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1. Introduction.

In this paper, we will study the following first order partial differential equation
n
Lu(z) = ) _ ai(2)d,u(z) = F(z, u(2)) (1.1)
i=1

where z = (21, ,2,) € C" and 8;; = 3/9z; fori = 1, ---, n. We assume the following
conditions through this paper. The functions a;(z) and F(z, u) are holomorphic functions in
a neighborhood of the origin in C” and C**! respectively, and a; (z) satisfies a;(0) = O for
i=1,---,n.

There are many results for (1.1). Oshima [O] and Kaplan [K] studied the existence of
holomorphic solutions under some conditions.

We treat a formal power series solution for (1.1). If the solution converges, then our
result becomes that of [O] and [K]. Our purpose in this paper is to give precise estimates of
(1.1) in a formal Gevrey class via an appropriate coordinates change for (1.1).

We consider three examples in case n = 2. We put

Py = (219 + 1) — 2}, (1.2)
Py = (218, + 1) — 238, , (1.3)
Py = (2105 + 1) — (2} + 23)0,, . (1.4)

The operator P; satisfies the conditions of [O] and [K] and Pju(z) = F(z, u) has a unique
holomorphic solution.

Next we consider P, and P;. They do not satisfy the conditions of [O] and [K], while
the equation :
22
— 21

Pyu(z) = 1 (1.5
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has a formal power series solution u(z) = Y _ ug,, ﬂZZfl zgz with

L (B!
Pl = B+ DR
We find that the solution diverges with respect to a variable z,, while

B1_B2

7 2
> upp 'ﬂzf (1.7)

converges in a neighborhood of the origin by (1.6).
Our motivation comes from the following example. We consider
Psu(z) = 22 .
1 -2z
We expect that (1.8) has a formal power series solution with similar property as in (1.5). But
we obtain that (1.8) has a formal power series solution with

> (B1/21+ B)\(B1/21 + B2 — DUA/2)

(1.6)

(1.8)

“ouke = B+ DB (1.9)
We find that this solution diverges with respect to the both variables (z1, z2).
We consider the following equation
do(z
21 ‘Zil‘) =z} + @), (1.10)

This equation has a holomorphic solution ¢ (z;) in a neighborhood of the origin with ¢ (z;) =
O(Zf). For the solution ¢ (z1), we change the coordinate

x=2z1 and t=2z2+¢(z1). (1.11)
Then the solution u(z) = v(x(2), t(z)) = Y_ vg,,p,xP1 172 has that
Bi4B2
xPlt
v, (1.12)
Z ﬂl ﬂl ﬂZ'

converges in a neighborhood of the origin.

In this paper, we find a good coordinate as (1.11) and give an estimate as (1.12) for (1.1).

In Section 2, we list some notations and define a formal Gevrey class and an order § that
is important to give an estimate. Lastly we give our main result. In Section 3, we give some
estimates for Gamma function that are used in Section 4, and show some properties about an
order 8. In Section 4, we show that a particular equation has a formal power series solution
and the solution belongs to a formal Gevrey class. In Section 5, we give an existence of a
holomorphic solution for a first order nonlinear system equation as (1.10). In Section 6, we
find good coordinates as (1.11) and show that our equation becomes an equation of Section 4
by using results of Section 3 and Section 5.

The author would like to express his gratitude to Professor Sunao Ouchi and Professor
Hidetoshi Tahara at Sophia University for their advice and warm encouragement.
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2. Notations and main result.

The sets R, C and N denote the set of all real numbers, complex numbers and nonnegative
integers respectively. Let z = (21,22, -+ ,2n) € C*, x = (x1,x2,-+- ,%y,) € C", ¢t =
(t1, 12, tny—ny) € C"'7"0, and y = (y1,¥2,*++, Yn—ny) € C"7"1. The set C{y}{[x, t]]
denotes the set of all formal power series Y ;|4 =0 up,1(y)x*t! with coefficients {u ;(y)}
holomorphic functions in a common neighborhood of the origin.

DEFINITION 2.1. Letu(x, 1, y) = Xm0 4k x4t € C{y}(Lx, £11. If

k.l

’ X"t
> uk 1) g @2.1)

1k|+11|=0
is a convergent power series for d > 0, then we say that u(x, ¢, y) belongs to a formal Gevrey
space Gﬁd} (x,t,y).

We say that d is a formal Gevrey index and ¢ is Gevrey variables with respect to d.
Here we consider the following partial differential equation

Lu(z) := a;i (2)0,;u(z) = F(z,u(z)) 2.2)

n

i=1

where a;(z) and F (z, u) are holomorphic functions in a neighborhood of the origin in C" and

crtl respectively, and a; (z) satisfies @;(0) =O0fori =1, --- ,n.
We give the following two notations for the operator L.
t(DH)S={zeld;a;(x) =0fori=1,2,---,n} 2.3)

where U is a neighborhood of the origin in C".
0
¢ (2) The matrix (a—a(O)) denotes the Jacobian matrix of a := (a1(2), - - , an(2))
z

at the origin.
We assume that (2.2) satisfies the following conditions (A.1)—(A.4).
: (A1) S is a complex submanifold of codimension n; inif (1 < n; < n).

If we assume (A.1), then there exist nj-holomorphic functions ¢; = ¢;(z) with £;(0) = 0
(i =1,2,---,ny) that are functional independent each other such that

S={zel;¢(z)=0fori=1,2,---,n1}. 2.4)

¢ (A.2) The function F(z, u) is a holomorphic function in a neighborhood of the origin
of C* x C with F(z,0) =0forz € S.

a
: (A.3) Jordan normal form of (a—a(O)) is
z
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()q o ... ... 0 ... ... 0\
my A2 O 0 :
0 w2
Jow=1 . S ' ' 2.5)
: . . 0 0
0 - ... 0 ng—1 Mgy O 0
0 -+ +er ... 0 0 0
where A; is the nonzero eigenvalues for i = 1,2,--- ,ngand u; = Oor 1 fori =
1,2,---,np—1withl < ng <n;y.

