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Introduction.

In [12], Kondo determined the value of Gaussian sum for every irreducible representation
of GL,(q) and Macdonald also treated this problem in [14]. Recently in a series of papers,
Kim-Lee [4], Kim ([5], [6], [7], [8], [9], [10], [11]), and Lee-Park [13] determined the values
of Gaussian sums for one-dimensional representations of finite classical groups and G2(q).

In this note, we firstly show that a character sum over a finite reductive group associated
with the generalized character Rt ¢ of Deligne-Lusztig is reduced to a character sum over
a torus. Applying this result to Gaussian sums and Kloosterman sums attached to finite
classical groups, we obtain explicit formulae of these sums related with Rt g, when Rt 9
is irreducible. Also combining this result with the Davenport-Hasse type relations of
Kloosterman sums and unitary Kloosterman sums proved in [2], we can explicitly determine
the values of these sums for every irreducible character if the rank of the group is low. As
an example, we give a table of Gaussian sums attached to Sp4(g), with g odd. In Section 3,
Kloosterman sums over G L, (g) are considered, and the properties and conjectures of these
sums for unipotent characters are given.

The second named author would like to express his sincere gratitude to Masao Koike and
Charles W. Curtis for their valuable discussions and comments.

NOTATION. We shall use the similar notation as in [2]. In particular F; denotes a finite
field with g elements, and F = the extension field of degree m of Fy, contained in a fixed
algebraic closure Fq of Fg. Cpp = {a € Fpom : a?"t1l = 1} is the cyclic group of order
q™ + 1 in ]F;?_m and we will write C = Cy. If m divides n, Trg , /Fm : Fgn — Fgm is
the trace map. We fix a nontrivial additive character x of F, throughout this paper, and put
x™ = x o TtF m /¥, the canonical lift of x to Fyn. For a multiplicative character  of F,

the sum

K(x.ma)= ) x(s+n0n(s), acF;

st=a
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is called a Kloosterman sum and we denote K (x, #) = K(x, m, 1). Also for a character ¢ of
C, the sum : '
J(x,0) =Y x(a@+a Do)

aeC
is called a unitary Kloosterman sum (cf. [2]). These sums are defined over any finite fields, and
for Fym, we denote K (tm, a) = K(x™, tm, @), Km(tm) = K(x", ) and Jpn (¢m) =
J(x ™), ©m), where m,, (resp. ¢,) is a character ]F;m (resp. Cy) and a € ]F;.

1. Character sum with the generalized character of Deligne-Lusztig.

1.1. Let G be a connected reductive algebraic group defined over F,, with Frobenius
map o, and let G = G? be the finite group consisting with elements in G fixed by 0. Let R be
an ordinary representation of G, R : G — GL,,(C), and ¢ a complex-valued class function
on G, which depends only on the semisimple part of each element in G. We consider the sum

We(R, ¥) =D _ R(9¥(9).
geG
If there is no afraid of confusion, we shall simply write W(R) for Wg (R, ). If R is irre-
ducible, then W(R) = w(R)I,, for some complex number w(R), where I,, is the identity
matrix of degree m = deg R. Let tw(xr) be the trace of W(R), where xp is the character of
R. Then we can extend tw to a complex valued function on the Grothendieck group of gen-
eralized characters of G and we have Tw(xr) = w(R) deg R, if R is irreducible. Hereafter
we write w(xg) instead of w(R).

1.2. Let T be a o-stable maximal torus of G, 6 a character of T = T and Rt the
generalized character of Deligne-Lusztig corresponding to T and 6. We recall the following
properties of the generalized character Rt g (cf. [3] or [1]):

o (Character formula) Let g € G have Jordan decomposition g = su = us, where s is

semisimple and u is unipotent. Then

1 -1 COs)
Rte(g) = W erG O(x™ "sx)Q -7 (),
xYsxeT

0
where QfTis_)l is the Green function of the connected component of the centralizer of
s in G, denoted by C%(s), corresponding to xTx~!.
. 2. 9fw=1G:TI.

ueG
unipotent

o Ifthe character 6 of T is in general position, then eget R ¢ is an irreducible character
of G of degree |G : T|, where |G : T|, denotes the p’-part of |G : T| and ec =
(—1)retrankG o, similarly ey = (—1)rel-rankT

Now we can prove
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THEOREM. With the notation as above, we have

Iy 6w

Tw(RT6) =
, ITI teT

In particular, if 0 is in general position, then
w(eceTRT.0) = £GeTIGlp YOIV (@) .
: teT
PROOF. One has
w(Rr6) = Y _ Rr0(9)¥(9)

geG

= > > Rrelsuw) ¥(s),

s€G,s.s. | ueC(s)? ,unip.

