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1. Introduction.

V. Bargmann showed in [1] that a generating function for the system of the Hermite
polynomials can be regarded as the integral kernel of a unitary mapping from an L? space
onto a Hilbert space of analytic functions. Then we have the following problem: is a similar
construction possible for any system of classical orthogonal polynomials? That is, for any
system of orthogonal polynomials, can we construct its generating function which can be
regarded as the integral kernel of a unitary mapping from an L2 space onto a Hilbert space of
analytic functions? This is also indicated in Bargmann’s paper.

Let R or C be the field of real or complex numbers, S(R"”) or S(C") the unit sphere in
R” or C" and x > x the usual conjugation in C.

We denote by F the Hilbert space of analytic functions f(w) of n complex variables
w = (wy, wy, - -+, w,) € C", with the inner product defined by

(f,9) = N_"lc Fw)g(w) exp(—|wi|? — - - - — lwp|H)dwi - - - dw,
where
dwy--dwp =duy---dupdvy---dv,, wj=uj+ivj (uj,vj €R),

and by H the usual Hilbert space L2(R"). ,

V. Bargmann constructed in [1] a unitary mapping A from H onto F given by an integral
operator whose kernel is considered as a generating function of the Hermite polynomials.
More precisely, f = A¢ for ¢ € H is defined by

f(w) = /R A(w, )¢ (t)d"t,
where

n . 1
Aw, 1) =n""/* Hle"p {—5(w§ +)+ 2‘/2wm} :
j:
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On the other hand, we showed in [8] that this problem can be affirmatively solved for
the Gegenbauer polynomials CA, m = 0, 1, 2, - - -, which essentially give the zonal spherical
functions on the homogeneous space SO(n)/SO(n — 1) = S(R"). That is to say, let F; be
the Hilbert space of analytic functions f of one complex variable on the unit disk B in C,
with the inner product given by

(figh = /B Fwygw)pr(wPdudv  (w =u+iv, u,v€R),

where
1
FE)%ZT)’A_l ft s7A1 — )P 2ds > 1/2)
t) =
o= ra=m o a2
t o _F(2A—1) 0s (1—-ys) ds O0O<A=<1/2),

and let K, be the usual L? space on the open interval (—1, 1) with respect to the measure
(1 — x2)*~1/24x. Then we have the following proposition (cf. [8]).

PROPOSITION 1. A unitary operator, f = A,¢, of K, onto F) is defined by

1
Fw) = f Ar(w, D@1 — P14y,
-1

where
A= 2CLOHD 1w
MW, b= T (1 — 2wt + w?)r+!
22120 () &
= ——ﬂ—(—) D m+0C W™
m=0

We should remark that A, (w, t) can be regarded as a generating function of the Gegenbauer
polynomials and the following generating function expansion plays an important role in the
proof of this proposition.

(1 = 2wt +w?) ™ = [V_:cA Ow™, (-l<t<l1, |w<1).

As stated above, the Gegenbauer polynomlals give the spherical functions on the space
SO(n)/SO(n — 1) = S(R™), more precisely, for a zonal spherical function ¢ on SO(n)/
SO(n — 1) = S(R™), there exists a unique nonnegative integer p such that

) = CI 2wy /cP P21y, b='(b1, - ,bn) € SR").

Here the identification SO(n)/SO(n—1) = S(R") is givenby kSO (n— 1) — kei,k € SOMn)
ande; =/(1,0,---,0) € S(R").

Let us turn to the analogous geometrical object U(n)/U(n — 1) = S(C"), where we
consider that the identification U(n)/U(n — 1) = S(C") is given by kU(n — 1) — ke,
ke U(n)ande; ='(1,0,---,0) € S(C"). Let H,(,'ZI) be the space of restrictions to S(C”) of
harmonic polynomials f (S, £) on C" which are homogeneous of degree p in £ and degree g
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in . Then it is known (cf. [5], [3]) that HS; is U (n)-invariant and irreducible, and moreover
L*(U(n) /U —-1)) = ;‘fq___o H ,%) . In what follows, we denote by ¢gﬁl) the zonal spherical
function which belongs to H ,(,'f,) (cf. [5D). '

The purpose of the present paper is to give a construction similar to that for the Hermite

or Gegenbauer case for the functions ¢gg. Moreover we shall give some characterization of

the spherical function ¢1(,'ZI), which is also a generalization of the usual Poisson integral for

(n)
®pq -
Suppose that n > 3 throughout this paper.

