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Abstract We show that any torsion class $e\in H^{2}(M;Z)$ of any closed manifold $M$ is realized as the Euler
class of a smoothly foliated orientable circle bundle over $M$ . In the case where $M$ is a 3-manifold, we construct the
homomorphism $\pi_{1}(M)\rightarrow SO(2)\subset Diff_{+}^{\infty}(S^{1})$ explicitly whose Euler class is the given torsion class.

1. Introduction and statement of the result.

Let $M$ be a closed orientable manifold and $\xi=\{E\rightarrow M\}$ an orientable circle bundle
over $M$ . We denote by $e(\xi)$ the Euler class of $\xi$ . As is well known, orientable circle bundles
are classified by their Euler classes. On the other hand, foliated orientable circle bundles
are classified by their total holonomy homomorphisms. Namely, there is a natural bijection
between the set of all smoothly $(C^{\infty})$ foliated orientable circle bundles over $M$ modulo leaf
preserving bundle isomorphism and the set of all homomorphisms $\pi_{1}(M)\rightarrow Diff_{+}^{\infty}(S^{1})$

modulo conjugacy (cf. [HH]). Here, $Diff_{+}^{\infty}(S^{1})$ denotes the group of all orientation preserv-
ing diffeomorphisms of the circle. We consider a homomorphism $\pi_{1}(M)\rightarrow Diff_{+}^{\infty}(S^{1})$ as
an equivalent of a smoothly foliated orientable circle bundle over $M$ .

In [My] we studied the problem of the existence of a codimension-one foliation trans-
verse to the fibers of a given circle bundle $E\rightarrow M$ , that is, the question when is a circle
bundle foliated, in the case where the base space $M$ is a 3-manifold. In case the base space
is a surface $ M=\Sigma$ , the necessary and sufficient condition for the existence of a transverse
foliation was obtained by J. Milnor and J. W. Wood in [M] and [W]. Assume $\Sigma$ is connected.
Denote by $\chi(\xi)$ the Euler number of the circle bundle $\xi$ and set $X-(\Sigma)=\max\{0, -\chi(\Sigma)\}$ ,

where $\chi(\Sigma)$ denotes the Euler characteristic of $\Sigma$ . Then, there exists a transverse foliation
if and only if X $(\xi)|\leq\chi_{-}(\Sigma)$ . Here, $\Sigma$ is a closed orientable surface and we omit the
non-orientable case for simplicity. We call this inequality Milnor-Wood inequality. In higher
dimensions, Milnor-Wood inequality induces a necessary condition for the existence as fol-
lows (cf. [M], [W], [My]): If there exists a transverse foliation on the total space $E$ , then the
following condition is satisfied:

(MW) : $|(e(\xi),$ $ z\rangle$ $|\leq x(z)$ for any $z\in H_{2}(M;Z)$ .
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Here, $(, )$ denotes Kronecker product and $x$ is Thurston norm, that is, the pseudonorm on
$H_{2}(M;Z)$ defined as follows: for any $z\in H_{2}(M;Z),$ $x(z)$ is defined to be the minimum
$\chi_{-}(\Sigma)$ of all surfaces $\Sigma$ in $M$ each of which represents the given homology class $z$ (cf.
[Th]). In case $\Sigma$ is not connected, here, we set $X-(\Sigma)=\sum_{i}\max\{0, \chi_{-}(\Sigma_{i})\}$ with respect to
the decomposition into connected components $\Sigma=\coprod_{i}\Sigma_{i}$ .

We showed in [My] there exists a family of circle bundles each ofwhich has a transverse
foliation of class $C^{0}$ but none of class $C^{3}$ . Also we proved with some exceptions the condition
(MW) is sufficient for the existence of a $c^{\infty}$ transverse foliation if the base space is a closed
Seifert fibred manifold.