We will define the following M by using 1(z), - - - , {n,(z) in (2.4). Let C{z} be the ring
of convergent power series at the origin in the variables {z}. Then we define

ni
M=) Cla)@) . (2.6)
i=1
Therefore by (A.1), we have
ai()eM for i=1,---,n. 2.7

We define an ideal that is constructed by some elements of M. Let m be any positive
integer and set {g1(2), - - - , gm(2)} C M. Then we define

I{g1. -+ » gm} = )_ Clz}gi. (2.8)
i=1

By (A.3), we can take no-functions {a;; };0=1 that are functional independent each other. If we
assume (A.1) and (A.3), then we have

MOM*DOM?>> .- and ZIfay,--,a,} CM. 2.9)
Hence there exists §; such that
8; :==sup{d; a; € M¢ mod I{a;,, - - ,a,-”o}} (2.10)

foreachi =1,...,n.Ifa; € T{a;,, - -, i, }, then we define §; := 0o. Then we can define
the following multiplicity §
8 := min{é, &2, -- - , 8,} (2.11)
and we have
a; € M®mod I{ajy, -+ ,a@;, } for i=1,---,n. (2.12)
We assume condition (A.4).
: (Ad) ' §=2. (2.13)
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Our main result in this paper is the following.

THEOREM 2.2. Assume (A.1), (A.2), (A.3) and (A.4). Further assume that there ex-
ists a positive constant o such that

no
Z Ak —c¢

i=1

>o(lkl+1) for Vk=(ki,kz,---, kn,) € N (2.14)

oF
where |k| = k) +ky+ -+ kyyand c = a—(O, 0). Then we have the following two results.
u

1) There exists a unique formal power series solution u(z) such that (2.2).
2) There exist local coordinates (x(z), t(z), y(z)) € C" x C"17"0 x C"™"1 in a neigh-
borhood of the origin such that

S={zeC"x(x) =0,1t(z) =0}, (2.15)

{11}
u(z) = U(x(2), t(2), y(@)) € G, T (x(2), 1 (2), ¥(2)) . (2.16)
If § = oo then we have ng = n;. We remark that the case § = oo are treated in [O] and
[K].

3. Properties of multiplicity and estimates of Gamma function.

In this section, we give some lemmas that are needed to prove Theorem 2.2.

3.1. Properties of multiplicity 5. We assume conditions (A.1) and (A.3), and under
two conditions we show that multiplicity é is invariant under a coordinate change and inde-

pendent of a choice of ng independent functions from {ay, - - - , a,}. Hence we may assume
that {a1, - - - , an,} are functional independent by rewriting number. Then we put
8 :=sup{d; a; € M% mod I{ay, - - - ,an,}}, (3.1
8 := min{81, 82, --- , 8n}. (3.2)
LEMMA 3.1. Assume (A.1) and (A.3). Then the number § is independent of a choice
of no independent functions from {ay, - - - , an}.
PROOF. We assume thata;,, -, ai,, are also functional independents. Since ay, - - - ,

an, are functional independent, we have

ng

ai =) cij@a;+ A with A; e M (3.3)
Jj=1
fori =1,---,nby(2.12). For (a;,, -, a,-no), define a matrix
Cc := (Cij,k(o))j,k=1,--- o - (3.4
Then we have det C(0) # O, since a;,, - - - » Qi ATE functional independent. Therefore we

have
ai € M® mod I{a;,, - , a, } (3.5)
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fori =1,---,np. By (3.3) and (3.5), we have
a; € M® mod I{a;,, - - , @i, ) (3.6)
fori = 1, --- , n. Hence we have the desired result. Q.E.D.

LEMMA 3.2. Assume (A.1) and (A.3). Then the number 8 is invariant under the co-
ordinate change (Zy, - -- , Zy).

PROOF. Let Z; = Z1(2), -+ , Zn = Zn(z) be any coordinate change. The operator L
becomes

n
L= (LZ)dz. (3.7)
i=1
Since ay, - - - , ap, are functional independent, we have
no
ai =Y cijRaj+A; with A e M (3.8)
j=1
fori =ng+1,---,nas Lemma 3.1. Therefore we have
LZ; = Za, (azj + Z Ck ,azk) Zi + Z Ajd,, Z; (3.9)
k=no+1 Jj=no+1
fori = 1,---,n. By (A 3), we can take no-functions that are functional independent in
{LZ;}!_ By rewriting number, we may assume that {LZ,} , are functional independent.
Leta matnx A be defined by
n
A= ((azj + > ck,,-az,c) Z; ) . (3.10)
k=ng+1 z=0 i,j=1,,n0

Then we have det A # O, since {LZ; }f_"__l are functional independent. Therefore we have
ai e M modI{LZ, - ,LZ,} for i=1,---,ng (3.11)
by (3.8) and (3.9). Hence we have
LZ; € M®modZI{LZ;,---,LZy,,) (3.12)
fori =ng+1,---,nby(3.9) and (3.11). Hence we obtain the desired result. Q.E.D.

3.2. [Estimates of Gamma function. Here we show some lemmas needed in Section
4 in order to estimate formal power series solutions. We prove these lemmas in Section 7.
Let p,q,r,ki,andl; e Nfori =1,2,--- ,r,8 22and x! :=I(x + 1) forx > 0.

LEMMA 3.3. Letp+ ) . _ki=k,andq+ ) [_,li =1. Then we have

(ki + 5i71:)! _ (k+ 5i51)!

k! - k!

(3.13)

i=1
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LEMMA 3.4. Letp+ ki =kandq + 1 = 1. Further if p = 0, assume q > 8. Then

we have
(k1 + 14 gt )1 (k+ 551):
< H——
kq! =&+1) k! _
LEMMA 3.5. Letp+ki =k, q+11 =1landq > 0. Further if p = 0, assume q > 8.

Then we have
(k+ 5i50):!

(3.14)

(ki + 550+ D)!

l <@B-Dk+1 3.1
i+ 1D Tl =( )k +1) A (3.15)
LEMMA 3.6. Letp+ ki =kandq + 1y =1. Further if p =0, assume q > 8. Then
we have
(k1+31—111)! (k+31—ll—1)!
— < (k+1) . (3.16)
k1! k!

