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1. Introduction.

In this paper, we consider the existence of the strong solutions for the initial
boundary value problems and the periodic problems of heat convection equations with
dissipative terms in time dependent domains. The “dissipative terms” represent the
friction of the fluid.

Let Q(t) be a bounded domain in R¥ with smooth boundary I'(t) for each te [0, T7],
T be any positive number.

We consider the following heat convection equations in the noncylindrical domain

Q=) o<i<r Q@) x {t} with lateral boundary I'={ ), _, . I'(t) x {t}.

u,—vAu+@- Vju= —% Vp+{l—nO-dig+f, (xt)eQ, (1.1)
diva=0 (x,t)eQ, (1.2)
0,—rcA0+(u'V)0+% Dlul=f, (x,1)eQ, (1.3)

u(x, )=a(x, 1), Ox,t)=b(x,t) (x,t)el, (1.4

u(x, 0)=uy(x), 0O(x,0)=0y(x) xe Q(0), (1.5)
u(x,0)=a(x, T), 0(x0=bkx,T) xeQ0)=QT), (1.6)

where

@- V)= iuj—‘a—a— and D[u]= i (a“i+a"j>2 .
j=1

x] i,j=1 axl axi

"Unknown functions u=(u", u?, - -V, u™), p and 0 are the solenoidal velocity, pressure
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and temperature of the fluid which occupies Q respectively; a, b, u,, 0, are given data
and g is the body force field (say gravity); f; and f, are external forces; constants v, p,
K, 1, d represent kinematic viscosity, density, thermal conductivity, volume expansion
coefficient and some datum point of the temperature of the fluid respectively, (see Joseph
[13], Landau-Lipschitz [18]).

The case of D[u]=0 i.e. Oberbeck-Boussinesq equations which give the first order
approximation of the heat equations in fluid in some sense, have been studied by several
authors (see the references in Inoue-Otani [11]).

Our equation is derived from the second order approximation, and Bui An Ton
and Lukaszewicz [4] showed the existence of the weak solutions of the initial boundary
problems, (I.B.P), (1.1)—(1.5) for the case N=3 and Kagei ([14]) studied the attractor
of weak solutions with periodic boundary conditions for the case N=2. However, it
seems that the study for the existence of strong solutions of (I.B.P) and for the periodic
problems (P.P), (1.1)(1.4) and (1.6), and not fully pursued.

The main purpose of this paper is to give the existence of the strong solutions for
(I.B.P) and (P.P) for the two space dimensional case, N=2. Our main tools here is
based on the perturbation method for time dependent subdifferential operators developed
in Otani ([21], [22]). Inoue-Otani ([11]). Main results are stated in the next section,
and their proofs are given in §3.

2. Main Results.

2.1. Notations and some function spaces. To formulate our results, we prepare
some notations. We denote by | - | the norm of Lebesgue space L3(Q), and adopt the
following function spaces:

H%(22) =the Sobolev space of order s in L%(Q) with norm | * |y,
H{(Q2)=the completion of CP(R2) under the H'(2)-norm

L*(Q)=(L*Q))*> with norm | - || ,

H*(2) =(H*(2))> with norm | * ||gs,

Ho(2)=(Ho(2)?,

C2(Q)={u=*, u?); ' eCy(Q),j=1, 2, divu=0},

L2(Q)=the completion of CX(2) under the L%(2)-norm ,

H;(@Q=H" Q) nLXQ),

P,=the orthogonal projection from L*(Q) onto L%(Q2),
Define two operators by:

Aq(Q)= —A with domain D(Ao(Q))=H%(®) n HX(Q),
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A(Q)= —PyA: Stokes operator with domain D(A(Q))=H?*(Q) ~H}(Q),

Ag(£2), A*(£2): the fractional power of Ay(R2), A(R2) of order o, whose domain D(A%(L))
or D(A*(£2)) is characterized by Fujiwara [6] and Fujita and Morimoto [8]. Especially,
for the case a=0, we set D(A(Q))=L*(Q).

We also use the notations:

r

lall, = lull oy~ 5

”"“°°'T=osslf§T u(®)] ,

{ t
sup J llu(z)||3sdz , for T>1,

1<e<T J;-1

lulerr=1 o7 |

J lull (@)l Zute , for 0<T<l,
JO

L

101,=101rs,

|0]e,r= sup [0(1)],
0<t<T

t
supj 16 (z) |3sdr , for T>1,
2 1<t<sT t—1

|0|H=,M,T=

T
J |6(z) |3sdr , for 0<T<1,
0
and in the case of the periodic problems for 0<7<1,
1 (7 1 (7
II“’IE{-’,M,T“—"]_-'J la(e)| & dr, |9|fls,M,T=7f | 6(z) f.d .
(o] [

For simplicity we designate |[u|igor,r and |O|gop.r by lullyr and |0y ¢
respectively.

Let B be a bounded domain in R? such that B x [0, 7] contains the closure of Q.
For a function v defined on Q, we denote by [v]* or simply by # the zero-extension of
v to Bx[0,T], ie [v]*(x,t)=v(x,t) for (x,t)e Q@ and [v]"(x,t)=0 for (x,t)eBx
[0, T]\Q. We denote by C([0, T]; X(Q(r))) the set of all functions v defined on Q such
that v( -, t) belongs to X(Q(t)) for all e [0, T] and the zero extension ¢ of v to B x [0, T]
is an X(B)-valued continuous function on [0, 7] and X(Q) is a function space defined
on @ such as H}(Q), H{(), etc. For the periodic problem, we prepare the function
space C,([0, TT; X) = {fe C([0, TT; X(Q(®)); f(0)=1(T)}.

We put
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A= min A,(), = min ),
0<t<T 0<t<T

where 4,(t) (resp. u,(t)) is the first eigenvalue of the Stokes operator A(Q(¢)) (resp. —A)
with domain D(A(Q(2))) =H*(Q(t)) » Hy(X(T)), (resp. H*(Q(t)) N Ho(Q(t))).

2.2. Mainresults. We assume that Q is smooth and a and 4 have nice extensions
@ and 8 to Q in the following sense:
(A.Q) There exists a level preserving C3-diffeomorphism % from Q onto
Qo % [0, T'] for some bounded domain in Q, in R%.
(A.Q), O satisfies (A.Q) and the periodic condition Q(0)=Q(T).
(A.a) There exists a vector function @ in C'(Q) such that

aeL=(0, T; H(Q(1))) » L0, T; H(Q(1)) ,

2,eL?0, T; L%Q(t))), divi=0in Q and a=aon .
(A.a), (A.a) is satisfied and u(x, 0)=u(x, T).
(A.b) There exists a function 8 in C'(Q) such that

feL=(0, T; H'(Q()) » L*0, T; HX(Q()))

G,eL*Q) and O=b on I'.
(A.b), (A.b) is satisfied and 8(x, 0)=8(x, T).

(A.f) £,eL?0, T;L3Q(t)) and f,eL*Q).
(A.g) g has the potential GeL*(0, T; W*(Q(?))) i.e., g=VG.