In this paper, we consider the case where the condition (MW) is trivial. In fact, we show
the following:

THEOREM. Suppose $\xi=\{E\rightarrow M\}$ is an orientable circle bundle over a closed
manifold M. The dimension of the base space $M$ is arbitrary. If the Euler class $e(\xi)$ is a
torsion class in $H^{2}(M;Z)$ , then there exists a codimension-one $c^{\infty}$ foliation on $E$ which
is transverse to the fibres. In fact, we can construct the transverse foliation whose total
holonomy group is contained in $SO(2)$ .

In [M], Milnor showed that the Euler class of a flat $SO(m)$ -bundle is a torsion element.
We will prove Theorem in \S 2. In \S 3, in connection with the results of the paper [My],

we explicitly construct the homomorphism $\pi_{1}(M)\rightarrow SO(2)\subset Di\Psi_{+}(S^{1})$ whose Euler class
is the given torsion class if $M$ is a 3-manifold.

2. Proof of Theorem.

In this section we prove Theorem. We identify the rotation group $SO(2)$ with $S^{1}=R/Z$ .
Suppose that $M$ is a closed orientable manifold. Consider the short exact sequence:

$0\rightarrow Z\rightarrow R\rightarrow SO(2)\rightarrow 0$ ,

then we have the following exact sequence:

. . . $\rightarrow H^{1}(M;SO(2))\rightarrow\beta H^{2}(M;Z)\rightarrow H^{2}(M;R)\rightarrow H^{2}(M;SO(2))\rightarrow\cdots$ ,

where $\beta$ is the Bockstein cohomology homomorphism corresponding to the coefficient se-
quence above (cf. [S]). By the exactness of the sequence above, we have

${\rm Im}(\beta)=Ker(H^{2}(M;Z)\rightarrow H^{2}(M;R))$

$=Tor(H^{2}(M;Z))$ ,

where Tor denotes the torsion subgroup. On the other hand, any homomorphism $\varphi$ : $\pi_{1}(M)\rightarrow$

$SO(2)$ can be considered as a cohomology class of $H^{1}(M;SO(2))$ by the universal coefficient
theorem

$Hom(\pi_{1}(M), SO(2))\cong Hom(H_{1}(M), SO(2))$

$\cong H^{1}(M;SO(2))$ .
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From now on, we identify these groups via these natural isomorphisms. Recall that a homo-
morphism $\pi_{1}(M)\rightarrow SO(2)$ is considered as an equivalent of a $c^{\infty}$ foliated orientable circle
bundle over $M$ whose total holonomy is contained in $SO(2)$ . Now we claim the following:

CLAIM (cf. [M]). The Euler class of a homomorphism $\varphi$ : $\pi_{1}(M)\rightarrow SO(2)$ is equal
$to-\beta(\varphi)\in H^{2}(M;Z)$ .

PROOF OF CLAIM. First, note that a cochain $C_{1}(M)\rightarrow SO(2)$ is a cocycle if and only
if its restriction to the boundaries $B_{1}(M)$ is zero. Suppose ahomomorphism $\varphi$ : $ H_{1}(M;Z)\rightarrow$

$SO(2)$ is given. We will define a l-cocycle which represents $\varphi\in Hom(H_{1}(M;Z), SO(2))\cong$

$H^{1}(M;SO(2))$ . Since the short exact sequence of l-cycles, l-chains and O-boundaries

$0\rightarrow Z_{1}(M)\rightarrow C_{1}(M)\rightarrow\partial B_{0}(M)\rightarrow 0$

is split, we have a direct sum decomposition $C_{1}(M)=Z_{1}(M)\oplus B$ , where $B\subset C_{1}(M)$ is
a subgroup isomorphic to $B_{0}(M)$ . We define a cochain $c$ : $C_{1}(M)\rightarrow SO(2)$ as $\varphi\cdot\pi$ on
$Z_{1}(M)$ and $0$ on $B$ , where $\pi$ : $Z_{1}(M)\rightarrow H_{1}(M;Z)$ is the natural quotient homomorphism.
Then $c$ is a cocycle, that is, $\delta c=0$ and $c$ represents the class $\varphi\in H^{1}(M;SO(2))$ . For, we
have $\delta c=c\cdot\partial=\varphi\cdot\pi\cdot\partial=\varphi\cdot\pi|B_{1}(M)=0$ and also $c(\zeta)=\varphi\cdot\pi(\zeta)=\varphi[\zeta]$ for any
$\zeta\in Z_{1}(M)$ .