4. Gevrey estimates.

In this section, we will study a particular equation that satisfies the assumptions of The-
orem 2.2. We show that this equation has a formal power series solution that belongs to a
Gevrey class. In Section 6, we reduce (2.2) to (4.2) by coordinates change and we can prove
Theorem 2.2. '

Letx = (x1,x2, -+ ,Xmy) € C"™, ¢t = (11,12, ,tmy;) € C™" and y = (y1, 2, ,
Ym,) € C™2, when mg > 1. We consider the following equation

Lu=F(x,t,y,u(x,t,y)), 4.1)
where
mo mi ma
L= (hxi+picixio1 +ai(e, 8, )0, + Y _bi(x, £, 9)8, + D _ci(x, 1, )3y, (4.2)
i=1 i=1 i=1
with '
aig(x,t,y) = O((Ix] + [t + 1yD?),  ci(x, £, ¥) = OWx] + [t] + Iy])?),
a;iy(0,2,y) =b;,(0,¢,y) =c;,(0,¢,y) = o’y 8§=>2, 4.3)
bi;(x,0,y) =0
forip=1,2,--- ,mg,i1=1,2,--- ,myandip = 1,2, --- , my. It follows from (4.3) that
aio(x’t9 y) = Z aio,p,q(y)xptq,
|pl+lg|=1
bil(x, t,y) = Z bh,p,q()’)xptq s 4.4)
[pl+lgl1=2

Ciz(xs t’ y) = Z: Ciz,p,q(y)xptq
Ipl+lgl=1
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with
Qiy,0,4(¥) = bi,04() = Ciy,0,4(y) = 0 for |g|=1,---,6—1,
aiy, p,0(0) = ciy, p,0(0) = 0 for |p|=1, 4.5)
bi,,po(y) =0 for VpeN"0.
The function F(x, t, y, u) is a holomorphic function in a neighborhood of the origin such that
F(0,0,y,0)=0. (4.6)
THEOREM 4.1. Assume that there exists a positive constant o such that

mo
Zlik,' - C

i=1

>o(lkl+1) for Vk= (ki ka, -, kmy) € N™ 4.7)

oF
for (4.1) where k| = k1 + ks + - -+ kmy and c = E(O’ 0, 0, 0). Then equation (4.1) has a

1
unique formal power series solution u(x, t, y) which belongs to Gim}(x, t,y).

PROOF. Put
uG t,y)= Y weax*t, Feot,yw= Y FpgrOxPtiu’, (4.8)
kl+111=1 ipl+lgl+r=1
(1l + sA5101)1
uk1(y) = L vel(y) - 4.9

Then we consider a formal power series v(x, £, ¥) = 3k 411 vk, 1 (¥)x*¢!. In order to prove
Theorem 4.1, we will show that a formal powr series v(x, ¢, y) exists and it converges in a
neighborhood of the origin. In fact, there exist positive constants A and B such that

k|l + L)t
M'_l)_ < ABI+IH (4.10)
ke

1
by Stirling’s formula. Therefore u(x, ¢, y) belongs to Gim}(x, t,y) by (4.9).
We define

en,)=(@1,0,---,0),--- ,e(n,n)=@0,---,0,1)eN* for Vn=1,2,---,
k(l) =(ki’k£,'°' 1k£no) eNmO, l(l) =(livl£9"' ’l:'nl) elea

k{r}=(iki’°"’ik£"0) and l[r}=<zr:li,---,iljnl)-
— = i=1 i=1

By substituting (4.8) and (4.9) into (4.1), we have the following recurrence relations

4.11)

mg
AiVe(mo,i),0(¥) + MiVe(mg,i+1),0(¥) + Zaj,e(mo,i),O(y)ve(mo,j),O()’) @.12)
j=1 :

= Fe(mg.),0,00) + F0,0,1(¥)Ve(mo,i),0(y) for i=1,2,---,mop,
0 = Fo,emy,i),00) + Fo,0,1(»)(1/(6 — D)o egmy,iy(y) for i=1,2,--- ,m (4.13)
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and for |k| + |I| > 2

mg
wi—1(ki + 1)
ve, 1 (y) +
,-; Qo) Aiki — Fo,0,1())

Vkte(mo,i)—e(mo,i—1),1(Y)

“l k} +1)
+ E . ai, p,0(¥) Vkyy +e(mo,i), 1 (V)
T prk= iy Aiki — Fo0,1(9) e

Ipl=1
=h—-hLh—-L-—-1

where
1 k]!

T, hiki — Foo,10)) (k| + g 11!

L (Iki|+ﬁll(i)|)!
Z Fp,q,r(.)’) . Ik . |'
ptkiry=k i=1 @1
q+ly=l
|pl+igl+r=1
(p,q,r)#(0,0,1)

— 1 k]!
I Aiki — Fo0.1(»)) (Jk| + D!

mo (kayl + 1+ 52510 D!
X Z Z (kil + l)ai,p,q()’) Uk(1)+e(mo,i),l(y) s
i=1 p+kay=k (k| + D!

q+lay=l
Ipl+lg1=2

_ 1 k]!
T Mk — Fo01()) (k| + g 11)!

m (kayl + 525 Ul + 1))!
X Z Z (lil + Dbi,p.q(¥) 2-1 Vkay by +e(my,i) (V) 5

I

S Vkiy Ly ()’) ’

I

I

!
i=1 p+kay=k Ik(l)l
q+m=l
Ipl+igl=2
1 k|!
L k|

T Mk — Fo0,1() (k| + s lI)!

L (k! + 5251y )!
S Z Z Ci,p,q (y) L ay,' vk(]),l(l) ()’) .

!
q+lay=I
Ipl+igl=1

Let us show that {vg,;(¥)}jk|+1>1 are inductively determined.
For v(x, t, ) = X4 1121 Yk1(0)x* !, we define

Wm= Y vt and |@mlly= Y. max [ve(y)l

<
k| +]l|=m (kl+)l|=m 1YI=T0

545

4.14)

(4.15)

(4.16)

4.17)

(4.18)

(4.19)

The system equation (4.12) and (4.13) have a holomorphic solution { Vi, 1 (D) Yk +-111=1 for
sufficiently small |y| by the conditions a j,e(mo,i),0(0) = 0 and (4.7). In a word, we have (v);.
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Next we consider (v),, for m > 2. For (4.14) we define

L)m = @)m+ [ )3 {u G+D :
m = m i—1 +e(mg,i)—e(mg,i—1),
k4 Tem Uit 2721 Ajkj — Fo1(y)
+ (kil +1) Gi p.0Vk ll}xktl (4.20)
i,p, +e(myg,i), . .
p+kay=k Z'1"21 Ajkj = Fo,01(y) @ ’
Ipl=1
Then (4.14) becomes
LV)m = {(V)m; m' < m}. 4.21)

For (Lv),, we have the following lemma.