(When g is the gravity, this condition is always satisfied.)
Now our main results are stated as follows:

THEOREM I (Time Local existence for (I.B.P.)). Let (A.Q), (A.a), (A.b), (A.f) and
(A.g) be satisfied, and let u,—u( -, 0)e D(AX(Q(0))) with aec[4, 5] and 0,—0(-,0)e
D(45(Q(0))) with Be[0,%]. Then there exist S€(0, T] such that (I.B.P) has a unique
solution (u, 0) satisfying

u—iie ([0, S1; LX(Q())) N C(0, ST; Hy(QM)
(S1) { 2% ([u—a]")ll, 27| Adj e L3O, S),
t*|[u—a]"l|, P 7HV(u—u]")eL0,S)  forall qe[2, 0],
0—8eC([0, S1; LA(Q(t))) » C((O, ST; Ho(Q(1))) ,
(52) { 27 ([0—-81)) |, >7F|AG|eL*O, ),
th[0-01"|, 2 V([6-0]1")|eLi(0,S) forall ge[2, ],

where

L4(0 S)-{f- Js AR +oo} and L®0, S)=L>(0, S)
*\V> = s ! * Vs = s .

0
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TreorEM II (Global existence for (I.B.P.)). Let (A.Q), (A.a), (A.b), (A.f) and
(A.g) be satisfied, and let ||Vii||g: o, +€L*0, T), ug—1i(*, 0)e D(A*(Q(0))), 0,—8(+, 0)e

D(AX(Q(0)) with Be [0, 3] and |uollgs, 10,1 ar,7 I8llas. oo 7> [18ll12,00, 75 118 ]| Locys 1187 Il ps, 7
£y |l ae,7 De sufficiently small, then (I.B.P.) has a unique solution for any T satisfying (S1)
and (S2) with a=1/2.

TueoreM III (Existence for (P.P.)). Let (A.Q),, (A.a),, (A.b),, (A.f) and (A.g)
be satisfied, and let ol ar. 75 Ilﬁllﬂl,oo,Ta ||ﬁ”H2,M,Ta ]9} |M,Ta Ing’,oo,T, 'ngZ,M,T: £, "M,Ta
| /2 |m,1 be sufficiently small, then (P.P.) has a unique periodic solution satisfying
u—aeCy[0, T H(Q(), u, Au, (- VueL*0, T; L*(Q(1)),
|Vu(2)||? is absolutely continuous on [0, T] ,
0—0eC[0, T, H5(Q), 6, Ab, (u-V)0D[u]leL¥(Q),
| VO(¢)|? is absolutely continuous on [0, T]

(SP)

3. Proofs of theorems.

3.1. Some Abstract Results. To prove our theorems, we need some abstract
results given in [21] and [22]. In this subsection, we collect them without their proofs.

Let H be a real Hilbert space with inner product (+, *)y and norm |+ |, and ®#(H)
be the family of all proper lower semicontinuous convex functions ¢ from H to
(— o0, 00], where “proper” means that the effective domain D(¢)= {ue H; ¢(u) < o0} of
@ is not empty. We define the subdifferential d¢ of ¢ at u by

do(u)={feH; p(v)—@w)=(f, v—u)y for all veH}

with domain D(0¢)={ueH; dp(u)# &}. Then it is well known that d¢p becomes a
maximal monotone operator and is possibly multivalued. We designate by 8°¢ the
minimal section of d¢(u), i.e., 3°¢(u) is the unique element of least norm in de(u), (see
H. Brézis [2]).

For a maximal monotone operator A in H with domain D(A), the nonlinear
interpolation class %, ,(4) between D(A) and D(4), is defined by

B, (A)={ueD(A); ™| u—JulyeLLO, 1)}

1 p 1/
where a€(0, 1), pe[1, 00], JA=(I+1tA4)" 1, |f|L5(0,1)=( it‘-dz) * for 1<p<oo and
0

|f ILo0,1y=1f lL=(0,1)- We also use the notation |ul, , =177 [u—J ulyl r,1) (see D.
Brézis [1]).

Consider the following abstract Cauchy problem and periodic problem in a real
separable Hilbert space H. :
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{ %(t)+6(p‘(u(t))+B(t, ut)s f(t), 0<t<T,

CP)
w0)=uo
and
du . ‘
(APP) { W 1)+ 00 60) + B, )3 10), 0<1<T,
w0)=u(T),

where 0¢' is the subdifferential of a time-dependent proper lower semicontinuous convex
functions ¢’ from H into [0, 0], and B(#, ) is a nonlinear operator with
D(6¢")=D(B(t, *)), regarded as a perturbation for d¢".

DEFINITION OF A STRONG SOLUTION. A function ue C([0, S7]; H) is said to be a
strong solution of (CP) on [0, S], if the following (1) and (ii) are satisfied.
(1) u(¢) is an H-valued absolutely continuous function on [J, S] for all 6>0 and
u(t)»ugast)O.
(i) u(t)e D(0¢’) and —du(t)/dt—B(t, u(t))+1(t) € 0p'(u(t))
hold for a.e. 1€(0, S). '
A function u e C([0, T]; H) is said to be a strong solution of (A.P.P.) on [0, T], if
the following (i) and (ii) are satisfied.
(i) u(z) is an H-valued absolutely continuous function on [0, T7].
(i) u(t)e D(dp") and —du(t)/dt—B(t, u(t))+f(t) € Op"(u(t))
hold for a.e. t€[0, T7].

In order to assure the existence of strong solutions of (C.P.) and (A.P.P.), some
smoothness conditions on ¢’ with respect to ¢ are required such as in (Kenmochi [15],
Yamada [27], Otani [21], [22]). Here, we assume the following somewhat a simplified
version. _

(A.¢") There exist nonnegative constants m,, m,, m; such that for each ¢, € [0, T] and
Xxo € D(¢"), there exists a function x(t) such that

| x(t) —Xxo lu<my | t — 1o [(9*(x0) +m2)' /%,
and

@'(x(t)) < @™ (x0) +m3| t — 1o [(@“(x0) +my)
hold for all te[0, T].

(A.¢"), The following (i)—(iv) hold.
(i) For each te[0, T, ¢'e ®(H) and ¢°u)= ¢ () for all ucH,
(i) There exist nonnegative constants m;, m,, m; such that for each #,€[0, T]
and x, € D(¢™), there exists an H-valued function x(¢) on [0, 7] satisfying
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| X(t) — X0 lg<my [t —to (@™(x0) +m,)' /2, for all te[0,T7],
P (X)) < @"(xo) +m3|t—to (9™ (xg) +my),  forall re[0,T].
(ii1) There exist constants ko >0 and p>1 such that
kolulf<o'(w), for all ueD(¢p').

(iv) For each te[0, T], d¢' is strictly monotone, ie., (W, —w,, u; —u,)y=0 with
u;€ D(0¢’) and w; € do'(y;) (i=1, 2) implies u; =u,.
Lemma 3.1. Let (A.¢Y) or (i) and (i) of (A.@"), be satisfied and u(t) be an H-valued
absolutely continuous function on [0, T]. Put
du(t)
dt

£ = {t e[0, T; and il@tgz(i))—\exist, u(t)e D(aqo')} ,

then

d'(u(t)) d
(o),

holds for all te & and all g(t) € 0¢'(u(t)).
ProoF. See [23] and [24].