where C(s) is the centralizer of s in G. Now using the first and the second properties of R g
cited above, the sum inside the parenthesis becomes

1 s _
2 ®er 2 pAOTICREE)
xeG

ueC(s)? ,unip.

x~lsxeT
1 C%s) -1
=|C°(s)"| Z Z QxTx—l(u) O(x" " sx)
xeG ueC(s)? ,unip.
x~lsxeT
= Z —-!————O(x_lsx)
fore |xTx—1]
x~lsxeT

Here we used the fact that every unipotent element in C(s) lies in C°(s), due to Springer
and Steinberg. Now changing the variable from s to ¢ by putting x ~lsx = ¢, we obtain the
required result, since s is uniquely determined by ¢ and x. The formula for w(egerRT,0)
follows from the third property of Rt g. O

2. Gaussian sums attached to finite reductive groups.

2.1. We use the same notation as in the previous section. Let p be a modular represen-
tation of G, p : G — GL,(Fym), where Fyn is a finite extension field of F; contained inFg.
We define the class functiony by

¥ (9) = x(TrF n /7, (tr 0(9))) ,

where tr p(g) is the trace of the matrix p(g). Then Wg (R, ¥) is called the Gaussian surh
attached to G, R and p.

2.2. Unitary groups. Let G = GL,(F,;) andleto : G — G be the Frobenius map
defined by o (g9) = 'F(g)~", where F(g) = (g,) for g = (gi;) and ‘F(g) is the transpose
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of F(g). Then G = G7 is called a unitary group, denoted by U,(g), and is a subgroup of
GL,(g?), since 62 = F2. Let T be the diagonal matrices of G and W = Ng(T)/T be the
Weyl group. W is isomorphic to the symmetric group S, on #n letters and by the definition of
o, o acts trivially on W.

The G-conjugacy classes of o -stable maximal tori are parametrized by the (o -twisted)
conjugacy classes of W. If T, is a o-stable maximal torus corresponding to w € W we
may assume that T, = T is isomorphic to {t € T : wtw™! = o(t)}, where w is a
representative of w in Ng(T). On the other hand the conjugacy classes of S, are deter-
mined by the cycle types and correspond bijectively to the partitions of n, the set of which
is denoted by P,. Let T, be a maximal torus corresponding to a partition A € P,. Let
A01, A02, - - - , Aory be the even parts of A and let Ay;, A12, - - - , A1, be the odds parts, so that
ro + r is the length of A and rg is the relative rank of T,. For Ag;, (1 < i < rg), let tp; (@) =
diag(er, @9, --- , @D ™") where & € F%, . and also for Ay}, (1 < j < ry), let ;;(B) =

)' .
q 0i
Ap;—1
diag(B, B4, --- ,,8(“1) b ), where B8 € C;,U. Moreover put (a1, - -+ , @ry; 1, -, Bry) =
diag(to1(@1), - - - , torg (@trg), t11(B1), - - - » t1ry (Bry)). Then Ty = TY is isomorphic to, and we

identify with, the diagonal subgroup
{t(ala s, s ﬁla R ﬁrl) ‘a; € F;A.O‘-v ﬂj € Cllj}

and hence
ro

rl
~ X
hh = H]qum X | Chyj-
j=1

i=1
Let ; and ¢; be characters of ]F;Ao,- and C,, T respectively, and 6 be the character of T)

defined by (¢ (a1, - - , @rg; B1, -+, Br)) = []; i) [1; 9 (B))-
Finally let x’ = x o Tl‘Fq2 /F, and p be the inclusion of G into GL,(g?). Then we can

show that x'(tr o (¢ (@1, - - , &g B1, -+, Br))) = [T; x 2 (@i +o7 D T; x M8+ 87 ).
Combining these results with (1.2), we have

PROPOSITION. With the notation as above
o r|
tw(R1,.0) = |G : To| [ [ Knoi (i) x [ [ Iy, (00) -
i=1 j=1
In particular, if 0 is in general position,
ro r
w((—1)"*"0 R, 6) = (=1)"*°¢@ [ | Kay ) x [ [ 41, 01) -

i=1 j=1

EXAMPLE. U)(q) Letg be acharacter of C and ¢® be the canonical lift of ¢ to F ;2.
Let J (@) = J(x, ¢) and K2(9®) = K(x@, ¢?). Then by Theorem 2 in [2], we have

K2(9®) = —J(9)? +2q0(-1).
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Under the same notation as above, we have

™w(RTq 1, p) =9 — 1)J(p)?,

w(RT, @) =9@+ DK (9?).