LEMMA 4.2. Assume (4.7). Then there exist positive constants o and ro such that

N(LV)mllry = 01 I (V)m "ro . 4.22)

PROOF. By (4.7), there exists a positive constant o such that

mo -1
D Aiki — Fo,o,l(y)\ <o2(kl + 1)~ (4.23)
i=1

for sufficiently small |y|. Therefore by (4.23), we have

mg ) -1 mg
> Aiki —ko,0,1(y) > wi—1(ki + 1) |Vkse(mo,i)—e(mo.i~1).1
i=1 o [kl+l|=m i=1 4.24)
<02 Z Z Wi —1|Vk4-e(mo,i)—e(mo,i—1).1] -
kl+1l|=m i=1
For Ve > 0, we may assume
mo
D Mio1 M3X [Vese(mo,i—etmo,i-1.t| < El@mllry - (4.25)
\k|+lll=m i=1 Iyl=ro
In fact, by the change of variables
(xl"" axmo) > (Xxl’ Tt ,Xmome), (4'26)
the left side of (4.25) becomes
mo .
x7U)T D st max [kteqmo.iy—emo.i-1).l - (4.27)
k| +1Ti=m i=1 Iyl=ro

Therefore (4.25) holds for sufficiently large x.
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By (4.23), we have

-1 mo

D D K+ Dlaipol kg +emonin.l

lkl+|ll=m i=1 p+kay=k

mo
> " xiki — Fo0,1()
i=1

lpl=1
mo
<oz Y. Y Y max (Iai .ol |vkq+e(mo.in. 1 (4.28)
|k|+)l|=m i= 1p+k(1)—k -
lpl=1
mo
<oy > max [a;,p, ol I|@)m g

i=1|p|=1

for |y| < ro. By the condition a; , 0(0) = O with |p| = 1, we have

azZ > ma max (;,p.0l 1) llry < &l @)l - (429)

i=1|p|= 11
for Ve > 0. By (4.25) and (4.29), we have the desired result. Q.E.D.

For m' < m, we assume that (v),, is determined. By (4.21) and Lemma 4.2, we have
(v)m. Therefore (v),, is inductively determined for all m > 1. In a word, equation (4.1) has a
unique formal power series solution. :

Next we show that v(x, ¢, y) converges. So we will give an estimate of vk ;(y). By
Lemma 3.3, 3.4, 3.5 and 3.6, we have the following lemma.

LEMMA 4.3. Assume (4.23) for sufficiently small ro. Then we have the following four
inequalities (4.30), (4.31), (4.32) and (4.33).

r
Ll <o(kl+ D71 Y 1Fp eI ] kg ity O (4.30)
p+kir=k i=1
lpl+lgl+r=1
(p,q,r)#(0,0,1)

mo ’
ILI<02) D laipg)] [vkgytemoina DI, (4.31)
i=1 p+kay=k
q+lay=l
lpl+lg1=2

mj
Bl <028 —1Y " > 1bipg O kg tgy+etmnOI (4.32)
i=1 p+kqy=k
q+lay=l
Ipl+ig|=2

m3
1
<0y Y —— i O 1By vk iy O] - 4.33)
i=1 p+kay=k |k| + 3——_—11”
q+iay=l
Ipl+lgl=1
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PROOF. Firstly let us prove (4.30). We have

111 k)| + g7 lloD! _ (kI + gL lED! 434
=1 k)l lk|!
by Lemma 3.3. Therefore we have
1 r
] = IS 2k — FoonO)) p+kZ{,;=k le.q,r()’)|i11 [Vkgiy 1y D - (4.35)
g+ =l

|pl+lgl+r=1
(p.q.r)#(0,0,1)

Hence we have (4.30) by condition (4.23). We use Lemma 3.4, 3.5 and 3.6 for (4.31), (4.32)
and (4.33) respectively as (4.30). Then we have the desired result

Q.E.D.
By Lemma 4.2 and 4.3, we obtain the following inequality from (4.14)

sl @mlry < Y |qu,(y)|n @) lirg
lpl+lql+mm=mI I‘

ipl+lgl+r=1
(p.q,r)#(0,0,1)

mo
+y. > max (;,p.g )| @may 1y
i=1 |pl+igiH+may=m =~

Ipl+lg|=2

+(6—1)f: Z

(4.36)
'nllax 1bi, g D1 1 (VI +11lrg
i=1 |p|+|ql+m(1)=m -
Ipl+lg|=2
m»> 1
+) T WA 16p.g D@y Vma o
i=1 Ipl+lgltmey=m k| + z=7 1| IyI=ro
|pl+Igl=1
where my;y = Y ;_, m; and 03 = 01 /07
We define F 4., (Ro), ai, p,q(Ro), bi, p,q(Ro) and c; p 4(Ro) as follows
roo. () == 0 TON T ICRONES!
o3 Max;—1,....m, { Il (V)1ll Ry» [1(3y; V)1l Ry
F, Rp) := for + =1,
».¢,0(Ro) o + m1 lpl + 1q1
Fp,q,r(RO) = l;lllsa)RSOIFp,q,r(y)l for Ipl + lql +r= 2 ’ (437)
i Ro) := max |qg; b; Rp) := b;
at,p,q( 0) lylsRolal,p q(y)l t,p,q( 0) l;IIISa’Rfol tpq()’)l
Rp) := max |c;
Ct,p,q( 0) |y|.<_R0|CI’p q(y)l
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Let 0 < rp < Ry < 1. We consider the following equation

oot = 1 Fp,q,r(RO) X|P|+|4|Yr
Ro — 70 pltiaTrs1 (Rg — ro)lPl+lgl+r—1 |
1 mg ai, p,q(Ro) x|pl+lgl-1y

Ro=ro i | 4qglz2 (R0 — ro)lPI*ial=2

s_1 m bipa B gty (4.38)
Ro =710 {1 | {2 (Ro — ro)lPI*ial=2
L8 =De? ¢ip.g(RO) o ipi+igly
Ro =70 1= |, iglz1 (Ro — ro)lPHHal]

By the condition Fp,; = O and implicit function theorem at ¥ = X = 0, equation (4.38)
admits a holomorphic solution Y (X).