We impose the following conditions on d¢* and B(z, *):
(A.1) For each t€[0, T] and Le(0, ), the set {ueH; ¢'(w)+|ulZ<L} is compact
in H.
(A.2) B(¢, -) is measurable in the following sense:
For each interval [a, b] in [0, T7], the following (1) and (2) hold.
(1) For each function u(t)e C([a, b]; H) such that du(t)/dt e L*(a, b; H) and there
exists a function g(t) e L%(a, b; H) with g(t) € ¢'(u(t)) for a.e. te[a, b], B(t, u(t))
is measurable in t€[aq, b].
) If u,>u in C([a, b]; H), g,—g weakly in L*(a, b; H) with g,(t)€d¢'(u,t)),
g(t)e dp'(u(t)) for a.e. te[a, b], and B(t, u,(t)) — b(t) weakly in L3(a, b; H),
then b(¢t)=B(t, u(t)) for a.e. te[a, b].
(A.3), For an exponent a€(0, 1/2), there exist functions /,, [, € # and a,(t)e L?(0, T),

<m,| g(t) (@' W(t)) + my)' ' + my(@'(u(t)) +m;)  (3.1)

T
def

ay(t)e X3 = {a(t): [0, T]-H; J t172%| a(t) |3dt < + o0} such that
(4]

| B(t, 1) Iy < lo( ¢ [1){€] 8°0"(u(t)) e
+1,(1/6)(] @'(0) |4~ 29 1| @) |2 ay(£) ) + | a(t) 1}

for all e€(0, 1), a.e. te[0, T] and all ue D(0¢"),
where # stands for the family of all positive monotone increasing functions
on [0, o0).
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(A.4) There exist functions /, € .#, as(t)e L*(0, T) and a constant k€[0, 1) such that
| Bu, t) | <k|0°@' (W) |+ (@' @) + | u ) * | as(t) |
for a.e. te[0, T] and all ue D(0¢"), .
(A.5) There exist functions /;€ .#, a,(t)eL'(0, T) and a constant k [0, 1) such that
| B(z, w) | <k|0°0" @) [+ 5| v [){| 9'@) > + (@' @) + )| as(®) I}
for a.e. te[0, T] and all ue D(0¢"),
(A.5), There exist functions /, € 4, and a constant k€0, 1) such that
| B(t, u) |5 <k|0°0' @) lfi + La(| u luX@' @) + 1)?,
for a.e. te[0, T] and all ue D(d¢"),
(A.6) There exist a positive constant « and a function as(t)e L'(0, T) such that
(—g(t)—B(t, u), Wy + @) <|as(t)|(|ulf+1)
for a.e. te[0, T] and all ue D(0¢"), g(t) € 0¢'(u).
(A.6), There exist positive constants o and d such that
( _g(t) - B(t9 u), u)H + oz(p'(u) < d

for a.e. te[0, T] and all ue D(0¢"), g(t) € 0¢'(u).
(A.7) There exists a constant ¢ such that ¢ (0)<c for all te[0, T].
Then the following local existence results hold.

THEOREM 3.2. Let (A.¢"), (A.1), (A.2) and (A.3), be satisfied. Then for any
Uy € B, ,(09°) and feX%, there exists a positive number T, €(0, T} which is a monotone
decreasing function of |ug |y and | ug |y, 2,000 such that (C.P.) has a strong solution u(t) on

[0, T,] satisfying
127 eduyt)de , Y27 %00 u(t)), Y2 7*B(t, u(t)) e L0, To; H), (3.2
TN ut)—uoly, V7% @' (u(t))|V* e LYO, Ty), for all ge[2, oo‘] . (33
ProoF. See [21].
THeoREM 3.3. Let(A.¢"), (A.1), (A.2) and (A.4) be satisfied. Then for any uy € D(¢°)
and fe L0, T; H), there exists a positve number T, € (0, T] which is a monotone decreasing

Sfunction of |ug |y and ¢%u,) such that (C.P.) has a strong solution satisfying (3.2) and
(3.3) with a=1/2. Furthermore ¢'(u(t)) is absolutely continuous on [0, T,].

ProOOF. See the proof of Theorem II in [21].
As for the existence of global solutions, the following theorem is known.

THEOREM 3.4. Let felL?0, T:H), (A.¢"), (A.l), (A.2), (A.5) and (A.6) be
satisfied. Then every local strong solution of (C.P.) can be continued as a strong solution
of (C.P.) to [0, T].
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ProOF. See the proof for Theorem IV in [21].
As for the periodic problems, the following result is obtained.

THEOREM 3.5. Let (A.¢"), be satisfied and f(t)eL*(0, T; H). Then (A.P.P.) with
B(¢, -)=0 has a unique periodic strong solution u satisfying

di
2 L0, T3 H),
dt
@' (u(t)) is absolutely continuous on [0, T] .
PROOF. See [27].

For the perturbation problem (A.P.P.) with B(z, +)#0, following result holds (see
[22]).

THEOREM 3.6. Let (A.¢"), (A.l1), (A.2), (A.5), and (A.6), be satisfied and
f(@®)eL?*O, T, H). Then (A.P.P.) has at least one periodic strong solution u satisfying

%’ti , B(t, lt) eL*0, T: H),

@'(u(2)) is absolutely continuous on [0, T] .

3.2. Reduction to Abstract Equations. In this subsection we are going to show
that (I.B.P.) (resp. (P.P.)) can be reduced to the abstract equation (C.P.) (resp. (A.P.P.))
with H=L2(B) or H=L?(B) as in [21] and [24]. To this end, we put

Piw=0,@+Ij@, uweLi(B),

v 2 1
(pl(u)={ 5 LIVuI dx , ueH,(B),
+ 00, ueL}(B)\H,(B),

K,(t)={ueLZ(B); u=0, ae. xeB\Q(t)},

{0, uek,(),
Il(“)—{ +00, uEL,,Z(B) \Kl(t) s

@30 =0,(0)+156), 6eL*B),

K 2 1
%(0)={ : L|ve| dx, 0cHAB),
+o0, 0eL2(B)\HL(B),

K,(t)={6€L*B); 6=0, a.e. xe B\Q(?)},

0, 0eK,(t),

15(0)=={ +o0, 0eL*B)\K,(),
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Then ¢} e ®(L2(B)), ¢, P(L*B)), and their subdifferentials are characterized as

follows:

dpi(u)={f e LX(B); PQ(t)fIQ(t) =vA(Q(*)u IQ(t)}

with domain

D(0¢})={ueLZ(B); u|g, e HX(Q(t)) " HJ(Q(t)), u|p\o0 =0} ,

hence [|0°@ ()] = [vA(Q(t)u|gq -
0p5(0)= {h eL?(B); h IQ(t) =KA(Q(?))0 |Q(t)}

with domain

D(9¢3) = {6 € L*(B); 0|y e HQ(t)) N Ho(Q(1)), 83000 =0} ,

hence | 0°@5(0)| =] 'CAo(_Q(t))elg(:) l.
Furthermore we put

Ai=0¢1, A;=09;,

Bi(w)=Pg{( - Vu+([ul" - Viu+[(u|gy - V)al"},
Bi(u, )= - V)d+([a]" - V)0,
F,(t)=Pg[—u,+vAu—(@-V)a—ng+1£,1",
F,(t)=[—0,+xA8—@-V)§d+£,]",

F(u, 1) =F,(t)— [y - V)1 =3 D[lulge +1*],

and consider the following abstract Cauchy and periodic problems in L2(B) and L%(B):

{ ii, +ALda+Bi(@)+Pynfg oF, (1),

#0) =i, = [“o‘“'ﬁ( -, 0],

{ 0,+AL0+Bi@, 9)3F,@, 1),
5(0)=§o=[00“9(‘ , 01",

{ ii, + A%i+ Bi(d) + Pyn0g oF, (1),
u(0)=u(7),

{ 0,+ A0+ Bi(@, 0)2F,(ii, 1),
60)=0(T).

