]l,’c is not trivial and so, there exist a
non-zero section se H°(P,, E |l,x) and g, € G such that s([g,])=0. By the injectivity of
I, there exists a unique (u, c)e C"* 2@ C such that I(s([g])) =([g], (4, ¢)), where [g] €P,.
From the definition of I, we obtain B([g], (4, ¢))=0 for an arbitrary [g]€P,. Since
s([g,1]1) =0, there exists a constant ¢’ such that a([g,, c’e])=([g,], (4, ¢)). Consequently,
we have B oa,,(c’e)=p(([g], (u, c)=0. Thereby, E ll,x is trivial if and only if
Brgs1° %y, - Ce—Cf is an isomorphism for arbitrary [g,]#[g,]€P,. However, using
jeSp(1)= G, we can substitute g, j for g,.
On the other hand, a direct computation and the definition of je G imply that
Biojie %gi(€) ={ —h(BAge, ge)+w(gf h(z, gf)} f. Hence, E|,_is trivial if and only if

(5.8) —h(BAge, ge)+w(gf)h(z, 9f) #0,

for an arbitrary [g]€P,. Since BA+z®@w=cld¢... by Lemma 5.4, (5.8) is equivalent
to w(ge)h(z, ge)+w(gf)h(z, gf) # c. Taking account of the standard representation of G,
we obtain the desired result. []

By [Na-3. Lemma 5.1.7], we have isomorphisms s; : O(—1, 0)=c *0(0, 1)* and
§,: 000, )=a*O(—1, 0)*. Since O(—1, 1) is the pull-back of an anti-self-dual bundle
from [Na-3, Theorem 3.4], the Ward correspondence implies that s: O(—1, 1)=
o*0(—1, 1). We call these isomorphisms the standard isomorphisms. More explicitly,
the standard isomorphisms are expressed as:

s1(lg, e =(g], [gjs —h(f; ),  s2lg, SD=(L9g], Lgj. hle, *)D) ,
5([g, e® fD)=(lg], [g), e ® [, )],
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where the last 4 means the induced metric from #|¢, and k|,

PROPOSITION 5.9. Let E be the cohomology bundle of the monad (MI). Moreover,
the restricted bundle E ||,x is assumed to be trivial for every x in Gr,(C"*?2). Then, there
is an isomorphism t : E—c*E* with (o *7)* =1 which induces a positive definite hermitian
form on sections of E|p, for every xe Gr,(C"*?2) if and only if there exist a hermitian
metricon C"*2 q hermitian metric on O(—1, 1) and isomorphisms O(— 1, 0)=c*0(0, 1)*
and 0(0, 1)=o*O(—1, 0)*.

Proor. From the hypothesis, 6 *E* is the cohomology bundle of the monad;

G'*B-* a-*a-*

c*0(0, 1)* ———c*C" 2@ 0O(—1, N)* —— a*0(—1, 0)* .

We can check the conditions in a theorem of Okonek-Schneider-Spindler ([O-S-S,
Lemma 4.1.3, p. 276]) using the Bott-Borel-Weil theorem and standard isomorphisms
O(—1,0)=c*0(0, 1)*, 00, 1)=c*0O(—1,0)* and O(—1,1)=c*0(—1,1). Then we
obtain that there is an isomorphism t: E—»¢*E* if and only if there exist isomor-
phisms C"* 2@ O(—1, N=a*C"* ¥ Da*0(—1, 1)*, O(—1, 0)=ac*0(0, 1)* and 0(0, 1)=
c*0(—1, 0)*. Since H°(O(—1, 1))=H°(1, —1))=0, we have C"*2~¢*C"*?" and
O(—1, 1)=o*0(=1, D*. The restricted bundle C"*?|, and ¢(—1, 1)|,_ are trivial by
[Na-3, Lemma 3.3]. Hence, these isomorphisms induce non-degenerate hermitian forms
on C"*? and O(—1, 1) respectively.

Next we take the condition imposed upon 7 into account. Since E|,, is trivial,
under the notation in the proof of Proposition 5.8, this condition yields E, has a positive
hermitian inner product. If we make use of an identification ¢(—1, 1) |, =P, x C,, the
proof of Proposition 5.8 yields that

(5.9) Imd[g]@lma[gj]®Ex=C"+2@Cx N

where [g] € P,. Since there exists ge G such that h(z, gf)=h(z, gje)=0, we have C,c E,
for this ge G by (5.1). Then the induced hermitian form on O(—1, 1)|-Px is positive,
because of the positivity of the hermitian inner product on E,. The non-degeneracy of
the hermitian form implies the positivity of this hermitian form and so, O(—1, 1) has
a hermitian metric. On the other hand, the property of the standard representation of
G, Lemma 5.2 and (5.9) yield that the vector space spanned by | ) . _g,.cn+ 2 E, has C"*2
as a subspace. Consequently, the induced hermitian form on C"*? is also positive.