Let 1 and St be the trivial and the Steinberg representations of U,(q) respectively and let
@ = g odet. Then Ry, ;) .., = (=1+ St) - ¢ and Ry = (=1 — St) - ¢. Therefore we
have

@.(6@)

w(@) = qJ(®)* — (@ + De(-1),
w(St - §) = qJ(p)* — q(g + Dep(-1).

2.3. Symplectic groups. Let G = {g € GL2,(Fy) : J = ’gJg}, where J =

(__(in 1(;') and o ((gi;)) = (g?j). Then G = G? is a symplectic group, denoted by Sp2,(q).

The G-conjugacy classes of o -stable maximal tori of G are parametrized by the conju-
gacy classes of Weyl groups of type C,, and hence correspond bijectively to the set of double
partitions P> of n,ie. PP = {(A, ) : A, w € P, |A| + || = n}.

Let T, , be a maximal torus corresponding to a double partition (A, u) € P,?), where
A=(Ay, -+ ,A)and u = (uy,:--, us). Then Ty, = Ti,u is isomorphic to

r S
]_[]F;‘Ai X I_[ Cpuj -
i=1 j=I

Let 7r; and ¢; be characters of ]F;A; and C;, respectively, and 6 be the character of T},

corresponding to ((7;), (¢;)) under the isomorphism above.
Let p be the canonical inclusion of G into GL>,(q) and ¥ (g) = x(trg) for g € G. Then
we have

PROPOSITION. With the notation as above
r N
(R, ,.0) = 1G : Tl [ [ Kas i) x [ ] T (0) -
i=1 j=1 ‘
In particular, if 8 is in general position,

w((=1)"* Ry, ,.0) = (=" q" [] Kay i) x [ Ju; @) -
=l j=1

EXAMPLE. Sp4(q) Following is the table of w(xg) attached to G = Sp4(g) and all
irreducible characters x g of G, where we use the notation of Srinivasan in [16] for xz. In the
calculation we fully use the properties of unitary Kloosterman sums proved in [2].
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XR w(XR)

x1(¢") a* 12"

x2(n') g* Ky (')

x3(y, 72) q* K1 (1)K (r2)

xa(e1. 92) a*J1(p1)1(92)

x5, @) g*K1(m) 1 (9)

X6(®) —q* 11 (9)? +43(q + De(-1)
x1(®) 7* 1 (p)? —g*(q + (1)
xg(m) g*Ky(n)? +4°(@ — D (=1
x9(m) g*Ky(m)? —q*(q — Dr(=1)
£1(9), &] (@) a*KJ1(p)

£3(n), (1) g KK (m)

£21(0). 620  ¢*K1(m0))1(9)

£,@) &) q*J1(e) 1 (v0)

£41(m). £42(7) g4 K (MK (7g)

£, (7). 6, (1)  g*Ky(m)J1(e0)

@1, P2, B3, Py q*K Jy(p0)

@5, P6. P7. P35 g KKy (mp)

) ' g* Ky (mp)? +q%(q — 1)?mo(~1)
61,6, a* K (mo)? -2¢%(q — 1)?mo(-1)
63,64 a* Ky (m0)? +2¢5(g — Dmo(=1)
05, 66, 67, g a* K1 () J1 (90)

69 q*k? +q%(qg - 1)?

810 7*k? —q*(qg +1)?

011 7*K? +4%@* -1

612 q*k? -q*@* -1

613 = St 7*K? -¢3(q*-1)

6o =1 q*K? +45(q% - 1)

where K = K (1), J = J;(1) = —K.

REMARKS. (i) If G is a unitary group U,(q) or a symplectic group Sp2,(q), we can
show that for a unipotent character yg we have

w(xr) = |G|, K" + lower terms of K with coefficients in Q(q) .

It is very plausible that these coefficients are in Z[q] as can be seen in the example above. It
is desirable to determine these coefficients explicitly.
(ii) We can argue similarly for special orthogonal groups, details of which are omitted.
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3. Kloosterman sums attached to finite reductive groups.
3.1. We use the same notation as in (2.1). Fora € IF‘;< , let

Va(9) = (X 0 TtF m /F,)(tr p(g) + atrp(g™")) .

In this case Wg (R, ¥,) is called the Kloosterman sum attached to G, p and R. For unitary,
symplectic and orthogonal groups with canonical inclusion p, Kloosterman sums become
Gaussian sums, since Trr , /F, (trg) = TrF , F, (trg™!) for unitary groups and trg = trg™! for
symplectic and orthogonal groups.