(3.4)

(3.5)

(3.6)

3.7

Then our original problems (I.B.P.) and (P.P.) can be reduced to (3.4)—(3.5) and

(3.6)3.7) in the following sense, respectively.
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Lemma 3.7. If (@, 0) is a strong solution of (3.4)—(3.5) on [0, S] satisfying

iie C([0, $; L7(B) n C((0, S1; Hy(B))
{ 1122, 112-23001 () e L2(0, S; LX(B)) (3.8)
£~ |, '27%@i@)|*€Li0,S) forall ge[2, o],

e C([0, S1; LX(B) N C((0, S1; HY(B) » |
{ 112700, 12 #0ey(@)e L0, S; LA(B), (3.9
174 0—0o1, 127 @50)|'?€Li0,S)  forall qe[2, o],

then (u, 6)=(ii|g¢) + 1, 1] low + 0) becomes a solution of (1.1)~(1.5) satisfying (S1) and (S2)
with T replaced by S.

Proor. See [11].
LemMA 3.8. Suppose that (ii, 9) is a strong solution of (3.6)—(3.7) satisfying

e C,([0, T, LA(B), @, Adi, (@- V)i L0, T; L(B),
|V@||? is absolutely continuous on [0, T], ‘ (3.10)
i(t)e D(0g}) for a.e te[0,T],

feCL[0, T L*(B), 8, Ad,@-V)deL?0, T; L*(B),
{ | V@ |2 is absolutely continuous on [0, T, (3.1
G(t)eD(@¢pL)  for ae. te[0,T], : ‘

Then (u, 6)=(ﬁ|Q(,)+|‘1, g lowy +8) gives a solution of (P.P.) satisfying (SP).

Proor. In view of (A.a), and (A.b),, we easily see that (u, §) satisfies (1.2)—(1.4)
and (1.6). By virtue of the boundedness of |Vu(t)||, | VO(t)| and reflexivity of H!, H§,
we can easily derive the weak continuity of [u(t)—a(z)]" and [0(t)—8(t)]" in H}(B) and
H{(B). Hence the continuity in the strong topology is also assured by the continuity of
[Vu(t)|| and | VO(t)|. Other properties in (SP) are direct consequences of (3.10)—(3.11).

In order to check (1.1), it suffices to use (A.g), Helmholtz’s decomposition, (3.6)
operated by Py, and the fact that Py, (Psh)|oey=Pownh|oq for all heL%B). Q.E.D.

3.3. Proof of theorems. In what follows, we denote @, , @i,, 8,, and g by u, 0,
u,, 0, and g for simplicity. ;
For the later use, we here prepare some basic results:

LemMMA 3.9. Let f(t)eL*0, T), and y(t) be a nonnegative absolutely continuous
Sunction on [0, T] satisfying

%y(t)+cxoy(t)s|f(t)| , O<ag, for ae te[0,T].

Then we have
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1
sup Iy(t)ISy(0)+(1 +——)I SOl
0<t<T 0(0
where

sup jt | f(s)|ds for 1<T,

15t<sT t—1

| f@,7=% r7
f | f(s)lds for 0<T<1.
0

PrOOF. See the proof for lemma 4.3 in [21].

LemMA 3.10. Let f(t)eLY0, T, and y(t) be a nonnegative absolutely continuous
Sfunction on [0, T] satisfying y(0)=y(T) and

—j—ty(t)+ocoy(t)s|f(t)| , O<a,, for ae te[0,T].

Then we have

sup |y(r)|s(2+i)|f(r)|1.r.,,
%o

0<t<sT

where | f() 1, 0o=| f(O) 1,7 for L<T, | f@®)l1,r+=%1 f @)1, for 0<T<1.

PrROOF. See lemma 3.4 in [12].
LeEMMA 3.11. The following inequalities hold:

J - V)vewldx<./2 [[u]V2[|Vul| 2| Vv]| [w] /2| Vw| /2, (3.12)
Q) .
for all u, we H(Q(t)) and ve HY(Q(2)).
J (- V)n0ldx<\/2 |lu||*?|Vu||}?|Vn||0|'* VO, (3.13)
o

for all ue HYQ(t)), € H(Q(t)) and ne HYQ(t)).

LemMa 3.12. Let (A.Q) or (A.Q), be satisfied, then there exist constants ¢, and
¢, independent of t such that

V- V)W(IZ < ey VI Ve | VI TV, (3.14)
for all ve HY(Q(t)) and we HZ(Q(t)), |
vV <o IV vl | Vo 1 VRl (3.15)

for all ve HY(Q(t)) and ne H*(Q(t)). Furthermore, if ve H{(Q(t)), then the term ||v|y: in
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(3.14) and (3.15) can be replaced by ||Vv]||.
LEMMA 3.13. For every u, ve H}(Q) and 0 e H}(R2), we have

J(u-’V)v-vdx=o and J(n-V)Gde=O.
Q o]

Those lemmas are shown in [11].
3.3.1. Proof of Theorem I. For each R>0 and Se(0, T] set
Kgs={heC([0, S]; L*(B)); | h|os<R} .

Then, for sufficiently small S, we can show the following facts which assure the
existence of local solution (u, 8) of (3.4)—(3.5) satisfying (3.8)-(3.9).

Fact I For any €Ky, there exists a unique solution u=u, of (3.4) with )
replaced by 6 satisfying (3.8).

Fact II There exists a unique solution §=8,, of (3.5) with # replaced by u,
satisfying (3.9).
So we can define the operator & by

F . 9 — Uy — 5“6 .
Fact III & is a contraction from K 5 into itself.

Proor ofF Fact I. Condition (A.Q) assures that there exists a constant K,
independent of ¢ so that the following elliptic estimate holds (see [17] and [26]):

K
lullg2oey < —— 0°@ )| forae. te[0,T] andall ueD(@¢p]). (3.16)
v
Therefore, it is easy to see that (3.14) gives

2 2
IlBi(")|l2S3c1{ (%) ”50<Pi(ll)||2+—}; (% <0i(u)+1> *(lull®+1)

+ lall*(lal g + Hﬁllﬁxllﬁllﬁz} ;

for all e (0, 1] and ue D(d¢}). Hence, by (A.a), conditions (A.4) and (A.3), are satisfied
with ¢'=¢}, B(t, *)=Bj(*), xe(0, 7]

In view of (A.a), (A.b), (A.f) and (A.g), we also have F,(t)—Pzn0g e L*(0, T; LZ(B)).
Furthermore, asin [21], and [24], we can verify (A.¢"), (A.1) and (A.2) with m, = mo/\/v R
m, =0, m; =m, (m,is a constant depending only on Q), ¢'=¢] and B(¢, -)=Bj(*). Thus,
noting that u, € D(4%(Q(0))) if and only if uy e 8, ,(d¢?) for 0 <a <3 (see [1] and [8]),
we can apply Theorems 3.2 to (3.4). Consequently there exists a number T, €[0, T]
such that for any Se[0, T,], (3.4) has a strong solution u=u, on [0, S] satisfying (3.8)
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with ae (4, 1.
The uniqueness can be proved by the standard argument as in Serrin [25].
Q.E.D.