2. Preliminary to main theorem.

In this section we deal with some lemmas preparatory to our main theorem.
Let A > —1/2 and we denote by p;, the function on the open set (0, 1) x (0, 1) in R?
defined by colt o

min(1/u,1/v) _
P (u, v) = (uv)mf Mdt
1

9

where
Frlu, v) = @)1 —w)(1 - ).
From the condition A > —1/2 it follows that the integral in the definition of p, converges.
Let F, be the Hilbert space of analytic functions f (&, n) of two complex variables
(£, 1) € B x B, the direct product of the unit disk B in C with itself, with the inner product
defined by

(g = fm ) TE D9 mer(€R, InPdedn,
<1 Jnl<
where )

dé¢ =d&dé, dn=dmdn, &§=§&+i&, n=m+in, &,.nj€eR,

and let K, be the usual L2 space on the unit disk B in C with respect to the measure (1 —
Izlz))""ldxdy, z=x+1iy,x,y € R. We consider that the inner product in K, is given by

(@1, P2)r = /B P1@)2(2)(1 — |zl dxdy.

We now suppose that —1/2 < A < O and define the functions c; (u, v), h;‘(f) and
o (u, v) by

1
c(u, v) =f Fi(tu, tv)t~1dt
0
rl
f fi(st, s)s~\ds ©O<tr<l
0

ha() = !
f fist™ L )s7lds @ >1)
0

Pa(u, v) = @) 2(hy v~y — ea(u, v)).
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We should remark that the condition —1/2 < A < 0 guarantees the convergences of all the
integrals in the above.

Then the functions c;, g, satisfy the following partial differential equations and boundary
conditions: '

LEMMA 1.
dc, = 0cy
A V— =
“ ou + 1) 2
0 390 -
wlr 4 2P 3 — v S
du 0

lim py(u,v) =0, lim up)(u,v) =0
u—>1--0 u—>+0
lim pp(u,v) =0, lim vpo,(u,v) =0
v—>1-0 ‘ v—>+0
PROOF. By the definition of c;,

d 9 A )
u——c-)i(u, v)+vﬁ(u,v) =f u—f)l(tu,tv)—}-v—f-&(tu,tv) dt
ou . dv 0 du dv

Lo
=L (Efk(tu, tv)) dt

= [fr(tu, tv)1'Z)
= fiu,v),

which means that the first differential equation is true. It follows from this equation that the
function (uv)*/%c) (u, v) satisfies the following differential equation:

u%«uv)mcn + v%((uv)mm = Av) ey + (1 — w)(1 — ).

On the other hand, it is easy to see that the function ha(u, v) = (u v)*/2h, (uv—1) satisfies the
following: ’ - ’

dhy  Bhy -
U —87 =+ vw = )\.h A
So we obtain the second differential equation. It is not difficult to check the boundary condi-
tions. ‘ O

From this lemma, we can deduce the following:
LEMMA 2.
1 pl 19! 2
- plq!II"' (A + 1)]
uPv9 5, (u, v)dudv = .
fo ./(.) Pr (s, v) p+q+ArA+2)'(p+Ar2+2)'(g+2r2+2)
PROOF.

1 1
(p+q+k+2)/ f uPvi5,(u, v)dudv=A+ A,
0 JO
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A 2 1 1
(P+——; )fo /(; uPvip; (u, v)dudv

A 2 1 1
(q+—_2t-—)/o /(; uPvi 5, (u, v)dudv.

1
Ao(v) = (p + %—2)/0 u? . (u, v)du

where

A

A

If we put

A2

1
Ao(u) = (q + ——-) / v9 5, (u, v)dv,
2 0

then we have
1
A= f Ag(v)vidv
0
~ l -~
A= f Aog(w)uPdu .
0
Using integrations by parts and the boundary conditions in Lemma 1, we see that
1
Ao(v) = f @P+O+D2y (=22 5y (u, v))du
0

1 P
= [u"“ﬁx(u,v)]ZZé—f uPrOAD2 = 2 5y (u, v))du
0

1 ~
_ __/ LPHO+2)/2 (__A_'_u—A/Z—IﬁA(u’ vy + u—x/za_l’l_(u, v)) du
) 0 2 ) ou

1 A ap
=—f uP ———,5x(u,v)+uﬁ(u,v))du,
0 2 ou
and
- 1 A ap
Ao(w) = —f v? (——5A(u,v)+v—£i(u. v)) dv.
0 2 v

And moreover, from the partial differential equations in the same lemma, we obtain that