32. Let G = GLx(Fy), 0((9:,)) = (97)) for (9i,;) € G, and hence G = G” =
GL,(g). The G-conjugacy classes of o-stable maximal tori are parametrized by P,. Let T,
be a maximal torus corresponding to A = (A1, -, A;) € Py, then T) = TS is isomorphic
to [Ti—; F;Ai' Let 8 be the character of T corresponding to (7;) under this isomorphism
above, where m; is a character of ]F;‘A,,. Finally let p be the identity map and so ¥,(g) =

x (trg + atrg~1) in this case. Then by theorem (1.2), we have
PROPOSITION.
,
(R0, Ya) = |G : To| [ | K (is @) .

i=1
In particular, if 8 is in general position,

,
n
w((=1)"*" Rr, 0, ¥a) = (=1)""q@ [ Ky, (mi, a) .
i=1
3.3. Now let us consider the values of Kloosterman sums for unipotent characters of
G = GL,(q). For u € P,, let x* be the corresponding irreducible character of S, defined
in (7.4) of [14]. Also for A € P,, let w, be a permutation in S, with cycle-type A. We denote
by x)‘f the value of x* at w) and by z, the order of the centralizer of w) in S,. Then every
unipotent character R, of G is obtained as follows:
Ry=) z'xyRr.1. (3.3.1)
An
34. To calculate w(Ry, ¥,), we recall some properties of symmetric functions (cf.
[14]). Foreach A € Py, let py(x) = pa(x1, x2, - - -) be the power sum, e, (x) = ex(x1, x2, - - -)
be the elementary symmetric functions and s, (x) = s (x1, x2, - - - ) be the Schur function.
Each set {pa}in, {€x}a-n and {s) },1-n is a basis of the space of symmetric functions of degree
n and they are related as follows:

pr(x) =) xsu(x),  s(x) =D avcec(x),

vkn Kkkn

where (a,,) = JK* (for the definition of matrices J and K*, see (1.6) of [14]).
From Theorem 1 of [2], we have

Km(l,a) = —am - ﬂm ’



380 NAOMICHI SAITO AND KEN-ICHI SHINODA

where «, 8 are complex numbers determined by the relations K(1,a) = —a—f and g = af.
Thus K3,(1,a) = —py;(a, 8,0, ---).

For the symmetric function f(x) = f(x1, x2,---), we shall write f = f(«, 8,0,---).
For example e; = a + B, e2 = aff and e¢x = 0 if k > 3. With this convention, by (3.2) we
have

tw(RT,, 1, ¥a) = (=1D*P|G : Ti|ps = (=1)"|G|pRr, 1(Dp3
where the second equation follows since Rr,,1(1) = (=1)"*®|G : 1|y and |G : Ty |, =
1Glp.
Moreover in [15, 7.2] it is shown that
@
R, () =) piq’,
rd

where p' is the character of the representation of S, given by the homogeneous subspace of
degree i of the coinvariant algebra of S, and pi is its value at the element with cycle type A.
Combining these informations together, we have the following

PROPOSITION.

(R _ c1re® By, 0))apeq’ 34.1

w u,'/fa)——dm Z Z (X"x", p)awq | ex. (3.4.1)
Kkn vkn

1)=2 \0<i<(})

3.5. Let(—-1)" fl’j (q) be the coefficient of e, in the right hand side of (3.4.1). Hence

V) :
K — q n.,v i i
fu@) = deg R, VEHI (x"x ,p )avq (3.5.1)
0=i=(3)

and
w(Ry, ¥a) = (=" Y fr(@ex.
ktn
I(k")<2
3.6. PROPOSITION. Fork, u b n, the following properties of £ (q) hold.

@ £ @) =4q9.
() fi;(1)=0,ifx#1A").
(iii) q('2') fi @ hH= f,(@), where W' is the dual partition of .

PROOF. (i) By (3.5.1) and the fact that

1, ifv=(),
av,(l") =

0, if v+ (n),



CHARACTER SUMS 381

we have

(1) —
172 (Q) -

Then the required result follows, since
degRy= D (x*.p")q".
0=i=(3)
(1) By putting g = 1 in (3.5.1), we have
1

fay=—— D (x*x", p)auc -
X%y  vFn
0=i=(3)

Define the nonnegative integers y},, by

X“xt = vaxt

An

Then
Do xExt = Y vh xR e =D vhoxbey = xbmxie -
OSiS(g) Abn Abn
0=i<(3)
So we have
f;(l) = Z X(vln)awc .

vkn

On the other hand
ean(x) = pam(x) = Y ximawec®) =Y fE(Dec(x).
K,vkn Kkkn

By comparing the coefficient of e, (x), « # (1), on both hands, we have the required results.