Proor oF FACTII. Let u be a solution of (3.4) with 8 € K g and we considér 3.5).
In view of (A.a), (A.b), (A,f) and (3.15), we first note that F,(¢)e L%(0, T; L3(B)). By
using (3.15) again and the elliptic estimate:

|0|H2(Q(,»<£— [0°p5(0) | for a.e. te[0,T] and all 6eD(0¢}),
K
we also obtain, for all e€(0, 1),

22

K @5(0) - a(t) for all 6eD(d¢}), 3.17)

| B2(u, 0)|* <e| 8°p3(0) |* +

with
a(t)=|lu()||*[lu)llF: + la)| > [aE) i .

By (3.8), it follows that |u(t)|| e L®(0, S) and |lu(t)|4: € L0, S). Using this and (A.q)
we see that a(t)e L'(0, S). Then (A.5) is satisfied.
Furthermore, by the integration by parts and Lemma 3.13, we get

(9(2), 0D =2¢3(6(t)) for all g(t) € dp3(0(t)) and (B3(u(?), 0(2)), 6(t))=0, i.e.,
(g+Biu, 6), 0)=2¢3(0) for all 0eD(0¢p;) and gedpi6).

This shows that (A.6) holds.
Now for any ¢€(0, 1), we consider the following equation:

0; + A50°+B5u, 0% e x(t)F,(n, ) O0<t<S, 0%0)=6,, (3.18),
where x,(t)=0for0<t<eand y,(t)=1for t>¢. By (3.15) and Holder’s inequality, we get

|- VP <L {ul (Va2 +| V8 8|2} .

Hence it is easy to see that |(u-V)d|eL?0,S). Using the inequality

2 .
120229 V| Dlu+a] < (> (| Vallyge + IVal fugun)
< ()4 29| Vul (| Aul + [ Vul )+ | VG 2| V[ 3.}

<c){r! 72 Vu| ¢ ~2%(|| Au|® + || Vu||?)
+ 120729 Vi 2| Vil g}

and
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| Dlu+a] | <c){t™' 2% Va|? + ¢ 72| Au||* + || Va|| || Vi g} -

Since 1172%||Vu|[2eL®(0, S), t'~2*|Aul|2cL}(0, S), and 2“2 |Vu|{.eL'(0, S), by
(3.8) and 120 ~29||va||?||Va||2: e LY(0, S), by (A.a), we find that > ~2%| D[u+u]|*e
L0, S), whence D[u+a]eL?Ee, S;L*Q(t)) for all ¢>0. Hence it follows that
t1 22| F,(u, t)|€ L0, S), therefore x,(t)F,(u, t)e L?(Q). Thus theorem 3.3 and Theorem
3.4 assure that for any 0,eD(¢?) and £€(0, 1), there exists a strong solution 6°
of (3.18), on (0, S].

Note that |D[u+i]|<2(|Vul?+||Vii|?)eL!0,S), then |F,u,?)|eL(0,S).
Multiplying (3.18), by 6° and using (3.13) and Lemma 3.13, we have

S S 2
max |0‘(t)|2+2xj |V0‘(t)|2dts2{|00|+J | F,(u, s)|ds} . (3.19)
0<t<S 0

Moreover, multiplication of (3 18), by g*=y.(t)F,(u, t)—0; —Bj(u, %) A30° and
using (3.1), we have o

d
— GHOWN+Ig° O </mol g0) |- 950712 +mop3(0°1))

(3.20)
+|g%(t) I(I B3(w, 6°) |+ | Fa(u, 1)), '

where we use the fact that (A.¢") holds with ¢'= @5, m, =./mgy, m, =0, my=my(m, is
a constant depending only on Q).
Then, by (3.17) and (3.20), we get

—{t¢z(9‘(t))}+ lg*)1”

(3.21)
16K1 c2

S¢5(9‘(t))+t¢£(6*(t))(2mo (t))+t| Fo(u, t)|*.

Now application of Gronwall’s inequality for (3.21) assures that there exists a
constant ¢, which depends on |8, |, {5 |F,(u, ¢)|dz, (5¢|F,@, ¢) |2dt {5 a(t)dt, my and x
such that

Sup t<p0(9”(t))+rt|g‘(t)|2dtsco. o (3.22)

0<t<S 0
On the other hand, since w=0°—60” (0 <e<p <1) satisfies | ‘
@, + 430+ B, ) e (1) — 2, (O)Fn, 1),  «(0)=0.

The same verification as for (3.19) yields

0<t<S

sup |cu(t)|<jp | Fy(u, t)|dt
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Hence, {6¢} forms a Cauchy sequence in C([0, S1; L%(B)). Therefore, by (3.17)
and (3.22) with the standard argument, we can extract a subsequence ¢, which tend
to 0 as n — oo such that

9tr — 0 strongly in C([0, S]; L%(B)),
Jt dzt" t % weakly in  L?(0, S; L*B)),
Jtgr—JStg weakly in  L%0, S; L*B)),

with g(t) e 095(6(2)) a.e. 1[0, S],

V1 Biw, 07— /1 Biu,0) weaklyin L3, S;L%(B)).

This implies that 6 is a solution of (3.18),-,, i.e. (3.18), with y, replaced by 1.
For any 0, e D(¢Y), take 82 € D(¢?) such that 82 — 8, in L%(B) as n— oo and let 9"
be the solution of (3.18), with 6"(0)=463. Since w=0"—0™ satisfies

w,+Aiw+Biu, w)e0,  w0)=02—0r.

By the same verification for (3.19), we have
s

sup | w(t) [+ J | Vw(t) |2de <) 02— 6|2 . (3.23)

O<t< )

Noting that 0" satisfies the same a priori estimates as (3.19) and (3.22) with
F,(u, t)=0, we can again extract a subsequence 0™ as above. Thus its limit 6 gives a
solution for (3.18), satisfying (3.9). The uniqueness follows from (3.23) at once.

Q.E.D.

ProoF oF Fact III Take a sufficiently large R satisfying
S
< R
|61 +j | Fy(a, s)|ds <Y—.
o 2

Then by (3.19), the operator # maps Ky s into itself. For 6,e Kz s (i=1, 2), let u; be
the solutions of (3.4) with §=0; and ¥, be the solutions of (3.5) with @i=u;. Then
©=0,—0,, U=u, —u, and ¥ =y, —y, satisfy

U,+ A'U+Py{(u, - VYU+(U - V)u, +(@ - V)U
{ +(U- V)a} +Pyng0 30, (3.24)
U(0)=0.