- 1 el A 95
A+A=—f f ufv? ——-,5;\(u-,v)+u-—p&(u,v)) dudv
0o Jo 2 ou

1 1 ~

A 0
-—f f uPv? ——ﬁk(u,v)+vﬂ(u,v))dudv
~Jo Jo . 2 v av

1 1 95 95
= —f f uP v (—x,ax(u, v) + uL2 (U, v) + v2 (u, v)) dudv
o Jo ou ov
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1 pl
= f / uPv? (uv)*’? f, (u, v)dudv
o Jo

1 1
=f f wPva(1 — w)(1 — v)*dudv
0 Jo

=B(p+1,A+1)B(g+1,A+1)
_I'(p+1Hro+1) '+ Hra+1)
T T'(p+Ar+2) C@+Xx+2)
Thus we can conclude that
p'q'[C (x + D]?

1 pl
+ +)~-+—2f/u"’vq~ u, v)dudv = ,
(P +q A ZACY Tp+r+2)I(@+Ar+2)

which implies our assertion. O

By simple calculations, we have gy = p) for —1/2 < A < 0. Therefore, if we set
P = px for A > O, then this lemma holds also for A > —1/2 owing to the analyticity with
respect to A. It follows from this result that the system of functions uf,,)‘} ,0.9q=0,1,2,---,
where

UG (€, n) =

EPn?

’

1 p+gq+A2+2)F'(p+2+2)I'(g+2+2)
al(L+1) plq!
is an orthonormal basis in F;.

From now on, let A = n — 3. We showed in [9] the following proposition, which gives a
generating function for the functions ¢,(,'2,).

PROPOSITION 2. Ifw,z€C,|w| <1,|z| <1, then

o0
(1 —2Re(wz) + [w?)!'™" = > RY(wPw?,

P.q=0
where
n+p—2\{n+qg-—2
R;':])(bl)= ( 5 ) ( Z )¢g:])(b)’ b=t(b]s"' ,bn) eS(CIl),
and the identification U(n)/U(n — 1) = S(C") is given by kU(n — 1) — ke, k € U(n)
ande; ='(1,0,---,0) € S(C"). The series on the right hand side converges absolutely and

uniformly for |z| < 1 and |w| < p foreach0 < p < 1.

We should remark that this expansion is equivalent to the following:

o0
A—Ez—nz+&m'™ = Y RP &,
p.q=0
wherez,§,n e Cand |z] < 1, |§] < 1, |n| < 1.
The functions Rf,'zl) have the following orthogonality relation in K,_3:
al(p+n—DIr@g@+n-1)
W p+g+n—Dpg'l(n— DI’

»/II 1 Rf,’?(z)R;'f;,(z)(l — 12*)""2dxdy = 8pp'd
zZ|=
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So the normalization H 1(,"}) of Rg;) with respect to the inner product of K, _3 is given by

H®(z) = (p+q+n—1)plg'[ln—1))?
P T\ T aM(p+n—DI(@+n—1)

(n)( ).

Then the system of the functions H ,Sq is an orthonormal basis in K,,_3.

3. Main theorem.

From what has been described in the previous section, we can obtain the following main
theorem. We denote u'y > by UL,

THEOREM 1. A unitary operator, f = An@, of K,—3 onto F,_3 is defined by

FE ) = f|  AntE D91 — e dxdy,
<

where
n—2)(n—-1) 1—§&n
Ap(€,n52) = -
D= T A g —ma 4k
n—2 &
375 Z (p+q+n-— l)Rg’;)(z)S”nq
pvq=0
oo
= > HD@QUDE ). 1)

p.q=0

PROOF. First of all, we notice that H ,(,'},) (2) = (") p (2), in particular

An(E, M5 2) = Z HR @UDE 7).
p.q=0
For any (&£, n) € B x B, we have

= 2
DU E P < oo
p.q=0
So we can consider the right hand side of (1) is the Fourier expansion for A,(§,7n; z) as a
function of z. Thus, for ¢ € K,,_3, we have

(An@) (&, 1) =( 3 uWE mHS, )
n-3

p.q=0
o0
= Y (HP, 03U E n).
p.q=0
Hence, (A,@, Ap@)n—3 = _0 |(Hé,'}1 s Pn— 3|2 and A, Hé}',) = ,(,"'1), that is to say (A, ¢,

Anp)n-3 = (@, ¢)p—3 and the mapping A, is onto. This implies that the mapping A, is a
unitary operator of K,,_3 onto F,_3. O
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4. Some characterization of the spherical function ¢§,’;).