(iii) Letd,(g) =degR,. Thenitisknown thatd,(q) € Qlgl andd,(q) =d, (g~ )g?.
Moreovedr x* = x 1" x# and x ") pi = p(D)~i. Using these facts and (3.5.1) we can show
(iii). O

3.7.  We have computed f(q) for all k, u - n, if n < 7. From these computations
we conjecture that f;(q) € Zl[g]. Fork = (2, 1"~2), we can give more precise conjecture
as follows; let u be given as (a1, - , @, | B1, -+, Br) by the Frobenius notation (cf. p. 3 of

[14]), and o’ and B’ be the conjugates of @ and B, respectively. Then the following equation
will hold:

_ B “ n ay _—_
‘52,1" 2)(q) = Zlgl{q(z)—z —(n— ,.)q(z) + Z;al{q(z)ﬁ ]
i=1 i=

3.8. Here we give the table of (—1)" S (g) forn < 6. The numbers d in the second row
of each table are exponents in ¢ and each entry represents the coefficient of g¢ in (—1)" S ().
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Empty entry represents 0. Thus for example for n = 4 and u = (3, 1), we can read from the
table that

w(R@3,1), Ya) = q6e(14) +@°-3¢°+q" + qs)e(Z,lz) +(—q° +24° - q7)e(22) .

n=2 n=3

€12) €(2) €13) €@2.1)
uw 1 o 1 2 w 3 1 2 3 4 5
2 1 -1 1 3 -1 2 -1 -1
12 1 1 -1 2,1 =1 -1 2 -1

B -1 ]|-1 -1 2

n=4

€14 €2,12) €@
w 6 |3 4 5 6 7 8 9|2 3 4 5 6 7 8 9 10
4 1 -3 1 1 1 1 -1 -1 1
3,1 1 1 -3 1 1 -1 2 -1
22 1 1 =2 1 1 -1 -1 1
2,12 1 1 1 =3 1 -1 2 -1
14 1 1 1 1 -3 1 -1 -1 1
n=>5

€a%) €2,13)

5 -1 4 -1 -1 -1 -1
4,1 | =1 -1 4 -1 -1 -1
3,2 | —1 -1 3 -1 -1

3,12 | -1 -1 -1 4 -1 -1

22,1 —1 -1 -1 3 -1

2,13 -1 -1 -1 -1 4 -1

1’ -1 {-1 -1 -1 -1 4
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€221
uw 4 5 6 7 8 9 10 11 12 13 14 15 16

5 -3 2 1 1 1 -1 -1
4,1 2 -4 1 1 1 =1

3,2 -1 2 -2 1 1 -1

3,12 1 1 -4 1 1

22,1 -1 1 1 -2 2 -1

2,13 -1 1 1 1 -4 2

P -1 -1 1 1 1 2 =3

n==6
¢(16) ‘@14
w 15 {10 11 12 13 14 15 16 17 18 19 20
6 1 -5 1 1 1 1 1
5,1 1 1 -5 1 1 1 1
4,2 1 1 -4 1 1 1
4,12 1 1 1 -5 1 1 1
32 1 1 -4 2 1
3,2,1 | 1 1 1 -4 1 1
3,13 1 1 1 1 -5 1 1
23 1 1 2 -4 1
22,12 | 1 1 1 1 -4 1
2,14 1 1 1 1 1 =5 1
16 1 1 1 1 1 1 =5
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‘@12
w |7 8 9 100 11 12 13 14 15 16 17 18 19 20 21 22 23
6 6 -3 -2 -2 -1 -2 2 1 1
5.1 -3 7 -2 -1 =2 -1 1 1
4,2 1 -3 4 -1 -1 -2 2
4,12 -2 -2 8 -2 -1 =21
32 1 -2 5 -5 -1 1 1
3,2,1 1 -2 -1 4 -1 =21
3,13 fT -2 -1 -2 8 -2 =2
23 1 1 -1 -5 5 =21
22,12 2 -2 -1 -1 4 =3 1
2,14 1 1 -1 =2 -1 =2 7 -3
1 |11 2 -2 -1 -2 -2 -3 6

€%
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

6 -1 1 1 -1 1 =1 -1 1
5,1 1 -2 1 -1 2 -1
4,2 -1 2 -1 1 -2 1
4,12 1 -2 1 -1 2 -1
32 1 -1 -2 2 1 -1
3,2,1
3,13 -1 2 -1 1 =2 1
23 -1 1 2 =2 -1 1
22,12 1 -2 1 -1 2 -1
2,14 -1 2 -1 1 =2 1
1 11 <1 -1 1 -1 1 1 -1
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