PROPOSITION 4.4. We obtain that (4.38) has a holomorphic solution Zmzl Y (ro) X™
with the estimates

IlWmllry < Ym(ro)

) 4.39)
”(ay,-v)m“ro <emYu(ro) fori=1,---,my.
We use the following Hormander’s lemma in order to prove Proposition 4.4.
LEMMA 4.5 (Hormander). If (v)n, satisfies
< —_— 0 R 4.40
IWmllry < Ro —70)7 Jor 0 <ro <Ro (4.40)
for some p > 0 and C > 0, then we have
(p+1eC )

" (ayi 'U)m ""0 < W for i=12,.---, my (441)

where ||(V)m lro = Z|k|+|l|=m max|y|<rg [ve, 1 (D)

PROOF OF PROPOSITION 4.4. By substituting Zmzl Y, (ro) X™ into (4.38), we have
the following recurrence relations

os¥Y1= Y Fpgo(Ro) for m=1 (4.42)
Ipl+Igl=1 |



550 HIROSHI YAMAZAWA

and form > 2

o3(Ro—r0)¥m= 3. Fpqr () ﬁY
30 0)Im pltlg T = (Ro—ro)|1’|+|‘1|+"2 it m)
= =
Ipl+lgl+r=1
mo

ai,p.q(Ro)
(Rg — rg)lPi+lgl—-2 " "M

+
i=1 |pl+iql—1+may=m
pl+lg1=2

“ bi,p,q(RO)

+(8 — 1)2 _
= \pi+1al Ty =m (RO — ro)!PIH1a]

Ipl+igl=2

(4.43)

Ym(l)

my
+(8 — l)eZ
i=1 |pl+igl+mgy=m
ipl+Igi=1

Ci,p,q(Ro)
(Ro — ro)lPl+lgl-1" "M

Then Y, (ro) is inductively determined for m > 1 by (4.42) and (4.43) and in the case of (v),,
and we obtain that Y,, becomes a form C,, /(Ro—ro)™ ! with C,, > 0 by easy calculation. By
(4.37) and (4.42), we obtain (4.39) for m = 1. Next we assume (4.39) for m’ < m (m > 2).
By (4.36) and (4.43), we obtain

HWmllry = (Ro — ro)Ym(ro) < Ym(ro) . (4.44)

By [|(Wmllry < (Ro — r0)Ym = Cm/(Ro — r0)™ 2 and Lemma 4.5, we have
13y, V)mllry < —0—_——— < emYp(ro) . (4.45)

Hence we obtain Proposition 4.4 form > 1. Q.E.D.

By Proposition 4.4, we have that v(x, ¢, y) convergés. Hence this completes the proof of
Theorem 4.1. Q.E.D.

5. Holomorphic solution of system equation.

In this section, we consider the existence of a holomorphic solution for a nonlinear first
order partial differential equation. By the result, we obtain the existence of coordinates change
for main theorem to be reduced to the form studied in Section 4. In fact, we prove Main
theorem by using the coordinate change in the next section.

Let w = (wl, Sty wn) = (w19 R wno’ wno+11 Ctt wn) = (w’9 w”) € Cn9 p =
(P1,-++ Pny) =N"andqg = (g1, -+ ,gm) € N*, and b; ;(w, ?), c;j(w, P) are convergent
power series in a neighborhood of the origin in C* x C” where & = (®y,--- , Pp,) for

J=1---,mandl = 1,---,n. We assume that b; ;(w, ®), c¢j(w, P) have the following
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expansion

bjiw, @)=Y bj1pawH{w)P{®)

Ipl+lgl=1 5.1) |
ci(w, ®) = Y cjpgwH{wP{P)
Ipl+lgi=1
where bj1,5,4(0) = ¢j,p,4(0) =0 (Ipl + Il = D).
We consider the following system equation
no n
D iwi + i1 wi—1)Bu, P = ) bja(w, @)3u Pj + cj(w, P) (5.2)
i=1 I=1
withj=1,---,m.
Then we have the following proposition.
PROPOSITION 5.1. Assume that there exists a positive constant o4 such that
ng
D hiki \ > oulk| for Vk = (ki ka, -~ kno) €N (5.3)
i=1

Then we obtain that (5.2) has a tuple of unique holomorphic solution (®1(w), - -+ , @ (w))
in a neighborhood of the origin with ®;(0, w”) =0for j =1,2,--- ,m.

PROOF. Weput ®;(w) = Y j»; Pjuww’k,

ko) =K, k) €N, kg =KD, ki) e Nmo,

m. g m. 4 . m A
k{q} — (Z Zkil,])’ cee Z Zk’(l'o’])> e N"o , ¢(q, k{q}) = l_I l—[ ¢i,k(i,j) (w//) )

i=1 j=1 i=1 j=1 i=1j=1
5.4)
By substituting @ j (w) into (5.2), we have the following recurrence relations
ng .
XD e(ng.iy + i P e(nosi+1) = Bjil,e(no,, 0P e(0.)
=1
no m
+Z Zbj,z,o,e(no,m¢jl,e<no.i>¢’j.e(no.z) (5.5)
I=1 ji=1

m
+Cj.e(no,i),0 + Z €j.0,e(m. j1) P j1.e(no.i)
ji=1
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fori=1,--- ,npand j =1,--- ,m, and for |k| > 2

no
0
Lie@ =Y > bjtpg®@ kgD + DPjkoqrecnod
I=1 ptkigy+ko)=k
Ipl+lg=1

k)l tka, jy | <kl

n
* Z D> bjnp.aPQ kig)du Pk, (5.6)