Conversely, a hermitian metric on C"*?2 induces an isomorphism C"*2~g*C"* 2*
and a hermitian metric on O(—1, 1) induces an isomorphism O(—1, 1)=e*O(—1, 1)*.
Combined with isomorphisms ¢O(—1, 0)=¢*0(0, 1)* and 00, 1)=c*O(—1, 0)*, these
induce the desired 7 : E—g*E* under the hypothesis that E|, is trivial. ]

Therefore, to describe the moduli space, we fix the G-invariant hermitian inner
product 4 on C"*? and the standard isomorphisms s, s, s,.
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PROPOSITION 5.10.  Under this fixed isomorphisms C" T2 =g*C"*2* s: O(—1, 1)~
a*0(—1,1)*, s;: O(—1,0)=c*0(0, 1)* and s,: 00, 1)x=c*0O(—1, 0)*, the following
two conditions are equivalent:

(1) There exists a commutative diagram

O(~1,0) =2 C™2@0(~1,1) —— 0@, 1)

l | l

a*00, 1)* — o*C" 2@ O(—1, 1)* —a*0(—1, 0)* .
O-*B-* U*a*

(2) For all u and v in C"*2, h(Au, v)=h(u, Bv) and w= —h(*, z).

Proor. If the diagram is commutative, a direct computation shows that for all u
in C"*? and all g in G, h(Age, u)=h(Bu, ge) and h(z, gf)=w(gf). The irreducibility of
the standard action of G implies the condition (2). Now it is clear that (2) yields (1). [

We denote by 4 * the adjoint operator of 4 with respect to 4. Let .# be the moduli
space of anti-self-dual connections on E satisfying the hypothesis in Main Theorem 1."

PrROOF OF MAIN THEOREM 2. From Lemma 5.4 and Proposition 5.10, we have
A*Au—h(u, z)z=cu for an arbitrary ue C"* 2. In particular, A*A4Az=(z|*+c)z, and if u
is orthogonal to z, then A*Au=cu. Hence 4 is an automorphism on C"*2 if and only
if ¢ is a positive real number. On the other hand, Propositions 5.8 and 5.10 imply that
| z|> # —c. However, this condition is satisfied automatically because of the positivity
of c.

By Proposition 5.6, (z, ¢) and (z’, ¢’) induce the isomorphic monads if and only if
there exists a non-zero constant p e C* such that (z’, ¢’)=(pz, | p|*c). Consequently, we
obtain

M={(z,c)eC""*xR*}/C*,

where C*-action is defined as p - (z, ¢)=(pz, | p|?¢).

Next, we focus our attention on |z|*>+c which is an eigenvalue of 4*A. Since
|pz|*+|p|*c=|p|*(z|* +c), we can normalize in such a way that |z|>+c=1 using the
C*-action. Then the C*-action is reduced to S!-action such that p - (z, ¢)=(pz, c) where
peS! < C*. Therefore, taking account of the positivity of ¢, we obtain that

M={zeC" 2| |z2<1}/S". O

REMARK. Under the assumption that |z|?>4c=1, we may put

Az=z
{Auz /1—|z)%u if ueC"*2 is orthogonal to z .

First we suppose that z=0. Then 4 =Id¢.+.. From Propositions 5.1 and 5.10, the
cohomology bundle (MI) is decomposed into ¢(—1, 1) and the cohomology bundle of
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the monad:
O(—-1,00-C"*2 5 0(0,1).

This monad is the standard monad induced by @, ;. (This terminology is defined in
[Na-3, Definition 4.4].) Moreover, the cohomology bundle of the standard monad is
homogeneous by [Na-3, Theorem 4.5]. In fact, the cohomology bundle of (MI) is
isomorphic to a direst sum Q,(0, 1)@ O(—1, 1). Consequently, the “vertex” of .#
corresponds to a reducible connection. (A SU(n+ 1)-anti-self-dual connection reduces
to a U(n) x U(1) connection.) The centralizer of U(n) x U(1) in SU(n+1) is U(1). We
denote by Z, , , the center of SU(n+1). The group U(1)/Z, ., is nothing but S' in the
description of the moduli in Main Theorem 2.

Finally, we put |z|?=1. Then Ker4d={ueC"*?|ulz}. For brevity, Kerd is
expressed as z*. The proof of Lemma 5.2 implies that «([g, €]) =0 if and only if gee z*
and gf € zt. Combined with Proposition 5.10, the monad (MI) does not define a vector
bundle on Gr,(z'). In the case n=1, this is a well-known fact, because Gr,(z') is one
point.
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