Y.+ AP +U-V,+@, - V)P+@-vV)¥
+(U'V)9+%D[u1+ﬁ]—% D[u,+a]>0 (3.25)
P(0)=0.
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where we abbreviate the symbols of the restriction to Q and the extension to B.
Multiplying (3.24) by U and using Lemma 3.13 and (3.12), we obtain

d
5 TUOI+ 35 IVUQ I < JUO 150+ Ingle @0, 1€(0,5),

where b(t) =2 (|| Vu,(t)|1 + || V() ) + 1.
Therefore, using Gronwall’s inequality, we get

I|U|lzs+v'[ IVU@)[2dt <Dy(S)* S+ 1013 s, (3.26)
where

s s
Dy(S)= llngllfm@)(l +J b(t)dt exp f b(t)dt> -
(0] 0
Here we note that (A.a) and (3.8) assure that 5(t) e L*(0, S)and | b |.1o,5, is dominated
by a monotone non decreasing function of R and |u,||. Furthermore, we multiply (3.24)
by G, = —U,—Pg{(u, - VYU+(U - V)u, + (@ - VYU+(U - V)ia} —Ppng® € 41U and use (3.1)
with m, =./mg, m,=0, and m;=m, (m, is a constant depending only on Q) see [11].
Putting d,(t)=1"2*| Vu,(t)|| > + IlVl'i(t)ll 2 and
2

dy(1) =3mo+8 71 (H 1OV ()1 + face) | )l &)

+ 21 ((K ) 12| Auy(t)))* +lln(t)||.,z>.
v

3—0}— Ivu@)i? +— 1G4 (t)||2<d2(t)m VU2 +d,(0)IIUN1> +2]ngll 2= O() 12 .
Note that by (3.8) with ae[1/4, 1/2), t'~2*|Au||2e L*(0, S) and ' ~2*||Vu|?/te L}(0, S)
hold. This assure that d,(t)eL!(0, S) and d,(t)e L*(0, S). Thus Gronwall’s inequality
together with (3.26) yields

We get

s s
% IVUI2 s<{Dy(S) f dy(t)dt +2|nglle}SIO12 s CXPJ dy(t)dt
) )

Therefore we have
IVU|2 s<col @12 sS (3.27)

where ¢ is a constant depending on R, | A*(Q(0)u,| and u.
On the other hand, multiplying (3.25) by ¥ and using Lemma 3.13, (3.15), Young’s
inequality and the following inequalities:
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%lD[u1+ﬁ]—D[u2+ﬁ]|s4v{|Vu1|+|Vu2|+|Vﬁ|}|VU|,

8K,

T

IVay (&)1 | Auy I VO,

K 1
Vu, |[|VU|| P |dx<— |V¥(@®)|>*+— | P(t) > +
LI u, [|VU[| ¥ |dx 32I ®| 32| @)1

we deduce

2
Jx

{K (IVuy || [|Auy || + | Va, || [|Au, [)) + [Vl @y} VU2 .

li| Y’(t)|2+§ |VY’(t)|2.<_%| w(e)|*+

2 2
7 (VY4 () 12+ V8@ IHIUE I VU]

8
~/ K
Now Gronwall’s inequality assures that the following inequality holds:

4

K

+

|12 s<

S
[{J (lVllll(f)Iz+IVg(f)lz')dt}HUllw,sllVUllw.’s
0 .
+4{f {K1(1Vu, ()l [ Auy ()] + [ Vu(2)]| [| Auy(7)])
(] .

+ [ Va()| |||_l|ln2}d‘5}"VU|| i,s]e“/m :
Hence, by (3.26) and (3.27), we find that there exists a constant ¢y which depends
on ¢y, @ and G such that
|P12,<c51@]25-S.

Thus it is clear that & becomes a contraction mapping for a sufficiently small S.
Q.E.D.

Proor oF THEOREM II. For @, 0, we assume

A
IVal e, r< v\/—, |VO|, r<u.
2./ 2
Let (u, 0) be the local solution of (3.4)~(3.5) on [0, S7] constructed in Theorem I. For
the later use, we here introduce several constants independent of S:

ay=/A /4 —/2 Vil 1),
2./ A {9 2(' o, )2}
4,= —+—— ,
WA =22 |Viler (2 Av\1l+oy




HEAT CONVECTION EQUATIONS 463

275 2K2
A2=<1+_2_)£_3_CL~1_A1 .
Av

v3

Here we introduce another parameter ¢ satisfying 4,¢* <1, and we put

] 2 2233¢02K2 _
A= [1 +<1 +T) {3m0+—v;—1— I8 %, 7180 s, 0,

T 1—Aye y
4C _ _ 8 o 2
+ - "V““oo,T”VUHngo,T}AI+—( 1 )]’
f" v \1+a,

‘ 2 2\!
A4=—v‘ {A3+(1 +—);) (43— 1)} s

B=(14 2 )
N - V812 ) e

1
Bz*’\/' 6o |2+B1{3 A, 52+V2K12A3A484+V2||Vﬁ||ozo.T"l—l||}212,M,T+“2—,| F, |1%lT} s

where ¢; and m, are constants depending only on Q which appear in (3.14) and the
definition of d,(t).
We here claim that if we assure

uoll + IVue |l <e, (3.28)
o, €
w0y < _ 3.29
1€l L= (o) 1+a, B, ( )
IF e <—t—e (3.30)
1M, T 1+O(1 ’ . ‘

then the following a priori estimates hold:
@)l + [Vu@)| <G +/A3)e  forall re[0,S],
|6(t)|< B, for all te[0, S].
Suppose that these estimates do not hold. Then there exists a positive number 7'; such that
Ty=min{z: [u()| + [|Vu(t)| =(3+\/A_3)£ or |6(t)|=B,} .
Multiplying (3.4) by u and using (3.12) and Lemma 3.13, we get

%% w1+ v Vul? SJ |(u- V) -uldx+|ng6| luf + [[F,@)ll l[u] . (3-3D
B

Then much the same verification for (3.26) assures



464 HIROSHI INOUE

d
o lall +oy llull < Ingbll + IF ()l -
Hence, Lemma 3.9 with (3.28), (3.29) and (3.30) yields
lall o, 7, < lluoll +<1 +— z )(”'Ig||L°°(Q)| O lnm.1, + IF [, 1) <3e. (3.32)

Since [z |(u- V)i - u|dx <% ||Vu|*+-% (Vi [lu|? by (3.12), we can also derive from (3.31)

1d v ﬁnvrnnw.r) 2 1 2 2
o ul? +(2 Tr Vet et RO (.33)

Integrate (3.33) over [t—1, ¢], then we have

/4 { NE
/% =2/ 2 Nl .1 i

<A, (3.34)

1
IVallZ r, < I;("'Ig"foo(gﬂ 0 II%I,T; +||F, ”1%1.1')}

Multiplying (3.4) by h= —u,— Bj(u)—Pgngd + F,(t) € Aju and using Lemma 3.1, we get

%cpi(u(t))+ ()12 < /mo @) - ()1 +mopl(u(t)) + f | (u+ V)u - h(t) |dx

o

+[ (@« V)u -h(t)ldx+f | (- V)a-h()|dx
Q@) w®

+ lIng0|l @) + [IF @)l 1h(@)]| -
Hence (3.14), (3.16) and the characterization of A{ give

233 2g2

J (- Viu-h|dx<|(u- Viul llhlls{%— b2 + [ ||Vu||4}
a@)