Next, we show $that-\beta(\varphi)=e(\varphi)$ , where $\beta$ : $H^{1}(M;SO(2))\rightarrow H^{2}(M;Z)$ is the
Bockstein homomorphism. Indeed, we will show that a representative cocycle $of-\beta(\varphi)$ also
represents the primary obstruction class $e(\varphi)$ of the circle bundle defined by $\varphi$ . First, the
homomorphism $\beta$ is defined through the snake diagram as follows:

$0\rightarrow Hom(C_{1}(M), Z)\rightarrow Hom(C_{1}(M), R)\rightarrow Hom(C_{1}(M), SO(2))\rightarrow 0$

$\downarrow\partial^{*}$ $\downarrow\partial^{*}$ $\downarrow\partial^{*}$

$0\rightarrow Hom(C_{2}(M), Z)\rightarrow Hom(C_{2}(M), R)\rightarrow Hom(C_{2}(M), SO(2))\rightarrow 0$

For any l-cocycle $h\in Hom(C_{1}(M), SO(2))$ , there is $\tilde{h}\in Hom(C_{1}(M), R)$ which maps to
$h$ . Since $\partial^{*}\tilde{h}\in Hom(C_{2}(M), R)$ goes to $0$ in $Hom(C_{2}(M), SO(2)),$ $\partial^{*}\tilde{h}$ , in fact, lies in
$Hom(C_{2}(M), Z)$ . Denote it by $g\in Hom(C_{2}(M), Z)$ . This 2-cochain $g$ is a cocycle and $\beta[h]$

is defined to be the cohomology class of $g$.
Let $f$ : $C_{2}(M)\rightarrow Z$ be the 2-cocycle defined by chasing the snake diagram from the

l-cocycle $c\in Hom(C_{1}(M), SO(2))$ , the representative cocycle of $\varphi$ . Thus, $f$ represents
$\beta[c]=\beta(\varphi)$ . Indeed, the 2-cocycle $f$ is defined as follows: Fix a triangulation of $M$ and
suppose $\pi_{1}(M)=(G|R)$ is the presentation associated with the triangulation of $M$ . Namely,
each element of $G$ corresponds to an oriented edge which is not contained in a fixed maximal
tree and each word of $R$ corresponds to an ori$e$nted 2-simplex. From now on we consider
each generator $g\in G$ as an edge which is not contained in the maximal tree. Then, by the
definition of $c$ we have $c(g)=\varphi(g)$ for $g\in G$ . Choose a lift $\varphi\overline{(g}$) $\in R$ of $\varphi(g)\in SO(2)$

for each $\underline{g}\in G$ . We define a lift $\tilde{c}$ : $C_{1}(M)\rightarrow R$ of $c$ : $C_{1}(M)\rightarrow SO(2)$ by setting
$\tilde{c}(g)=\varphi(g)$ for each $g\in G$ . Note that for an edge contained in the maximal tree the value
of $\tilde{c}$ is defined to be zero. By dePnition, $f=\partial^{*}\tilde{c}$ . Now, let $\Delta$ be any oriented 2-simplex and
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suppose its boundary $\partial\Delta$ corresponds to $h_{1}^{\epsilon_{1}}h_{2}^{\epsilon_{2}}h_{3}^{\epsilon_{3}}(h_{i}\in G\cup\{1\}, \epsilon_{i}=\pm 1)$ . Then since $\partial\Delta$

determines a word consists of the letters of $G$ which $be\underline{longs} $to (the normal closure 00 $R$ ,
$\epsilon_{1}\tilde{c}(h_{1})+\epsilon_{2}\tilde{c}(h_{2})+\epsilon_{3}\tilde{c}(h_{3})=\epsilon_{1}\varphi(h_{1})+\epsilon_{2}\varphi(h_{2})+\epsilon_{3}\varphi(h_{3})$ is an integer. Thus, we have