In this section, we shall derive some characterization of the function ¢§,’2 using the pre-
ceding main theorem.

Let dk, dm be the normalized Haar measures on U (n), U(n — 1) respectively and do
be the normalized measure on S(C”) which is invariant under the action of U(n). As is
well known (cf. [4]), a continuous function ¢ on S(C") is a zonal spherical function on the
homogeneous space U (n)/U (n — 1) if and only if

f ¢ (kK'mke)dm = ¢ (k'e1)d (ker)
Un=1)

forall k', k € U(n).

For a fixed pair of nonnegative integers (p, g), we denote ¢§,’ZI) by ¢. From the function
equation for ¢, for a continuous function f on B and w = k’e; € S(C") (K’ € U(n)) we see
that

/ f(w, )¢ (r)do () = f((K'e1, ker))p (key)dk
N (o) Un)

= f((K' ey, K’'mke))p(k'mke))dk (m € U(n — 1))
Un)

= f(e1, ker))op (k'mke;)dk
U(n)

= f((e1, key)) (/ ¢(k’mke1)dm) dk
Un) Umn-1)
— p(Ker) f F((er, ker))d (ker)dk
Un)
— $(@) f F((er, ) (@)do (2)
sicr)

= C<13(a))fH 1 f@Q@A — |z 2dxdy,
Z|<

where C = (n —1)/m and Q(71) = ¢(t) (r =(z1, 12, -+ - , Tn)). This is nothing but another
characterization for ¢, which is well known as the Funk-Hecke (type) theorem (cf. [7]).

Now, for any (§,n7) € B x B, if we set f(z) = A,(&, n; z) and apply the preceding
consideration and the main theorem, then we obtain

f A&, 7; (@, T)$(0)do (7)
N (8]

= Co(w) I AnE, 1 Q@A — |z)*)"2dxdy

z|<1
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= CCpq¢ () AnE, 1 DH ()1 — |2)"2dxdy

|zl<1

= CCpg¢(@)(AnH)(E, 1) = CCpgd (@)U (€, 1),

where the constant C),, satisfies Cp, H,(,Z) (z) = Q(2), thatis Cpy H,(,’,'I)(l) =Q0(1)=1.
Thus we can deduce the following: ‘

n-—2
ST

f An(€,n; (@, T))P(T)do () =C §inPP(w).
s(c™)

In other words, for (§, n) € B x B, if we put

o 1—&n
Pn(§,n52) = (1—&z—nz+&n)"

and define the integral transformation P, [£, n] of L2(S(C™)) by
Py, nlY(w) = /S(C'I) Py, n; (0, )Y (D)do(t), ¥ e LAS(CY)),

, (zeC, lzl<D),

then we can conclude that:

THEOREM 2. Let ¢ be a continuous function on S(C") which is invariant under the
action of U (n — 1) and satisfies ¢ (e1) = 1. Then ¢ is a zonal spherical function belonging to
H 1(,'('1) on the homogeneous space U (n)/U (n — 1) if and only if

P&, nlp =&EnP¢ (2)
forall (€,n) € B x B.

REMARK. In this theorem, if we set § = n = r > 0, then the formula (2) transforms

into the following:
Pulr,rlp =r?™¢,

which is the usual Poisson integral of ¢, i.e. the kernel P,(r, r; z) is the Euclidean Poisson
kernel (cf. [6]). In particular, for two pairs (p, q), (p’, ¢’) which satisfy p + g = p’ + q’, we
have

Pulr, rlgpg =rP*iep)

n) _ p'+q ()
Pylr, r]¢p/qr =r ¢p’q’ ’

where the eigenvalue of the Poisson integral with respect to ¢,(,';) coincides with that for the
case of ¢I(7'f;,.
On the other hand, from the formula (2), we have
Pol&, nlg5) = &9nP o)
P[E, nlpl, = E7nP 60,

If (p,q) # (P, q’), the eigenvalues £§9nP, £9' 7P do not always coincide. Therefore we can
consider that the formula (2) gives not only a generalization of the Poisson integral but a
characterization of the spherical function ¢f,'§1).
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