Similarly, we further get

2-33¢2K?
2

J |(@- Viu-hidx<||(@- Viuj [|h S{—;— Ihj*+ ||ﬁ||2||ﬁllﬁn||V“I|2} ;
0

f |(u- V)a-h|dx<|(u- V)| Ilhll<{-— Ih? +— 2
Q@

i

Va| | V]| g IIVuIIZ}

Hence
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1d , v , 2°3%EKE L . {3m0 2+3%2K? 501

3o IVl A2 < 2R e 200 4 2GR jap2a,
L2 nVﬁn||vanm}wu||2+3—{llng0|12+uF1(t)||2}.  (@339)
ﬁv v

The fact that ||Vu| e L*(0, T,) and Lemma 3.9 assure

2 \[ 2%33c}K? 3
IquIIi,TlsIIVuo||2+(1+I;>[——3—1— Iiulli,r,HVulli,T,IIVullff,r,+2{ ';"

V3
2¢,

AV

2-3%2K?
)

-+
V3

Tlalds o r+

”Vﬁ”oo,T”V‘_l“Hl,oo,T}”V“HI%LTI

4
+,—v~ {Ingllfe(g)| 0 13,1, + l|F1(t)Hf¢,r}]

235 2K2 4 3
<82+<1+*2_‘>[_2_—£3{_~1_A184"VU||30,T+2{ i
Av v 2

22.33:2K? _ 2c _ _
+—‘3—1—1—||u”30,T||“”l211,w,T+ - ”V“”oo,T”V“”l-l‘,oo,T}Alez
v ﬁv
(o )s]
v \1+a, '

Then we have
||Vu||°20,Tl <Aje?. (3.36)

Integrate (3.35) over [¢—1, t] and by the same argument as the verification for (3.34),
we can obtain

||A“”1%4,T<A482 .

Multiplying (3.5) by 6 and use the argument similar to that for (3.33), we can derive
the following inequality:

d 2
2107+ (=W IVOIZ D0 < {lull [ Vull +v2KF [ Vul*} dul

_ _ 1
+v2||Vu||2||Vu||,2,1+—2—|F2 B

Then Lemma 3.9 implies
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10157, <1801 +Bl{”“" oo, V8l a1,

_ - 1
T+ V2K12 | Va|| 020,1, “A“”fl,rl + V2||V“|| g),T“V“”l-zll,M,T +? |F, lble}

<|00|>+ B {3/ A6 +v?K? 434 ,* (3.37)
+v2|Val 2 pIVall g . r+5 1 Falizr)
—B2.
Thus (3.32), (3.36) and (3.37) contradict the definition of T';. This completes the proof
of Theorem II. Q.E.D.

3.4. The Proof of Theorem IIl. To prove Theorem III, we rely on the Schauder’s
fixed point argument in L2(0, T;; L2(B)). The close convex subset where we work is given
by

Kr={heL*0, T;L7(B)); |hily,r<R}.

For given b in K, we first solve

d
{ Zv,,+A‘1v,,(t)+beF1(t) R

(3.38)
v (0)=vy(T) .
Next, for each solution v,, we construct the solution 8, =0v, of the equation:
d
— 0,(t)+ A56,(t) + B(vy(t), 0,(t)) e F5(vy(t), t),
{ 2 0,6)+ A30,0)+ Bo(n(t). B,(1) € Fawu(0), 1 5.39)
6,(0)=0,(T) . S

Define the operator # by
% : b —— Bi(v,)+Pgngb, .

Then it is easy to see that if # has a fixed point b, the (v, 0vy) gives a solution of
(3.6)~«(3.7). Therefore, in what follows, we are going to show that # has a fixed point
b in Ky for a suitably chosen R.

LemMma 3.14. Let (A.Q),, (A.a),, (A.b),, (A.f) and (A, g) be satisfied and let
be Kg. Then (3.38) has a unique solution v, satisfying (3.10).

LemMA 3.15. Let (A.Q),, (A.@),, (A.b),, (A.f) and (A.g) be satisfied and let v, be
a solution of (3.38) satisfying (3.10). Then (3.39) has a unique solution 8, satisfying (3.11).

PROOF OF LEMMA 3.14. Assumption (A.Q), assures (i)—(ii) of (A.¢"), with ¢*= ¢}
and it is easy to see that (iii)«(iv) of (A.¢"), is satisfied with ¢‘=¢]. It follows from
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(A.a),, (A.b),, (A.f) and (A.g) that F; —b belongs to L?(0, T; L2(B)). Therefore we can
apply Theorem 3.5. Q.E.D.

PrOOF OF LEMMA 3.15. Existence: It easily follows from (A.a),, (A.b), and (A.f)
and (3.10) that F,(t) and (v, * V)8 belong to L2(0, T; L?(B)) and that |Vv,|| e L*(0, T),
[ 4iv,l € L?(0, T). Using the same argument as in the verification of Fact II of the proof
of Theorem I, we get | D[v,+1]|€ L0, T). Hence F,(v,, £)e L* Q). (A.9",, (A.1) and
(A.2) with ¢'=¢5 and B(¢t, +)=B,(v,(¢), *) can be verified in the same way as before.
Lemma 3.13 assures that (A.6), holds. Estimate (3.17) with replaced u by v, and the
fact that a(t)e L*°(0, T') assure that (A.5), holds. Thus we can apply Theorem 3.6.

Uniqueness: By standard argument, we can easily show the uniqueness of the
solution of (3.39). Q.E.D.

The next, we are going to show that # maps from Ky into itself. For this purpose,
we need some a priori estimates given in the following lemma:

LEMMA 3.16. Letbe Ky and let v, and 0, be the solutions of (3.38) and (3.39). Then
we have ‘

1ol &.r <dy (A, VYUIF 1l 32,7+ Iblliz,7) 5 (3.40)
IV lli,r <do(d, VUIF 1 37,7+ bl 7,7) » (3.41)
IVV &, r <ds(A, v, mo)(IFylli,r + Iblls,1) , (3.42)
1AV, |l 52,7 <da(R, v, mo)(IF 1]l 3,7+ bl 22, 7) » (3.43)

3 2
|6, 020,154<2+'—> {IF, 7.1
K

+2v2Kidy(A, v, mo)dy(A, v, mo)(IF I &.r+ ||b“1%41‘)2

+02\/d1('1; V)\/ds()-, v, mo)| Vgloo,Tl gIHZ,M,T(“Fl “Azl,T+ ”b”}%lT)
+2V2||Vﬁ“ozo.T”ﬁ”lzlz,M.T} ) (3.44)

where dy(J, v)=2(2+ 3 ) dyh, V)= d,, v), dy(h, v, mg) = H) {i+2mod2(l, v)},
A 2v ﬁ v

av
dy(l, v, me) =+ {%+ 2mod, (A ¥)+da(d, v, mo)}.