$f(\Delta)=\partial^{*}\tilde{c}(\Delta)$

$=\tilde{c}(\partial\Delta)$

$=\epsilon_{1}\tilde{c}(h_{1})+\epsilon_{2}\tilde{c}(h_{2})+\epsilon_{3}\tilde{c}(h_{3})$

$=\epsilon 1\overline{\varphi(hl)}+82\overline{\varphi(h2)}+83\overline{\varphi(h3)}$ .

This implies $that-f$ is the Euler cocycle of $\varphi$ . Q.E.D. of Claim.

Recall that ${\rm Im}(\beta)$ is the torsion subgroup of $H^{2}(M;Z)$ . Thus, by this Claim the EuleI
class of a foliated circle bundle whose total holonomy $\pi_{1}(M)\rightarrow SO(2)$ is a torsion class
and conversely any torsion class in $H^{2}(M;Z)$ can be the Euler class of a total holonomy
$\pi_{1}(M)\rightarrow SO(2)$ . Now the proof is completed.

3. Explicit construction in dimension three.

In the case of dimension three we explicitly construct the homomorphism $\pi_{1}(M)\rightarrow$

$Di\wp_{+}(S^{1})$ which represents the given torsion class. In this section, every coefficient grouf

of homology group is Z.
First, we see how the Euler class of an orientable circle bundle describes the twist of

the bundle. Suppose an orientable circle bundle $\xi=\{E\rightarrow M\}$ over a closed 3-manifolc
$M$ is given. For simplicity we assume $M$ is orientable. We choose an orientation on $M$ anc
take an oriented embedded loop $K$ in $M$ which represents the Poincar\’e dual of $e(\xi)$ . Denote
by $\mathcal{E}_{M}(K)$ the exterior of $K$ , that is, $\mathcal{E}_{M}(K)=M$ –int$N(K)$ where $N(K)$ denotes a smal
tubular neighbourhood of $K$ in $M$ . Since $e(\xi)|\mathcal{E}_{M}(K)=0$ , the restriction $\xi|\mathcal{E}_{M}(K)$ is trivial
Fix trivializations $\mathcal{E}_{M}(K)\times S^{1}\cong E|\mathcal{E}_{M}(K)$ and $N(K)\times S^{1}\cong E|N(K)$ . Then the $gluin\not\in$

diffeomorphism $g:\partial(\mathcal{E}_{M}(K))\times S^{1}\rightarrow\partial N(K)\times S^{1}$ is defined to be the map which maket
the following diagram commutative:

$\partial(E|\mathcal{E}_{M}(K))\cong\partial(\mathcal{E}_{M}(K))\times S^{1}$

$||$ $\downarrow g$

$\partial(E|N(K))\cong\partial N(K)\times S^{1}$

Now fix a framing $S^{1}\times D^{2}\cong N(K)$ so that the gluing diffeomoIphism $g$ is represented as $j$

diffeomorphism $S^{1}\times\partial D^{2}\times S^{1}\rightarrow S^{1}\times\partial D^{2}\times S^{1}$ , which is expressed as follows:

$\left(\begin{array}{lll}l & 0 & 0\\0 & 1 & 0\\m & n & 1\end{array}\right)$

Note that on the boundary tori, the framings are the same: $S^{1}\times\partial D^{2}\cong\partial N(K)=\partial(\mathcal{E}_{M}(K))$