I=n0+1 P+k{q}+k(0)=k
Ipl+lgl=1

+ Z ¢j.p.gPq, kig)) -
p+kigy+koy=k

Ipl+lq1=2
where
no no
Lji(P):= Z(Xiki)fpj,k + Zui—l(ki + DD kte(ng.iy—e(ng,i—1)

i=1 i=1

no m
0
-y . bji1,p.00> + 1P k) tetmo) — D ci0em.inPink
I=1 p+koy=k =1 (5.7

lpl=1

ngp m
(U]
- Z Z bf,l,O,e(m,j1)¢jl,k(j,,l)(kl + 1)¢j,k(0)+e(no,l) .
=1 ji=1 k(j1‘1)+k(o)=k

k) |=0, k1—1

We remark that (5.6) is a linear equation with respectto {®; x; j =1,--- ,m [K'| = |k|}.
We show that (5.2) has a formal power series solution. For Z|k|zl D (w” Yw*, we
define
@)k = Y P Hw* and (@)l = Y max [®jx@")].  (5.8)
k=K k=K w'I=r

Let us show that (&) is determined for j = 1, - - - , m. For (5.5), implicit function theorem
at Pjenyiy = W =O0with j =1,--- ,mandi = 1,---, no leads to a unique tuple of
solution

{Pjemo.nyW); j=1,--,m,i=12,---,no} 3.9

by bj1,p,q4(0) = cj p.q(0) = 0 with | p|+|g| = 1. Therefore we have (®;); forj =1,--- ,m.
Next let us show that (@) is inductively determined for K > 2and j =1, --- , m. Set
(Lj,k®P)k = X jkj=x Lj.k(®)w*. Then (5.6) becomes

(Lik®)k ={(®)k; K' <K,i=1,--- ,m}. (5.10)
We have the following lemma.

LEMMA 5.2. Assume (5.3). Then there exist positive constants os and r such that

m
D (Ljk®)k
Jj=1

> 05K ) II(®)kllr - (5.11)
j=1

r
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PROOF. We can prove Lemma 5.2 as in the proof of Lemma 4.2 by
bj1pq0) =cjpqe0) =0 (5.12)

with |p|+|g|=1forj=1,--- ,mandl =1, --- ,n. Q.E.D.

For K’ < K, we assume that (& j)k’ is determined. By (5.10) and Lemma 5.2, (®;)g is
inductively determined for all K (K > 2). In a word, (5.2) has a formal power series solution

with @;(0, w") =0

' Next we show that the formal power series solution @ ; (w) converges in a neighborhood
of the origin. We define

m
Cetno.) 0(R):= 05 _ max [Z max | ;,e(o,i) (W' )I,Z'ng}flx |8y P e,y (W' >|]
I=ng =

j=11w"I=R j=1
m m
b R):= max |b w Cp,q(R) = max |c; w” }
l,qu( ) ;L e Rl leq( )l} qu( ) ;{Iw”liRl ],p,q( )|
(5.13)
for [pl + Ig] = 1 ((Ipl, Ig]) # (1, 0)). We have
=1,
bi,p,q(R) = 0 for |p|+lq| 5.14)

co,q(R) = 0 for |g| =1

as R —> 0bybj; pq0) =cjpq0)=0with |p|+ |q| = 1.
We consider the following equation for 0 < r < R < 1 to show that @;(w) is a
holomorphic function in a neighborhood of the origin.

b1,p.q(R) x|pl+lgi=1ylgl+1

o5t = =T piiTglz (R — )Pt
e ¥ bipa(R)  yipi+iglylqi+1 (5.15)
R—r oo iz (R = nlpiHal=t
. 1 2o Cp.q(R) x!pl+lal-1ylql
R—r AR (R —r)lpl+lgl-2

Equation (5.15) admits following proposition.

PROPOSITION 5.3. We obtain that (5.15) have a unique holomorphic solution Y =
Zkzl Yx XX~1 in a neighborhood of the origin such that

KDY @kl < Yk,
7 (5.16)

D 1@w Pkl < e¥k
j=1

with sufficiently smallr > Ofor K > 1andl =no+1,n90+2,--- ,n
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PROOF. We put

lq1 lq|
Kig:=) KpeN and Y(q, K := ]"[ Yk, - (5.17)

i=1 i=1
We show that (5.15) has a holomorphic solution. By substituting X = 0 into (5.15), we have
no ng m
osY =D D bipoRY + DD b oem,j(R)Y?

=1 |p|=1 =1 ji=1

m
+ Z cp,0(R) + ZCo,e(m,j,)(R)Y-

IpI=1 Q=1

(5.18)

Then (5.18) has aroot Y = Y; > O for sufficiently small R > 0 by (5.14). Therefore by (5.14)
and implicit function theorem at (X,Y) = (0, Y;), equation (5.15) admits a holomorphic
solution Y. Further the solution ¥ = Y 4., Yk XX ! satisfies Yx = Cg /(R — r)X~! with
Ck = 0 for sufficiently small R by easy calculation.

Next we show that (5.16) holds for K > 1. By (5.13) and (5.18), we obtain (5.16) for
K = 1. For K > 2 we have

no ng m
(R — r){asYK =D bipoRYk =D D " 2b10.e(m, jp)(R)Y1Yk

I=1 |p|=1 =1 ji1=1

m
—ch,o,e(m,jl)(R)YK}
h=1
il b R
l,p,q( )
=y > Y(q, KigD Yk +1
— \IPI+lgl-2 q ©
I=1 |pl+Kig)+K@o)=K (R —r)lPiTla

|pl+lgl>1 (5.19)
Ko, Ko<K

“ b R
+e Z l,p,q( )

Y(q, Kg)) Yk,

- Flgl-1
| Pl K Tk o=k (R —D)IPIH]
|pl+lgl=1
cp.q(R)
M Y(q. Kig))

— r)lpl+igl-2 q
I+ K=k (R —1)PI™4
ipl+lgi=2

forj=1,2,---,m. For K’ < K, assume that (5.16) holds. By (5.6) and (5.19), we have

m no
YL x®)x| <(R- r)[asYK =3 S b eROYK
j=1 r I=1 |pl=1

ng m m
= D b10.etm iy (YUY Y1 + Y1YK) = > ¢ji0.em, ,-,)(R)YK} :
I=1 ji=1 a=l

(5.20)
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By Lemma 5.2 and Yx > 0, (5.20) becomes
M
K l(@j)kll < (R—r)Yg <Yk (5.21)

Jj=1
as Proposition 4.4. Therefore we have
m
D 1@w®kllr < eYk (5.22)
j=1
as Propositon 4.4. Hence we obtain (5.16) for K > 1. Q.E.D.

By Propositon 5.3, this completes the proof of Propositon 5.1. Q.E.D.