Proor. For the sake of brevity, we here denote v, and 8, by v and 6. Multiply
(3.38) by v and integrate over B, then we get

% gt— IV + v V¥@) 12 < (IF ()] + @) DIV - (3.45)

Then we have
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d
7 Iv@)IF + Aviiv)ll < [F4@)] + b -

By Lemma 3.10, we get (3.40).
Integrating of (3.45) over [¢t—1, t] (or [0, T]) gives

1
VIV r < IVl o, 7(1F 1l ag, 7 + ”v"M,T)'i"? NG
which implies (3.41).
Multiply (3.38) by g,(t)=F,(t)—b—dv,/dte A}v(t) and integrate over B. Then

recalling the fact that ¢} satisfies (ii) of (A.¢"), with m; = /m,, m, =0 and m;=m, (see
[24], [21]) and using (3.1), we obtain

% 1V + 2212 <UFL@)] + IO )] +/moliga()] * @YVEN' +mopi(¥(2))

1
=5 g1 @2 +2(IF (1> + Ib[|?) + 2mop i (v(2)) -
Since ||g, |l =v|Av|, we have
d 2 24 2 24 2 2 2
T IVv]I*+Av|| Vv = VY[ +v]|Av] ST("FIH +IIblI*)+2m, | V]| * . (3.46)
Using Lemma 3.10 again and integrating (3.46) with respect to ¢ over [t—1, ¢], we can

derive (3.42) and (3.43).
To show (3.44), multiply (3.39) by 0 and integrate over B, then we get

1 d
——|0@) |2+ x| VO(E) > <|F,(t)||10]+ (v * V)06dx +—V—|D[v+l‘l]| 0].
By (3.15), we can reduce
%% l¢9(t)I2+'.€#|9(t)I2S{IFz(t)I+62"2IIVII”ZIIVVH”ZIVf?’l”zlﬁlfl{z2

++/ 2 v, [IVV[ | Av] + [[Va] a]lg2}] 0] .

Lemma 3.10 assures
3
I9|w,rs<2 +E){I Fo(t) I, r+ 3 2IVI L3NV Y5 VO Y51 0158 1

+/ 2 VK V¥l o, 7| AVl ag, 7 + IV o 710l 2 0,7} -
By (3.40)—(3.43), we have (3.44). , Q.E.D.
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ProoF oF THEOREM III. StepI: Let |F||,. <R, and we put I(v, w)=||(v - V)W|| % 7.
Then

| BM)|| 3, 7 < 4(Vp, V) +1(@, vy) +I(v,, T) + 7860, &.7) -
Recalling (3.14) and (3.40)—(3.43), we can obtain
I(vy, V) <1 K [Vl o, 7 V¥ é,TllAvaM,TS“'CIKldS('{a v, mo)R4 s

where ds(4, v, mg)=./d,(4, v)ds(A, v, mo)\Jd,(4, v, my) and ¢, is the constant given in
(3.14);

I, vp) < ¢, K [0l o, 70l a1, 0, 7 VYl o, 7| AV g, 7

<2¢,K,dg(4, v, mo)“ﬁ”w,T”ﬁ”Hl,w,TRz s

where dg(A, v, mo)=1/ds(A, v, mp)\Jd4(A, v, m);
I(vy, W) < ¢4 [|Vsll o0, 7| V¥l oo, 7 V| oo, 7| Ul 12, pe, 7
<2¢,d5(4, v, mo)lIVal o, rll@ll g2, 0, 7 R?

where d;(4, v, mo)=./d (4, v)\/d3(2, v, my).
Furthermore using (3.44), we get
11801l 37,7 < Ingll Zwig)| 012 7

3\ |
<4|ngl fw(Q)(2 + K—#) {IF2 |5+ 8v2KE(ds(A, v, mp))*R*

+4cyd (A, v, mo)| VO |, 7| Olyz pg, 7 R? +2V2 01 2 21|61 B2 pr, 7} -
Now we fix R as follows
2 1
2701K1d5(3v, v, M) ’

and assume that @ and ng satisfy

_ _ _ - 2
max{c1K1d6()~, v, mo)llill o, rlllut, 0,7 > €1d4(4, v, mo)”V“”oo.T”“”HZ.M,T} <§g ’

3 2 2 1 2
“'Ig”Lw(Q) 2+— IFZIM,T<7R s

1
||’18“13°°(Q) 2+ 2K12(d6(/1 v mO))z 210R2 ’

_3_
Ky 2°
3 _ 1

— 2IIVllH rlldlld r <5 R*.

Ingll el 2+ 7

”ﬂg”lz.w(g)(z +

1
) 2¢,d4(4, v, mg)| VO |, T'9|H2M1<

Kp
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Then it is easy to see | B(Vy)| % 7= Bi(vy)+Psnglll % r <R% This shows that £ maps
K; into itself.

Step II. Let #, be L%(0, T; L%(B)) endowed with the weak topology. For applying
Schauder-Tychonoff’s fixed point theorem, we need to show that &£ is continuous from
Hy Into Hy.

Let b,e Ky and b,—b weakly in L*0, 7; L}(B)), and let v,=v,, and 6,=0,, be
the solutions of (3.38) and (3.39) with b=b, and v, =v, , respectively. By (3.40)—(3.43),
we can extract a subsequence {v, } of {v,} such that

Vi 2V strongly in  C([0, TJ; LZ(B)),
{ v, /dt —dv/dt weaklyin L*0, T; L2(B)), (3.47)
g~ —g;  weaklyin L*0, T;L}(B)),

where g =F(t)—b,(t)—dv, /dt € 0p](v; (t)). Since d¢i( *) is demiclosed in L%(0, T; L2(B)),
we can easily see that g,(¢) e dp(v(t)) for a.e. t€[0, T], which means that v is a solution
of (3.38). Moreover, the above argument does not depend on the choice of subsequences,
therefore we find that (3.47) holds with v,, =v, and g™ =g".

Furthermore, noting | V(v,—V)||>=(v,—V, g} —g), we easily find that | Vv,|—|Vv|
in L%(0, T; L?(B)), which together with (3.47) assure that

D[v,] — D[v] stronglyin L0, T3 L*B)), (3.48)
where D[v,]=D[v,+1].

On the other-hand, (3.42) and (3.43) imply that D[v,] is bounded in L?(0, T; L3(B)).
Then, by virtue of (3.48), we can reduce

D[v,]— D[v] weakly in L*0, T; L*B)).

It is clear that (3.47) implies that (v, * V)@ — (v * V)8 strongly in L*(0, T; L3(B)). Thus it
is shown that F,(v,, ) converges to F,(v, ¢) weakly in L%(0, T; L*(B)).

Multiplying (3.39) by g5(t)=F,(v,, t)—B(v,, 0,)—d0,/dt e 0¢5(0,), we can get the
relation (3.20) with u, 8¢ and g° replaced by v,, 6, and g3. Hence, in parallel with (3.21),
we get

d 1 16K2c? i
= <P£(0.,(t))+—4— lg5(t) 1> < ¢3(9n(t))(2mo +—-K;—c a(t)> +|F (v, )7 .

Then, recalling that F,(v,, t) is bounded in L*(0, T; L*(B)) and applying Lemma 3.10,
we can easily establish a priori bounds for |V0,|, 1, |A8,ly.r and |00,/0t|y, r.
Consequently, by the same argument as above, we find
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6, — 0 strongly in  C([0, T']; L%B)),
db,, /dt — db/dt weaklyin L3O, T; L*B)),
gy —g,€0050) weaklyin L*0, T;L*B)),
B,V 0n) — b5 weakly in L%, T; L*B)).

Thus 6 is shown to be the solution of (3.39).

Now, it is easy to see that &(b,) =B} (v,) + Pgngh, converges to #(b)=B:(v)+ Pngb
weakly in L2(0, T; L2(B)) as n— co. Thus £ is shown to be a continuous mapping from
Hy into itself. Q.E.D.
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