Here $m$ is an ambiguity of the choices and we can assume $m=0$ by choosing anothe
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trivialization over $N(K)$ . If the Euler class $e(\xi)$ is a torsion element, then the integer $n$ in
th$e$ above expression is determined modulo the order of $e(\xi)$ . Namely, suppose $pe(\xi)=$

$0(p\in Z, p>0)$ and $qe(\xi)\neq 0$ if $0<q<p(q\in Z)$ , then $n$ changes into $n+lp$

$(1\in Z)$ by changing trivialization over $\mathcal{E}_{M}(K)$ . Consequently, if the Euler class $e(\xi)$ is a
torsion element, then the integer $n$ modulo the order of $e(\xi)$ depends only on the Euler class
$e(\xi)$ . This representation of the gluing map $g$ implies that the meridian loop of $K$ on the cross
section over $\mathcal{E}_{M}(K)$ winds up $n$ times in the fibre direction.

Now we construct the homomorphism. Denote by $SO(2)$ the universal covering group
of $SO(2)$ . Recall that we identify $SO(2)$ with $S^{1}=R/Z$ and $SO(2)$ with R. It is sufficient
for our task that we define a homomorphism from $\pi_{1}(\mathcal{E}_{M}(K))$ into $SO(2)$ such that $[\mu]$ is
forced to be mapped to the translation by $n$ , where $\mu$ denotes the meridian loop of $K$ . Then
the homomorphism goes down to $\pi_{1}(M)=\pi_{1}(\mathcal{E}_{M}(K))/([\mu])\rightarrow SO(2)$ as desired.

Since $[K]\in H_{1}(M)$ is a torsion element, there is no $z\in H_{2}(M)$ such that the inter-
section number $[K]\cdot z\neq 0$ . Therefore, $H_{2}(M)\rightarrow H_{2}(M, \mathcal{E}_{M}(K))$ is the zero map so that
$\partial$ : $H_{2}(M, \mathcal{E}_{M}(K))\rightarrow H_{1}(\mathcal{E}_{M}(K))$ is injective. It is obvious that the meridian loop $\mu$ of $K$

represents an element of infinite order of $H_{1}(\mathcal{E}_{M}(K))$ .
We will define a $homomorphis\underline{m\tilde{\psi}} $: $\pi_{1}(\mathcal{E}_{M}(K))\rightarrow\overline{SO(2)}$ via $H_{1}(\mathcal{E}_{M}(K))$ by choosing

a homomorphism $H_{1}(\mathcal{E}_{M}(K))\rightarrow SO(2)$ such that $[\mu]$ is forced to be mapped to the trans-
lation by $n$ . First, we choose a direct sum decomposition of $H_{1}(\mathcal{E}_{M}(K))=F\oplus T$ , where
$T$ is the torsion subgroup and $F$ is a complementary free part. We assume that $[\mu]\in F$ and
choose free basis $\alpha_{1},$ $\cdots$ $\alpha_{r}$ for the free part $F$ . Then, changing signs of $\alpha_{i}’ s$ if necessary,
we have an expression $[\mu]=\sum_{i=1}^{r}a_{i}\alpha_{i}$ where $a_{i}\in Z,$ $a_{i}\geq 0$ and $\sum_{i=1}^{r}a_{i}\geq 1$ . Note that
$[\mu]\neq 0$ . Define a homomorphism $\rho$ : $H_{1}(\mathcal{E}_{M}(K))\rightarrow SO(2)$ by

$\rho(\alpha_{i})=sh(\frac{n}{\sum_{i=1}^{r}a_{i}})$

$\rho|T=id$ ,

where $sh(t)$ denotes the translation by $t$ . Composing $\rho$ with the natural quotient homomor-
phism $\pi_{1}(\mathcal{E}_{M}(K))\rightarrow H_{1}(\mathcal{E}_{M}(K))$ we have the desired homomorphism. This completes our
construction.
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