6. Proof of Theorem.

In this section, we transform equation (2.2) to the one studied in Section 4 (Theorem 4.1)
via a coordinate change. Hence Main theorem is completely proved by Theorem 4.1.

Suppose that n(z) = (711(2), - - - , 7n(2)) is a local coordinate in a neighborhood of the
origin. Then by n = n(z), the operator L becomes

L= };a’i QL (6.1)

where

.
a;j(2)d;;1i(2) = a'i(n(2)) (6.2)

j=1

fori =1,--.,n. Taking 9;(2) = ¢&i(2) fori = 1, ..., n; with ¢;(z) being defined by (2.3),

we have

a,i(ov"' 709 nn1+l,"' ’nn) EO (6.3)
fori =1, ---, n. Therefore we may consider the following operator L
n
L = Za,— (2)9y; (6.4)
i=1
where
ai(Ov"' 90azn1+1s"' ’Zn)EO (6.5)
fori =1,---,n,by(6.2).

In this section, we prove Theorem 2.2 by the following steps. Firstly we show that the
coefficients {a;(z)}_, of L become
ai(z) = Aizi + pi—1zi-1 + O(|z]?) fori=1,--,ng
ai(z) = 0(|z*) fori=no+1,--,n

by a linear transformation. Secondly we find Gevrey variables ¢ by Propositon 5.1. Lastly we
seek multiplicity § by (2.12).

(6.6)
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PROOR OF THEOREM 2.2. Assume (A.3). Then there exists a regular matrix A such
that

AT @A™ = I0, 6.7)
where J (A, n) in (2.5). By the condition a; (0, - - - , 0, zn, 41, - - - , Zn) = 0, we have
0;;ai(0) =0 for j=ni+1,---,n. (6.8)
By (6.8) and the form of J (A, u), we find that a form of A admits
(al,l an,,n, 0 0 \
0 o 0 (6.9)
Ani+1,my+1 °°° Quni+1,n
Kan,l ccc QGumy Qn,n;+1 ce Qn,n )

Then we have the following lemma.

LEMMA 6.1. Assume (A.1) and (A.3). Then a’;(n) in (6.2) satisfies the following
conditions for the coordinate change 'n = A'z, where A is given by (6.9) and ’(-) denotes a
transposed matrix of (-).

1. a'i(m) = Aini + mi—1mi—1 + bi(n) fori=1,---,ng
a'i(n) = bi(n) fori=no+1,---,n.
2. bi(n)=0(nl* fori=1,---,n

3. b, ,0, 041, Mmy42, "> M) =0 fori=1,2,--- ,n.

PROOF. By the form of A, it is obvious. Q.E.D.

By Lemma 6.1 we may assume that L is in the form

n
L= Zoz(lizz' + si-1zi-1 + bi(2))3;; + z": bi(2)9;; , (6.10)
i=1 i=ng+1
where
bi(0, -+ ,0,2n 41, ,zn) =0 and  bi(z) = O(Iz?) (6.11)
fori =1,2,--- ,n.Putz’ = (21, -+ , 2n)» 2" = @Zng+1> -+ » Zny) A0A 2" = (Zny+1, "+ » Zn)-

LEMMA 6.2. Assume that (6.10) satisfies that there exists a positive constant & such

that
no
Z Aiki — ¢

i=1

> o(lk| +1) forsomecandall k € N* . (6.12)
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Then there exists a tuple of holomorphic function (®1(2,2"), -+, Pnj—ny(Z’, 2")) with
®;0,z2y=0for j =1,---,n1 — no such that '
nij—ng
L(zng+j — (@, 2") = Y Ei j(@neti — (2, 2")) (6.13)

i=l1

where E; ;(z) is a holomorphic function in a neighborhood of the origin with E;, j(0) =0 for
i,j=1,---,n1 —ng.

PROOF. We consider the following equation in order to prove Lemma 6.2

no
Z{)‘-izi + ui—12i-1 + bi (2, D, 27)}8,®; (<, 2")

=1 . (6.14)
+ ) bi@, 8,270, P;(2, ") = buyy (7, . 2")
i=ni+1 i
forj=1,---,n1 — n(j, where @ = (Py, .-, Py, _p,). By condition (6.12), there exists a

positive constant o4 such that

n

0
inki| > o4]k| for k € N . (6.15)

i=1

We have that (6.14) satisfies the assumptions of Proposition 5.1 by putting m = ny —ng, 2’
w’ and 7 — w”, where m, w’ and w” in Section 5. Therefore we obtain that (6.14) has a

tuple of holomorphic solution {®;(z/, Z,”)};;no with @;(0, ") =0forj =1,---,n1 —no.

Next put 7; = 2,04 — @;(2’, Z’”"). Then we have

n
Ltj =) (5@, ®,2") = bi(2))3;;(2, 2") + bnytj @) — brorj @, @,2") . (6.16)

i=1
Further we can put
nip—ng ni—ngo
bi @, ®,2")—bjD) = ) € j@@nri—P)= Y €;j@u  (6.17)
i=1 i=1

for holomorphic functions e;, ;(z). Therefore we have

ni—ng
Ltj= ) Eij(@u (6.18)

i=1

and E; j(0) = 0 by b;(z) = O(Iz|*). Q.E.D.
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By Lemma 6.2 and the coordinate change T; = 24 ~®;(Z, Z")withj =1,--- ,n1—
no, L becomes the following form

ny—no

-—-Z{)\,Z; + pic1zio + i@, T, 210y + Z c"o+!(Z 7,2")dy,
= =1 (6.19)
+ Z ci@, 1,28y,
i=n1+1
where
ci(0,0,z)=0 fori=1,---,no,m1+1,---,n

6.20
¢i(,0,7)=0 fori=no+1l,n0+2,---,m (6.20)

and ¢;(z', 7,2") = O((IZ| + Iz + 12" fori =1, -+ ,n
In the following lemma,we seek multiplicity 8. So we refer to multiplicity. We have

no
ciZ,1,7") = Zd,-‘j(ka,- +wmj—1zj—1+¢j) + O(tl®) 6.21)
=1

fori = no+ 1,---,n by (2.12), Lemma 3.1 and 3.2, where d;,; = d;,j(z/,7,2") is a
holomorphic function. Then we obtain the following result.

LEMMA 6.3. There exist local coordinates (x,t,y) € C" x C"1~"0 x C"™" such
that (6.19) becomes the following form

ny—ng
—Z{A,x, + Bictxiot + Ai L 60 + D) Angti(x, 1, )3,
i=1 i=1
n—n, (6.22)
+ ZAn1+i(x, t’ }’)ay, ’
i=1

where
A; (0,1, y) =0(It]®) fori=1,---,n,
A;(0,0,y)=0 fori=1,.---,no,n1+1,---,n (6.23)
Ai(x,0,y) =0 fori=no+1,np+2,---,n.

PROOF. Let xjy, = XAjyZiy + Mig—1Zig—1 + €ig(Z', 7, 2"), tiy = 7, and yi, = Zip4n, for

io=1,2,---,n0,i1=1,2,--- ,n1 —npand i = 1,2, --- ,n — n1. Then we have
ny—ngo n—ny '
L= Z:I(Lx,o)ax,0 + Z (Lti)dy; + Z](Ly,z)ay,2 (6.24)
io= ir=

For x; = Mizi + pi—1zi—1 +ci(Z,t,y) (. = 1,2,---, np) by implicit function theorem at
x = 77 = t = 0, we obtain ng-holomorphic functions z’ = (z1(x,t, y), z2(x,t,y), -,
Zng(x,t, y)) with z;(0,0,y) =0fori = 1,2,--- , ng. By (6.21), we have

ci(Z©,1,y),t,y) = 0(t|®) (6.25)
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fori =ng+1,---,n.Put

no ni—ngp n
Aig(x,t,y) = {Z(lizx' + 1i-1zi—1 +¢i)d;; + Z Cno+idz; + }: €idz ] Ci

i=1 i=1 i=ni+1 ’=7'(x,t,y)
(6.26)
forig=1,2,---,n9and
A (6, 1Y) = cip | g=z ey (6.27)
fori; =no+1,n9+2,---, n. Then by (6.25) we have ‘
Ai(0,1,y) = 0(lt®) (6.28)
fori =1,..-,n. Since we have -
Lxiy =Xig(AigZig + Mig—1Zig—1 + Cig) + Mig—1(Rig—1Zig—1 + Hig—2Zig—2 + Cig—1)
no ni—no n
+Q (Aizi + ni—1zi-1 + ¢i)0cip + E Crg+i9z; Cip + Z €i 0z Cig » (6.29)
i=1 i=1 i=ni1+1
Ltil =Cng+iy and Lyiz = Cni+iy '
forip=1,2,---,n9,i1=1,2,--- ,ni—ngandi; = 1,2, --- , n—nj, we obtain the desired

result. Q.E.D.

By Lemma 6.3, we find that (2.2) becomes (4.2) by putting mg = ng, m; = n; — ng and
my = n — n1. Hence this completes the proof of Theorem 2.2 by Theorem 4.1.

7. Appendix.

PROOF OF LEMMA 3.3 We consider

1
B, B) = / x*7 11— x)Pldx (7.1)
0
fora > 1 and B8 > 1. We know the following equation
(- DB -1 :
B(a, B) = . 7.2
@B =5 (7.2)
By the definition of B(«, B8), we have
B, B") < B(a, B) (7.3)

fora’ > o and B’ > B.
Putting 8’ = B into (7.3), we have

@+B—-1D! _ @ +B-1D!

< (7.4)
(a —1)! (a/ — 1!
We show that (3.13) holds. By (7.4), we have
1 (ki ke + g0 ) k4 ka + s +1))!
(k1 +k2)! _ ( 51 ) < ( 81 ) (7.5)

kil ™ (k4 ghet ) ! T (ko gkl ) (ke + k)t
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Therefore we have

(ki +s50)! (o + i)t (ki + ket s+ )

7.6
kq! k! - (ky + k2)! (7.6)
Repeating this, we have
e (ki+ k)t (Sioiki+ shy io b)!
I1 < - (1.7)
R Y iy k!
By (7.4), we have
(Crait+ s Tia k)t (4 strTiab)t (k4 ) 0ED. 09
izt k! = k! = k! P '
PROOF OF LEMMA 3.4. We have
(k1+1+8—l—111)! 1 k! (k1+s—lTll+1)! (ki + p —1)!
L= < .
ky! k+1(k+5+11)! (k1+8—11-11+p+31—1q)! k!
7.9
If p > 0, we have
(k1 + Ts—lTll + p)'
L < <1. (7.10)
(kl + 51111 +p+ 5+1q)'
If p = 0, we have
(ki + ghets +1)!
L < EEIAT (7.11)
kl + =1 1+ 5—149 )’
Bygq > 8,wehaveq/(8 —1) >8/(6 — 1) > 1. Hence we have I} <1. Q.E.D.
PROOF OF LEMMA 3.5. We have
qaplidiren)
L =0+ T =T
‘ (k + 5L51)!
7.12
ki + =0+ 5 )! 712
1T 3741 T 539 ky+p-—1!
<+ " . ] .
(k1+5—_—111+p+g-_—1q)! 1:
If p > O, we have
(ki + si5h + P+ 57!
L=@6-1 . (7.13)

(k1 + 3—_1—111 +p+5—_1_—1q)!
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By g > 0, wehave I < § — 1. If p = 0, we have

(k1+5—1—111+8—1—1)! (k1+5—i—111+%)!

L<U+1 . ; <@B-1 ; ; . (7.14)
(kl + 55h + 3—_—141)! (kl +5=1h + 5—_TCI)!
Byg > 3, wehaveq/(6 — 1) > 8/(8 — 1). Hence we have I, <8 — 1. Q.E.D.
PROOF OF LEMMA 3.6. We have
1 1
) (ki +550) R (b+50)! g+ p—
3 = < - .
ky! k+1(k+31—11)! (k1+31—111+p+5—1—1q)! k!

(7.15)

If p > 0, we have
(k1+ﬁl1+P—1)! 1
I3 < < T - (7.16)
(k1 +gl—lll+p+3_l_—lq)! ki+ sl +p+ 579
If p = 0, we have
(k1 + 3—1—111)!
Iz < - A . 7.17)
(k1 + 5=l + mq)!
By g > 4, we have
1
I Q.E.D. (7.18)

= 1 1 :
k1 + 5—5h + 5=79
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